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Abstract
By combining the works of Moudafi [A. Moudafi, J. Math. Anal. Appl., 241 (2000), 46–55] and Iiduka and Takahashi

[H. Iiduka, W. Takahashi, Nonlinear Anal., 61 (2005), 341–350], we introduce an iterative process that converges strongly to
a particular solution of a variational inequality problem. We also study the stability of the algorithm under relatively small
perturbation and we apply the obtained results to the study of a constrained optimization problem and a problem of common
fixed points of two nonexpansive mappings. Some numerical experiments are provided to study the affect of some parameters
on the speed of the convergence of the considered algorithm.

Keywords: Hilbert spaces, variational inequality problem, nonexpansive mapping, inverse strongly monotone mappings.

2020 MSC: 47H09, 47H05, 47H10, 47J20.

©2023 All rights reserved.

1. Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and associated norm ‖.‖ and letQ be a nonempty,
closed, and convex subset of H. In this paper, we are interested in determining a particular common
solution to the variational problem:

Find q ∈ Q such that 〈Aq, x− q〉 > 0 for every x ∈ Q, (1.1)

and the fixed point problem:
Find q ∈ Q such that Sq = q,

where

(A1) S : Q→ Q is a nonexpansive mapping, i.e., ‖Sx− Sy‖ 6 ‖x− y‖ for every x,y ∈ Q.
(A2) A : Q→ H is a ν- inverse strongly monotone operator which means that ν > 0 and

〈Ax−Ay, x− y〉 > ν ‖Ax−Ay‖2 , ∀x,y ∈ Q.

We denote by Fix(S) = {x ∈ Q : Sx = x} the set of fixed points of the operator S and by SVI(A,Q) the set
of solutions to the problem (1.1). It is easy to see that the sets Fix(S) and SVI(A,Q) are closed and convex
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subsets of H (see Lemmas 2.3 and 2.4 in Section 2); hence the set

Ω := Fix(S)∩ SVI(A,Q)

is also closed and convex subset of H. We assume that

(A3) The set Ω is nonempty.

In order to approximate numerically the elements of the set Ω, Takahashi and Toyoda [9] have intro-
duced the following algorithm{

x1 ∈ Q,
xn+1 = αnxn + (1 −αn)SPQ(xn − λnAxn), n > 1, (1.2)

where PQ : H → Q is the metric projection from H onto Q (see the next section for the definition and
some proprieties of he operator PQ). They have proved that if the sequence {(αn, λn)} remains in a fixed
compact subset of (0, 1)× (0, 2ν), then any sequence {xn} generated by the process (1.2) converges weakly
to some element q∞ of Ω.

Later, Plutieng and Kumam [8] generalized the previous result by replacing in the algorithm (1.2)
the nonexpansive mapping S by Sn, where {Sn} is a sequence of a nonexpansive mapping with common
fixed points. They proved, under some suitable assumptions on {Sn} and the same assumption on the real
sequences {αn} and {λn}, that the generated sequence {xn} converges weakly to a common fixed point of
the mapping {Sn}, which is a solution of the variational problem (1.1).

To overcome the drawback of the weak convergence and the non specification of the limit point q∞ in
the algorithm (1.2), Iiduka and Tokahashi [5] have considered the following iterative process:{

x1 ∈ Q,
xn+1 = αnu+ (1 −αn)SPQ(xn − λnAxn), n > 1, (1.3)

where u is a given element of Q. They established that if {λn} ∈ [a,b], with 0 < a < b < 2ν, {αn} ∈ [0, 1],
αn → 0,

∑
n>1 αn = +∞ and

∑
n>1 (|αn+1 −αn|+ |λn+1 − λn|) < ∞, then any sequence {xn} generated

by the algorithm (1.3) converges strongly in H to the closest element of Ω to u.
In 2011, Yao, Liou, and Chen [14] studied two averaged version of the algorithm (1.3). Precisely, they

introduced the following two algorithms{
x1 ∈ Q,
xn+1 = βnxn + (1 −βn)PQ(αnu+ (1 −αn)SPQ (xn − λnAxn)), n > 1, (1.4){
x1 ∈ Q,
xn+1 = βnxn + (1 −βn)SPQ(αnu+ (1 −αn) (xn − λnAxn)), n > 1. (1.5)

They proved that if the sequence {αn} and {λn} satisfy the same assumptions as in the Theorem of Iiduka
and Tokahashi and {βn} belongs to a sub-interval [0,b] of [0, 1) and satisfies

∑
n>1 |βn+1 −βn| <∞, then

any sequence {xn} generated by (1.4) or (1.5) converges strongly in H to the closed element of Ω to u.
Recently, many authors (see for instance [3, 10, 11, 15]), inspired by the viscosity approximation

method due to Moudafi [6], have introduced a variant of general algorithms that converge strongly to
a specified solution of a variational inequality problems. These algorithms include as a special case the
following generalization of the algorithm (1.3):{

x1 ∈ Q,
xn+1 = αnf(xn) +βnxn + γnSPQ(xn − λnAxn), n > 1, (1.6)

where
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(A4) f : Q→ Q is a contraction with coefficient ρ ∈ [0, 1), that is

‖f(x) − f(y)‖ 6 ρ ‖x− y‖ ∀x,y ∈ Q,

and {αn}, {βn}, and {γn} are nonnegative real sequences that satisfy the relation αn +βn + γn = 1.

The authors studied the case when the sequence {βn} stays away from 0 and 1 in the sense 0 6 a 5
βn 5 b < 1 for some constants a and b. They proved, under suitable and mild conditions on the
parameters {αn} and {λn}, that any sequence generated by the algorithm (1.6) converges strongly to the
unique solution q∗ of the variational inequality problem

Find q∗ ∈ Ω such that 〈f(q∗) − q∗, x− q∗〉 6 0, ∀x ∈ Ω. (1.7)

In the present work, we study the limit case of the algorithm (1.6), where βn = 0 for all n. Precisely, we
consider the process {

x1 ∈ Q,
xn+1 = αnf(xn) + (1 −αn)SPQ(xn − λnAxn), n > 1, (1.8)

and we prove, under the same conditions on the sequences {αn} and {λn} as in the result of Iiduka and
Takahashi mentioned above, that the algorithm (1.8) still converges strongly to the solution q? of the
problem (1.7). Moreover, we establish the strong convergence of the implicit version of (1.8). In fact, we
prove that if λ : (0, 1] → [a,b], with [a,b] ⊂ (0, 2ν), then for every t ∈ (0, 1], there exists a unique xt in Q
such that

xt = t f(xt) + (1 − t) SPQ(xt − λ(t)Axt). (1.9)

Then we show that xt converges strongly in H to q∗ as t→ 0+.
Throughout this paper, we always assume that all the assumptions (A1)-(A4) are satisfied.
The sequel of the paper is organized as follows. In Section 2, we recall some well-known results from

convex analysis that will be useful in the proof of the main results of the paper. In Section 3, we establish
the strong convergence of the implicit algorithm (1.9). In Section 4, we study the strong convergence of the
explicit algorithm (1.8). Then we prove its stability of the process under the effect of small computational
errors and we apply the obtained results to the study of a constrained optimization problem and the
problem of common fixed points of two nonexpansive mappings. Section 5 is devoted to the study of the
effect of the sequence {αn} on the convergence rate of a particular example of the perturbed version of the
algorithm (1.8) through some numerical experiments.

2. Preliminaries

In this section, we recall some results that will be helpful in the next sections. Most of these results are
classical and can be found in any good convex analysis book as [1, 4, 7]. Let us first recall the definition
of the metric projection onto a nonempty, closed, and convex subset of H.

Lemma 2.1 ([1, Theorem 3.14]). Let K be a nonempty, closed, and convex subset of H. For every x ∈ H, there
exists a unique PK(x) ∈ Q such that

‖x− PK(x)‖ 6 ‖x− y‖ , ∀y ∈ K.

The operator PK : H→ K is called the metric projection onto K.

The following lemma gathers some classical and important properties of the projection operator PK.

Lemma 2.2 ([1, Corollary 4.18]). Let K be a nonempty, closed, and convex subset of H.
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(1) For every x ∈ H, PK(x) is the unique element of K which satisfies

〈PK(x) − x,PK(x) − y〉 6 0, for every y ∈ K.

(2) The operator PK : H→ K is firmly nonexpansive, i.e.,

〈PK(x) − PK(y), x− y〉 > ‖PK(x) − PK(y)‖2 , for all x,y ∈ H. (2.1)

In particular
‖PK(x) − PK(y)‖ 6 ‖x− y‖ , for all x,y ∈ H. (2.2)

Lemma 2.3 ([1, Theorem 3.13]). Let C be a closed convex and nonempty subset of H. If T : C → C is a
nonexpansive mapping, then Fix(T) = {x ∈ C : Tx = x} is a closed and convex subset of H.

Lemma 2.4. Let λ ∈ (0, 2ν]. Then the following assertions hold true.

(i) For every x,y ∈ Q,

‖(x− λAx) − (y− λAy)‖2 6 ‖x− y‖2 − λ(2ν− λ) ‖Ax−Ay‖2 . (2.3)

(ii) The operator Θλ := PQ ◦ (I− λA) : Q→ Q is nonexpansive and Fix(Θλ) = SVI(A,Q).
(iii) SVI(A,Q) is a closed and convex subset of H.

Proof.

(i) Let x,y ∈ Q. A simple computation gives

‖(x− λAx) − (y− λAy)‖2 = ‖x− y‖2 − 2λ〈Ax−Ay, x− y〉+ λ2 ‖Ax−Ay‖2

6 ‖x− y‖2 − λ(2ν− λ) ‖Ax−Ay‖2 .

(ii) Combining (2.2) and (2.3) yields immediately that Θλ is nonexpansive. Now let q ∈ Q. Clearly
q ∈ SVI(A,Q) if and only if

〈q− (q− λAq),q− x〉 6 0, ∀x ∈ Q,

which, thanks to the first assertion of Lemma 2.2, is equivalent to q = PQ(q− λAq) = Θλ(q).
The last assertion (iii) follows directly from (ii) and Lemma 2.3.

The next result is a particular case of the well-known demi-closedness principle.

Lemma 2.5 ([1, Corollary 4.18]). Let C be a closed convex and nonempty subset of H, T : C→ C a nonexpansive
mapping, and {xn} a sequence in C . If {xn} converges weakly in H to some x̄ and {xn − T(xn)} converges strongly
in H to 0, then x̄ ∈ Fix(T).

The last result of this section is a powerful lemma which is a generalization due to Xu [12] of a lemma
firstly proved by Berstrekas ([2, Lemma 1.5.1]).

Lemma 2.6. Let {an} be a sequence of non negative real numbers such that:

an+1 6 (1 − γn)an + γnrn + δn, n > 0, (2.4)

where {γn} ∈ [0, 1] and {rn} and {δn} are three real sequences such that:

(1)
∑+∞
n=0 γn = +∞;

(2)
∑+∞
n=0 |δn| < +∞;

(3) lim supn→+∞ rn 6 0.

Then the sequence {an} converges to 0.
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Proof. We give here a proof different from the original one due to Xu [12]. Set sn =
∑+∞
k=n δk, en =

an + sn, and βn = max{rn, 0}+ sn. Using the fact that δn = sn − sn+1, we easily obtain from (2.4) that

en+1 6 (1 − γn)en + γnβn, n > 0. (2.5)

Let ε > 0. Since βn → 0 as n→∞, there exists n0 ∈N such that βn 6 ε
2 for every n > n0. Let us suppose

that en > ε for every n > n0. Hence, from (2.5), we infer that, for every n > n0,

en − en+1 > γn(en −βn) >
ε

2
γn,

which implies that
∑
n>n0

γn < ∞. This is a contradiction. Then there exists n1 > n0 such that en1 6 ε.
Therefore

en1+1 6 (1 − γn1)ε+ γn1

ε

2
6 ε.

And so on we get en 6 ε for every n > n1. Hence en → 0 as n → ∞, which clearly implies that an → 0
as n→∞ since sn → 0 as n→∞.

We close this section by proving that the variational problem (1.7) mentioned in the introduction has
a unique solution.

Lemma 2.7. The problem (1.7) has a unique solution q∗. Moreover, q∗ is the unique fixed point of the contraction
PΩ ◦ f : Ω→ Ω.

Proof. Let us first recall that the set Ω is nonempty, closed, and convex subset of H. Then from the
variational characterization of the metric projection PΩ (see the first assertion of Lemma 2.2), the problem
(1.7) is equivalent to the identity q∗ = PΩ(f(q∗)). Hence, the existence and the uniqueness of q∗ follow
from the classical Banach fixed point and the fact that the application PΩ ◦ f : Ω→ Ω is a contraction.

3. The convergence of the implicit algorithm (1.9)

The following section is devoted to the proof of the strong convergence of the implicit algorithm (1.9).

Theorem 3.1. Let a and b be two reals such that 0 < a < b < 2ν and let λ : (0, 1)→ [a,b] be a mapping. Then,
for every t ∈ (0, 1), there exists a unique xt ∈ Q such that

xt = tf(xt) + (1 − t)SPQ(xt − λ(t)Axt).

Moreover {xt} converges strongly in H as t→ 0+ to the unique solution q∗ of the variational problem (1.7).

The following simple lemma, which is an immediate consequence of the second assertion of Lemma
2.4, will be very useful in the proof of the previous theorem and also in the proof of the main result of
the next section.

Lemma 3.2. Let t ∈ (0, 1] and µ ∈ (0, 2ν]. Then the application Tt,µ : Q→ Q defined by

Tt,µ(x) = tf(x) + (1 − t)SPQ(x− µAx),

satisfies
‖Tt,µ(x) − Tt,µ(y)‖ 6 (1 − σt) ‖x− y‖ , ∀x,y ∈ Q,

where σ = 1 − ρ.

Now we are in position to prove Theorem 3.1.
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Poof of Theorem 3.1. Let t ∈ (0, 1]. According to Lemma 3.2 and the classical Banach fixed point theorem,
there exists a unique xt ∈ Q such that xt = Tt,λ(t)(xt). Let us now prove that the family {xt}0<t61 is
bounded in H. Let q ∈ Ω. In view of the last assertion of Lemma 2.4,

Tt,λ(t)(q) = t f(q) + (1 − t)Sq = t f(q) + (1 − t)q. (3.1)

Hence, Lemma 3.2 yields

‖xt − q‖ 6
∥∥Tt,λ(t)(xt) − Tt,λ(t)(q)∥∥+ t ‖f(q) − q‖ 6 (1 − σt) ‖xt − q‖+ t ‖f(q) − q‖ ,

which implies

sup
0<t61

‖xt − q‖ 6
1
σ
‖f(q) − q‖ .

Therefore {xt}0<t61 is a bounded family in H.
In the sequel, in order to simplify the notations, we will use M to denote a real constant independent

of t ∈ (0, 1] that may change from line to another. Moreover, ε(t) will simply denotes a real quantity that
converges to 0 as the variable t tends to 0. By the way, let us recall here this simple result that will be
often implicitly used in the sequel: since {xt}0<t61 is a bounded in H, then for every Lipschitz continuous
function g : Q→ H the family {g(xt)}0<t61 is also bounded in H.

For t ∈ (0, 1], we set zt = PQ(xt − λ(t)Axt). Let q ∈ Ω. Clearly, by using the classical identity

‖tu+ (1 − t)v‖2 6 t ‖u‖2 + (1 − t) ‖v‖2 , ∀u, v ∈ H, (3.2)

the fact that S and PQ are nonexpansive operators, and Lemma 2.4, we obtain

‖xt − q‖2 6 t ‖f(xt) − q‖2 + (1 − t) ‖Szt − q‖2

6 tM+ ‖zt − q‖2 (3.3)

= tM+
∥∥PQ(xt − λ(t)Axt) − PQ(q− λ(t)Aq)∥∥2

6 tM+ ‖(xt − λ(t)Axt) − (q− λ(t)Aq)‖2

6 tM+ ‖xt − q‖2 − λ(t)(2ν− λ(t)) ‖Axt −Aq‖2 .

We then deduce that
a(2ν− b) ‖Axt −Aq‖2 6 tM.

Therefore, by using the fact that the operator PQ is firmly nonexpansive (see (2.1)), we get

‖zt − q‖2 =
∥∥PQ(xt − λ(t)Axt) − PQ(q− λ(t)Aq)∥∥2

6 〈zt − q, (xt − λ(t)Axt) − (q− λ(t)Aq)〉
6 〈zt − q, xt − q〉+ λ(t) ‖zt − q‖ ‖Axt −Aq‖

= 〈zt − q, xt − q〉+ ε(t) =
1
2

(
‖zt − q‖2 + ‖xt − q‖2 − ‖xt − zt‖2

)
+ ε(t).

The last inequality implies
‖zt − q‖2 6 ‖xt − q‖2 − ‖xt − zt‖2 + 2ε(t).

Hence, by combining this inequality with the estimate (3.3), we deduce that

‖xt − zt‖2 6 tM+ 2ε(t),

which implies
xt − zt → 0 as t→ 0+. (3.4)
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The last inequality in turn implies that

xt − Sxt → 0 as t→ 0+. (3.5)

Indeed,

‖xt − Sxt‖ 6 ‖xt − Szt‖+ ‖Sxt − Szt‖
=

∥∥Tt,λ(t)(xt) − Szt∥∥+ ‖Sxt − Szt‖
6 t ‖f(xt) − Szt‖+ ‖xt − zt‖ 6 tM+ ‖xt − zt‖ .

Now we are in position to prove the following key result:

κ := lim sup
t→0+

〈f(q∗) − q∗, xt − q∗〉 6 0, (3.6)

where q∗ is the unique solution of the variational problem (1.7). From the definition of κ, there exists a
sequence {tn} in (0, 1] converging to 0 such that

κ = lim
n→+∞〈f(q∗) − q∗, xtn − q∗〉.

On the other hand, since the family {xtn}0<t61 is a bounded subset of the closed and convex subset Q of
H, we can assume, up to a subsequence, that {xtn} converges weakly in H to some x∞ ∈ Q. Therefore we
have

κ = 〈f(q∗) − q∗, x∞ − q∗〉.

Hence, in order to prove that κ 6 0, we just need to verify that x∞ ∈ Ω. Firstly, from Lemma 2.5 and
(3.5), we have x∞ ∈ Fix(S). Secondly, up to a subsequence, we can assume that the real sequence {λtn}

converges to some real λ∗ which belongs to (0, 2ν). Let Θλ∗ = PQ ◦ (I−λ∗A) be the nonexpansive operator
introduced in Lemma 2.5. Since zn = Θλn(xtn), we have

‖xtn −Θλ∗(xtn)‖ 6 ‖xtn − ztn‖+ ‖Θλn(xtn) −Θλ∗(xtn)‖
6 ‖xtn − ztn‖+ |λtn − λ

∗| ‖Axtn‖ 6 ‖xtn − ztn‖+ |λtn − λ
∗|M.

Hence, by combining (3.4) and Lemma 2.5, we deduce that x∞ is a fixed point of Θλ∗ . Thus, thanks to the
second assertion of Lemma 2.4, we deduce that x∞ ∈ VI(A,Q). The claim (3.6) is then proved.

Let us finally prove that xt → q∗ in H as t goes to 0+. Let t ∈ (0, 1]. First, from the identity (3.1), we
have

xt − q
∗ = u+ v,

with

u = Tt,λ(t)(xt) − Tt,λ(t) (q
∗) v = t(f(q∗) − q∗).

Thus, by applying the inequality
‖u+ v‖2 6 ‖u‖2 + 2〈v,u+ v〉

and Lemma 3.2, we get the inequality

‖xt − q∗‖2 6 (1 − σt)2 ‖xt − q∗‖2 + 2t〈f(q∗) − q∗, xt − q∗〉,

which implies

‖xt − q∗‖2 6
σt

2
‖xt − q∗‖2 +

1
σ
〈f(q∗) − q∗, xt − q∗〉 6 tM+

1
σ
〈f(q∗) − q∗, xt − q∗〉.

Then, by letting t→ 0+ and using (3.6), we obtain the desired result.
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4. The convergence of the explicit algorithm (1.8)

In this section, we study the strong convergence property of the process (1.8). Precisely, we prove the
following theorem.

Theorem 4.1. Let {αn} ∈ (0, 1] and {λn} ∈ (0, 2ν] be two real sequences such that:

(i) αn → 0 and
∑+∞
n=0 αn = +∞;

(ii) 0 < lim infn→+∞ λn 6 lim supn→+∞ λn < 2ν;

(iii) αn+1−αn
αn

→ 0 or
∑+∞
n=0 |αn+1 −αn| <∞;

(iv) λn+1−λn
αn

→ 0 or
∑+∞
n=0 |λn+1 − λn| <∞.

Then for every initial data x1 ∈ Q, the sequence {xn} generated by the iterative process

xn+1 = αnf(xn) + (1 −αn)SPQ(xn − λnAxn), n > 1,

converges strongly in H to q∗, the unique solution of the variational problem (1.7).

Proof. Since we are only interested in the study of the asymptotic behavior of the sequence {xn}, we can
replace hypothesis (ii) by the stronger one: there exist two real a and b in (0, 2ν) such that the sequence
{λn} is in [a,b].

For every n ∈ N, we set Tn := Tαn,λn , where Tαn,λn is the mapping defined by Lemma 3.2. First, we
will prove that the sequence {xn} is bounded in H. Let q ∈ Ω. Thanks to the identity (3.1) and Lemma
3.2, we have

‖xn+1 − q‖ 6 ‖Tn(xn) − Tn(q)‖+αn ‖f(q) − q‖

6 (1 − σαn) ‖xn − q‖+αn ‖f(q) − q‖ 6 max{‖xn − q‖ ,
1
σ
‖f(q) − q‖}.

We then deduce by induction that

‖xn − q‖ 6 max{‖x0 − q‖ ,
1
σ
‖f(q) − q‖}, ∀n ∈N.

Therefore {xn} is bounded in H. Hence, for every Lipschitz function g : Q → H, the sequence {g(xn)} is
also bounded in H.

From here, as we have done in the proof of Theorem 3.1, M will denote a constant independent of n
and {εn} a real sequence that converges to 0. M and {εn} may change from line to an other.

Let us now show that the sequence {∆xn := xn+1 − xn} converges strongly to 0. For every n ∈ N, we
clearly have

‖∆xn‖ 6 ‖Tn(xn) − Tn(xn−1)‖+ ‖Tn(xn−1) − Tn−1(xn−1)‖
6 (1 − σαn) ‖∆xn−1‖+M [|∆αn−1|+ |∆λn−1|] ,

where
∆αn := αn+1 −αn,

and
∆λn := λn+1 − λn.

Hence, by applying Lemma 2.6, we deduce that

‖∆xn‖ → 0 as n→∞. (4.1)
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For every n ∈N, we set zn = PQ(xn−λnAxn). Let q ∈ Ω. As we have proceeded in the proof of Theorem
3.1, by using the classical identity (3.2) with t = αn, the fact that S and PQ are nonexpansive operators,
and Lemma 2.4, we get

‖xn+1 − q‖2 6 αn ‖f(xn) − q‖2 + (1 −αn) ‖Szn − q‖2

6 εn + ‖zn − q‖2 (4.2)

= εn +
∥∥PQ(xn − λnAxn) − PQ(q− λnAq)

∥∥2

6 εn + ‖(xn − λnAxn) − (q− λnAq)‖2

6 εn + ‖xn − q‖2 − λn(2ν− λn) ‖Axn −Aq‖2 .

Therefore, we have

a(2ν− b) ‖Axn −Aq‖2 6 εn + ‖xn − q‖2 − ‖xn+1 − q‖2

= εn − 〈∆xn, xn+1 + xn − 2q〉
6 εn + ‖∆xn‖ ‖xn+1 + xn − 2q‖ 6 εn +M ‖∆xn‖ .

Hence, thanks to (4.1), we deduce that

Axn −Aq→ 0 as n→∞.

Therefore, by using the fact that the operator PQ is firmly nonexpansive (see (2.1)), we get

‖zn − q‖2 =
∥∥PQ(xn − λnAxn) − PQ(q− λnAq)

∥∥2

6 〈zn − q, (xn − λnAxn) − (q− λnAq)〉
6 〈zn − q, xn − q〉+ λn ‖zn − q‖ ‖Axn −Aq‖

= 〈zn − q, xn − q〉+ εn =
1
2

(
‖zn − q‖2 + ‖xn − q‖2 − ‖zn − xn‖2

)
+ εn.

Thus, we obtain
‖zn − q‖2 6 ‖xn − q‖2 − ‖zn − xn‖2 + εn.

Inserting this inequality into (4.2) yields

‖zn − xn‖2 6 ‖xn − q‖2 − ‖xn+1 − q‖2 + εn = −〈∆xn, xn+1 + xn − 2q〉+ εn 6M ‖∆xn‖+ εn.

Hence, by using (4.1), we deduce that

xn − zn → 0 as n→∞.

Therefore, by proceeding exactly as in the proof of Theorem 3.1, we first infer that

xn − Sxn → 0 as n→∞,

then we deduce the key result:
lim sup

n→∞〈f(q∗) − q∗, xn − q∗〉 6 0. (4.3)

Let us finally prove that the sequence {xn} converges strongly in H to q∗. For every n ∈N,

xn+1 − q
∗ = Tn(xn) − Tn(q

∗) +αn(f(q
∗) − q∗).

Hence, by using the inequality
‖u+ v‖2 6 ‖u‖2 + 2〈v,u+ v〉,
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with

u = Tn(xn) − Tn(q
∗), v = αn(f(q

∗) − q∗),

we obtain

‖xn+1 − q
∗‖2 6 ‖Tn(xn) − Tn(q∗)‖2 + 2αn〈f(q∗) − q∗, xn+1 − q

∗〉

6 (1 − σαn)
2 ‖xn − q∗‖2 + 2αn〈f(q∗) − q∗, xn+1 − q

∗〉

6 (1 − 2σαn) ‖xn − q∗‖2 +αn [2〈f(q∗) − q∗, xn+1 − q
∗〉+Mαn] .

Therefore, by applying Lemma 2.6 and using the key result (4.3), we deduce that the sequence {xn}

converges strongly in H to q∗. The proof is then achieved.

Now we are going to prove that the algorithm (1.8) is stable under relatively small perturbations.
Precisely, we establish the following result.

Theorem 4.2. Let {αn} ∈ (0, 1], {λn} ∈ [0, 2ν], and {en} ∈ H be three sequences such that:

(i) αn → 0 and
∑+∞
n=0 αn = +∞;

(ii) 0 < lim infn→+∞ λn 6 lim supn→+∞ λn < 2ν;
(iii) αn+1−αn

αn
→ 0 or

∑+∞
n=0 |αn+1 −αn| <∞;

(iv) λn+1−λn
αn

→ 0 or
∑+∞
n=0 |λn+1 − λn| <∞;

(v) ‖en‖αn → 0 or
∑+∞
n=0 ‖en‖ <∞.

Then every sequence {xn} in Q satisfying

xn+1 = αnf(xn) + (1 −αn)SPQ(xn − λnAxn) + en, n > 1,

converges strongly in H to q∗ the unique solution of the variational problem (1.7).

Proof. Let {yn} the sequence defined by{
y1 = x1,
yn+1 = αnf(yn) + (1 −αn)SPQ(yn − λnAyn), n > 1.

Let n > 1. By invoking Lemma 3.2, we obtain

‖xn+1 − yn+1‖ 6 ‖Tαn,λn(xn) − Tαn,λn(yn)‖+ ‖en‖ 6 (1 − σαn) ‖xn − yn‖+ ‖en‖ ,

where σ = 1 − ρ. Therefore, by applying Lemma 2.4, we deduce that

‖xn − yn‖ → 0 as n→∞,

which implies that {xn} converges strongly in H to q∗ since, from Theorem 4.1, the sequence {yn} con-
verges strongly in H to q∗.

As a first direct application of Theorem 4.2, we have the following result, which improves and gener-
alizes [13, Theorem 5.2].

Corollary 4.3. Let ϕ : Q −→ H be a continuously differentiable convex function such that its gradient ∇ϕ :
Q −→ H is Lipschitz with coefficient L > 0. We assume that the set Fix(S) ∩ arg minQϕ is nonempty, where
arg minQϕ = {q ∈ Q : ϕ(q) 6 ϕ(x), ∀x ∈ Q}. Let {αn} ∈ (0, 1], {λn} ∈ [0, 2

L ], and {en} ∈ H be three sequences
such that:

(i) αn → 0 and
∑+∞
n=0 αn = +∞;
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(ii) 0 < lim infn→+∞ λn 6 lim supn→+∞ λn < 2
L ;

(iii) αn+1−αn
αn

→ 0 or
∑+∞
n=0 |αn+1 −αn| <∞;

(iv) λn+1−λn
αn

→ 0 or
∑+∞
n=0 |λn+1 − λn| <∞;

(v) ‖en‖αn → 0 or
∑+∞
n=0 ‖en‖ <∞.

Then every sequence {zn} ∈ Q satisfying

zn+1 = αnf(zn) + (1 −αn)SPQ(zn − λn∇ϕ(zn)) + en, n > 1, (4.4)

converges strongly in H to q∗ the unique element of Fix(S)∩ arg minQϕ satisfying the variational inequality

〈f(q∗) − q∗, x− q∗〉 6 0 (4.5)

for all x ∈ Fix(S)∩ arg minQϕ.

Proof. The proof follows directly from Theorem 4.2. In fact, according to the famous Baillon-Haddad
Theorem ([7, Theorem 3.13]), the operator ∇ϕ : Q → H is 1

L inverse strongly monotone and, from the
classical varational characterization of constrained convex problem solutions ([4, Theorem 3.13]), we have

SVI(∇ϕ,Q) = {q ∈ Q : 〈∇ϕ(q), x− q〉 > 0, ∀x ∈ Q} = arg min
Q
ϕ.

A second direct application of Theorem 4.2 is the following result concerning the problem of common
fixed point of two nonexpansive mappings.

Corollary 4.4. Let T1, T2 : Q −→ Q be two nonexpansive mappings such that the set F1,2 := Fix(T1) ∩ Fix(T2) is
nonempty. Let {αn} ∈ (0, 1], {λn} ∈ [0, 1], and {en} ∈ H be three sequences such that:

(i) αn → 0 and
∑+∞
n=0 αn = +∞;

(ii) 0 < lim infn→+∞ λn 6 lim supn→+∞ λn < 1;
(iii) αn+1−αn

αn
→ 0 or

∑+∞
n=0 |αn+1 −αn| <∞;

(iv) λn+1−λn
αn

→ 0 or
∑+∞
n=0 |λn+1 − λn| <∞;

(v) ‖en‖αn → 0 or
∑+∞
n=0 ‖en‖ <∞.

Then every sequence {xn} ∈ Q satisfying

xn+1 = αnf(xn) + (1 −αn)T1((1 − λn)xn + λnT2(xn)) + en, n > 1, (4.6)

converges strongly in H to q∗ the unique element of the set F1,2 that satisfies the variational inequality

〈f(q∗) − q∗, x− q∗〉 6 0 (4.7)

for all x ∈ F1,2.

Proof. The proof follows directly from the application of Theorem 4.2 with S = T1 and A = I− T2 and the
use of the following facts.
(1) For every x,y ∈ H, we have

2〈Ax−Ay, x− y〉 = ‖Ax−Ay‖2 + ‖x− y‖2 − ‖(Ax− x) − (Ay− y)‖2

= ‖Ax−Ay‖2 + ‖x− y‖2 − ‖T2x− T2y‖2 > ‖Ax−Ay‖2 ,

which means that A is is a ν- inverse strongly monotone operator with ν = 1
2 .

(2) From the application of the second assertion of Lemma 2.4 with λ = 1, we have SVI(A,Q) = Fix(PQ ◦
T2) = Fix(T2).
(3) For every n > 1,

SPQ(xn − λnAxn) = T1PQ((1 − λn)xn + λnT2(xn)) = T1((1 − λn)xn + λnT2(xn))

since (1 − λn)xn + λnT2(xn) ∈ Q.
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5. Numerical experiments

In this section, we investigate through some numerical experiments the effect of the sequence {αn} on
the rate convergence of sequences {zn} generated by a particular example of the process (4.6) studied in
the previous section. We consider the simple case where:

(1) the Hilbert space H is R2 endowed with its natural inner product 〈x,y〉 = x1y1 + x2y2;
(2) the closed and convex subset Q is given by: Q = {x = (x1, x2)

t ∈ R2 : x1, x2 > 0};
(3) the contraction mapping f : Q → Q is defined by f(x) = 1

2(5 + cos(x1 + x2), 6 − sin(x1 + x2))
t for all

x = (x1, x2)
t ∈ Q. Using the mean value theorem, one can easily verify that f is Lipschitz continuous

function with Lipschitz constant ρ 6
√

2
2 ;

(4) the non expansive mapping S : Q→ Q is the identity;
(5) the convex function ϕ : Q→ R is defined by: ϕ(x) = 1

2 ‖Bx− b‖
2, where

B =

(
1 1
2 2

)
, b =

(
3
5

)
,

a simple calculation yields

∇ϕ(x) = Bt(Bx− b) =
(

5x1 + 5x2 − 13
5x1 + 5x2 − 13

)
, ∀x = (x1, x2)

t ∈ Q,

hence ∇ϕ is Lipschitz continuous with Lipschitz constant L = 10, moreover,

Ω = Fix(S)∩ arg min
Q
ϕ = {x = (x1, x2)

t ∈ Q : x1 + x2 = 2.6} = ∆2
2.6,

where, for a > 0 and n ∈N,

∆na = {x = (x1, . . . , xn)t ∈ Rn : x1, . . . , xn > 0, x1 + · · ·+ xn = a},

let us notice that, by using KKT Theorem, one can easily verify that the projection onto ∆na is given
by

P∆na (x) = (max(x1 −α(x), 0), . . . , max(xn −α(x), 0))

for every x = (x1, . . . , xn)t ∈ Rn, where α(x) is the unique real solution α of the equation∑n
k=1 max(xk − α, 0) = a, hence a simple routine on Matlab, using the fact that the unique so-

lution q∗ to the variational problem (4.7) is the fixed point of the contraction PΩ ◦ f : Q → Q,
provides a precise numerical approximation of q∗ :

q∗ ' (0.9647, 1.6353)t;

(6) the sequence {λk} is constant and equal to 1
L = 0.1;

(7) the sequence {θk} is given by θk = 1
kθ

, where θ is a constant which belongs to (0, 1];

(8) the perturbation term {ek} is given by ek = Xk
k2 , where {Xk} is a sequence of independent random

variables such that every Xk is uniform on the square [−1, 1]× [−1, 1];

(9) the initial value is z1 =

(
2
3

)
;

(10) Nmax the maximal number of iterations k is Nmax = 6000.

We aim to study numerically the relation between θ and the rate of convergence of the sequence {zk} to
q∗. We can summarize our numerical results in the following two points.

(A): The convergence of the sequence {zk} to q∗ is very slow for small values of the parameter θ as Table
1 shows.
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Table 1: Slow convergence of {zk} for small values of θ.

θ mink6Nmax
‖zk−q∗‖
‖q∗‖

0.1 0.4774
0.2 0.1810
0.3 0.0742
0.4 0.0309

(B): The convergence of {zk} to q∗ is more clear if θ is close to 1 as it is shown by Tables 2 and 3.

Table 2: Convergence of {zk} for some values of θ closed to 1.

θ mink6Nmax
‖zk−q∗‖
‖q∗‖

0.6 0.0055
0.8 0.0010
0.9 0.0005
1.0 0.0008

Table 3 indicates, for some values of ε > 0 and θ,N(ε, θ) the first iteration k 6 Nmax such that ‖zk−q
∗‖

‖q∗‖ 6 ε.

Table 3: N(ε, θ).
ε θ = 0.6 θ = 0.8 θ = 0.9 θ = 1.0

0.5 6 5 4 4
0.10 53 23 14 17
0.05 158 56 36 42
0.01 2200 372 249 314

0.005 ND 854 533 716
0.001 ND ND 2989 4742

Remark 5.1. N(ε, θ) = ND (not defined) means that ‖zk−q
∗‖

‖q∗‖ > ε for all the iterations k 6 Nmax.

Finally, the schema (Figure 1) shows the convergence of {zk} to q∗ for some values of the parameter θ
close to 1.
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Figure 1: The effect of θ on the speed of the convergence of the algorithm (4.6).
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