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Abstract

In this paper, reduced order models (ROMs) for the tumor growth model, which is a nonlinear cross-diffusion system are
presented. Linear-quadratic ordinary differential equations are obtained by applying the finite difference method to the tumor
growth model for spatial discretization. The structure of the ROMs is the same as the structure of the full order model. Proper
orthogonal decomposition method with tensorial form is sufficient to compute the reduced solutions efficiently and fast. The
results of ROM are presented for one- and two-dimensional cases. Finally, the entropy structure for the reduced solutions, which
are in decay form are presented.
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1. Introduction

The model of tumor growth has been studied for a very long time. The reaction-diffusion model with
cross-diffusion was used for mathematical modeling of tumor growth. In this model, two main biological
behaviors are considered: diffusion (migration) and proliferation. Diffusion represents that tumor cells
invade brain tissue. Proliferation illustrates the reactive behavioral function that explains tumor cell
growth and death [1, 2, 7, 12, 13, 23].

The tumor growth model can be solved by some numerical methods such as finite element and finite
difference methods. The tumor growth model has linear and quadratic parts, both in the cross-diffusion
and reaction parts. The semi-discretization of the tumor growth model obtained by the second-order
finite difference method in space has the structure of a linear-quadratic ordinary differential equation
system (ODE). For time discretization of the semi-discrete tumor growth model, Kahan’s method is used
to obtain full solutions. The Kahan’s method is a second-order linearly implicit method and requires only
one step Newton iteration at each time step [9, 16, 17].

Recently, reduced-order models (ROMs) have been developed to minimize the computational cost
of simulations of complex, large-scale dynamical systems such as tumor growth models. ROMs are
efficient systems with small dimensions that can accurately replace full-order models (FOMs) and are
able to make predictions in long-term integration. Proper orthogonal decomposition (POD) with Galerkin
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projection is the most popular ROM technique [6, 25]. POD satisfies the condition that the energy of
a system can be characterized by a few modes. By applying the POD method to the tumor growth
model, the dominant modes are extracted from the snapshots of the FOMs. The nonlinearities of the
reduced systems have the same dimension of the full-solution, i.e., the online and offline phases are
not separated. In the offline stage, the full-order solutions, reduced matrices, POD basis functions, and
matricized tensors are computed. In the online stage, the reduced system is solved. To separate these two
stages, matricization of tensors is used in the POD procedure [3, 5, 18, 20]. This is sufficient to construct
ROMs in a computationally efficient way. Moreover, the sparse matrix technique MULTIPROD [22] is
considered to speed up the computations of matricized tensors.

The paper is organized as follows. In Section 2, the tumor growth model is presented. In Section 3,
the full order models of the tumor growth system for spatial and temporal discretization are presented.
The reduced order model is obtained in Section 4 using the POD method. In Section 5, the computational
efficiency and accuracy of ROMs for one- and two-dimensional tumor growth models are presented.

2. Tumor growth equation

When brain tissue is enclosed with diffuse and infiltrative growth, a brain tumor develops. The pro-
liferation rate and migration speed of cells determine the progress of brain tumor growth. The system
of equations of glioma cell concentration u(x, t) is defined as Kolmogorov-Fisher equation and was intro-
duced to describe the spread of a beneficial gene in a spatially extended population [11, 19],

∂u

∂t
= D∆u+ ru(1 − u).

The diffusion coefficient D represents migration, while the growth rate r is described as a logistic growth
function of tumor cell proliferation. It is one of the standard examples of a reaction-diffusion equation
exhibiting traveling wave solutions. In [7, 12, 13], the cross-diffusion model has two different tumor cell:
migration or proliferation. During the cell division process, there are two clearly separated states of cells:
proliferating cells (denoted by u) and migrating cells (denoted by v) with a certain transition between
these states. The transition between migration and proliferation, cell death, and birth is defined by the
reaction terms. A proliferating cell produces offspring when the neighboring cell is empty. On the other
hand, migrating cells can move their neighbouring cells when they are empty. Both cells can change their
state under certain rates and also die with a certain rate.

In addition, cells may be randomly exchanged at certain rates during migration and proliferation and
may also die at a certain rate. This results in the following cross-diffusion system, which is a tumor
growth model:

∂u

∂t
= Dα(1 − u− v)∆u+αu(1 − u− v) − (µ+ q2)u+ q1v,

∂v

∂t
= Dν[(1 − u)∆v+ v∆u] − (µ+ q1)v+ q2u,

(2.1)

in the spatial domain x ∈ Ω ∈ R,d = 1, 2 with zero-flux Neumann boundary conditions, where q1, q2 are
transition rates between migrating and proliferating cells. The constant µ > 0 represents the cell death
rate, while α is the cell division rate for component u. Dα = α/2 is the diffusion constant of proliferating
cells.

The tumor growth model can also be expressed in the following form [15]:(
∂u
∂t
∂v
∂t

)
= div

(
2∑
i=1

Aij(u, v)∇u

)
+

(
f(u, v)
g(u, v)

)
(2.2)

with the diffusion matrix Aij(u, v),

A(u, v) =
1

2 + 4u+ v

(
1 + 2u u

2v 2 + v

)
.
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The tumor growth model involves coupled nonlinear parabolic PDEs, and the matrix A is not symmetric,
so the maximum principle does not apply. Moreover, the diffusion matrix A is also not positive definite.
The entropy variable is sufficient to transform the diffusion matrix A into a symmetric and positive
definite matrix. The entropy function allows us to examine long-term behavior and leads to a nonnegative
and bounded solution. Equation (2.2) can be written in terms of the entropy function gradient form
[10, 15],

∂tu− div(B∇grad E[u]) = f(u), in Rd, t > 0,

where B is a semidefinite positive matrix and grad E is the Fréchet derivative of the entropy functional
E[u, v] =

∫
Rd ε(u, v)dΩ, and ε(u, v) is the entropy density. With time, the entropy decreases with dE

dt 6 0.
Tumor growth models have a partial entropy functional that excludes the reaction terms in (2.1). The
entropy satisfies a priori estimates and also defines a change in variables that makes the diffusion matrix
positive-definite [15].

3. Full order model

We can discretize the tumor growth model (2.1) by using the finite difference method for spatial
discretization, yielding a system ODE as

du(t)
dt

= d1Au − d1u ◦ (Au) − d1v ◦ (Au) +αu −αu2 −αu ◦ v − (q2 + µ)u + q1v,

dv(t)
dt

= d2Av − d2u ◦ (Av) + d2v ◦ (Au) − (q1 + µ)v + q2u,
(3.1)

where powers are controlled component-wise together with the product operator ◦. u(t) and v(t) are
approximations to the exact solutions u and v in one- and two- dimensional regions, which are given as
continuous time semi-discrete solution vectors (2.1) in space,

u(t) = (u1, . . . ,unx), u(t) = (u1,1, . . . ,u1,nx ,u2,1, . . . ,unx,ny)
T ,

where v(t) is defined in a similar way. For one-dimensional problems, the degree of freedom (DOF) is
N = nx, and for the two dimensional case, N = nxny, where nx = Lx/∆x and ny = Ly/∆y are the
number of partitions in the x and y directions, respectively. In the rest of the paper, we denote the state
vectors as u(t), v(t) and omit the dependence on time t.

The matrix A is the finite difference matrix that approximates the Laplace operator ∆ by second order
centered finite differences under homogeneous Neumann boundary conditions. For the one-dimensional
tumor growth equation (2.1), the matrix A ∈ Rn

2
x has the form

A =
1
∆x2


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 .

For the two-dimensional tumor growth equation (2.1), the matrix A ∈ Rn
2
x×n2

y is given as

A =
1

∆x∆y


B −2I
−I B −I

. . . . . . . . .
−I B −I

−2I B

 , B =


4 −2
−1 4 −1

. . . . . . . . .
−1 4 −1

−2 4

 ,
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where In denotes the n-dimensional identity matrix. Here, linear and quadratic parts are first collected,
then (3.1) is obtained as a linear-quadratic ODE system,

du
dt

= L11u + L12v︸ ︷︷ ︸
linear

−d1u ◦ (Au) − d1v ◦ (Au) −αu2 −αu ◦ v︸ ︷︷ ︸
quadratic

,

dv
dt

= L21u + L22v︸ ︷︷ ︸
linear

−d2u ◦ (Av) + d2v ◦ (Au)︸ ︷︷ ︸
quadratic

,

where Lij, i, j = 1, 2,

L11 = d1A+ (α− µ− q2)I, L12 = q1I, L22 = d2A− (µ+ q1)I, L21 = q2I.

The compact form of linear-quadratic systems is given as

dw
dt

= F(w) = Lw +Q(w), (3.2)

where w = (u, v) ∈ R2N is the vector of the two components u and v. The linear terms L ∈ R2N×2N are
represented as follows

L =

(
L11 L12
L21 L22

)
,

and the quadratic terms Q = (Q1,Q2) ∈ Q2N are represented as

Q(w) =

(
−d1H(Au⊗ u) − d1H(Au⊗ v) −αH(u⊗ u) −αH(u⊗ v)

−d2H(Av⊗ u) + d2H(Au⊗ v)

)
,

where

Q1 =

(
Q11 0

0 Q22

)(
H(u⊗ u)
H(v⊗ v)

)
, Q2 =

(
0 Q12
Q21 0

)(
H(u⊗ v)
H(u⊗ v)

)
,

where ⊗ is the Kronecker product, and H ∈ RN×N
2

is the matricized tensor and the identity is defined as
H(w⊗ v) = w ◦ v for any vector w, v ∈ RN.

Various explicit and implicit methods can be used to solve the compact system of equations (3.2) in
time. While explicit methods solve the problem with small time steps, unstable solutions arise. The
implicit integrators solve the nonlinear equations iteratively at each time point. The semi-discrete linear-
quadratic tumor growth model (3.2) is solved in time using the linear implicit Kahan’s method [16, 17].

wn+1 − wn

∆t
=

1
2
L(wn + wn+1) + Q̃(wn, wn+1),

where Q̃(wn, wn+1) is the symmetric bilinear form and is obtained by polarization of quadratic vector
field Q [8]:

Q̃(wn, wn+1) =
1
2
Q(wn + wn+1) −Q(wn) −Q(wn+1)

and ∆t is the time step, wn+1 and wn are the approximations of w at time tn+1 and tn. It is time-reversal
and symmetric, linearly implicit, i.e., computing a single linear system yields wn+1,(

I−
∆t

2
FJ(wn)

)
w̃ = ∆tF(wn), wn+1 = wn + w̃,

where FJ(wn) is the Jacobian evaluated at time tn.



G. Mülayim, J. Nonlinear Sci. Appl., 16 (2023), 222–232 226

Kahan’s method also takes form of a second-order convergent Runge-Kutta method [9]:

wk+1 − wk

∆t
= −

1
2
f(wk) + 2f

(
wk+1 + wk

2

)
−

1
2
f(wk+1).

If fully implicit methods are chosen for the time discretization, the nonlinear equations must be solved
iteratively at each time step using Newton’s method. The Kahan’s methods solve the nonlinear problem
faster than the fully implicit methods such as the implicit Euler and mid-point rules.

4. Reduced order model

In this section, we present the construction of reduced order model solutions for the tumor growth
model (2.1). Proper orthogonal decomposition method is used to reduce the dimension of the full discrete
solutions [21]. The POD basis functions are computed by applying singular value decomposition (SVD)
to the snapshots matrix,

Su = [u1, · · · , uNt ] ∈ RN×Nt , Sv = [v1, · · · , vNt ] ∈ RN×Nt .

Each column of the snapshots matrix is formed from the full solutions u and v at time tn, n = 1, · · · ,Nt.
The SVD of the snapshot matrices is calculated as

Su =WuΣuZ
T
u , Sv =WvΣvZ

T
v ,

where the columns of Wu,Wv ∈ RN×Nt and Zu,Zv ∈ RNt×Nt represent the left singular vectors of Su
and the right singular vectors of Sv, and Σu,Σv ∈ RNt×Nt are the diagonal matrices representing the
singular values in descending order σ1 > σ2 > · · · > σNt > 0. The k-POD basis matrix Ψu,k ∈ RN×k,
similarly Ψv,k ∈ RN×k, is calculated by solving the minimization problem

min
Ψu,k∈RN×k

‖Su −Ψu,kΨ
T
u,kSu‖2

F = min
Ψu,k∈RN×k

Nt∑
n=1

||un −Ψu,kΨ
T
u,kun||22 =

Nt∑
n=k+1

σ2
u,n,

where ‖ · ‖F indicates the Frobenius norm. The k-largest singular values are selected from the left singular
values of the snapshot matrices Su using the relative information content (RIC) defined as∑k

n=1 σ
2
n∑Nt

n=1 σ
2
n

< tolRIC,

Ψu,k and Ψv,k basis matrix are given by k left singular vectors. Then the POD approximations are given
u ≈ Ψuû and v ≈ Ψvv̂, where û, v̂ ∈ Rk. The reduced solutions approximate the full order solution
w ≈ Ψŵ. Then, the ROM solutions of the tumor growth model are obtained as follows:

d

dt
ŵ = L̂ŵ + Q̂(ŵ), (4.1)

where ŵ = (û, v̂), L̂ = ΨTLΨ, Q̂(ŵ) = ΨTQ(Ψŵ), and

Ψ =

(
Ψu 0
0 Ψv

)
∈ R2N×(2k).

4.1. Fast solution of the reduced-order equations with tensor techniques
The nonlinearities in ROM solutions have the same dimension as the FOM solutions. To deal with

this, tensor matricization with the Kronecker product property and the separation of offline and online
stages are used. Using matricized tensor satisfies to construct the ROM with low computational costs
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instead of using nonlinearity reduction methods such as the discrete empirical interpolation method. The
MULTIPROD technique for sparse matrix is used to speed-up the computation of the matricized tensor.

The reduced quadratic terms in the tumor growth model (4.1) have the following structure:

Q̂1(ŵ) = ΨTQ1(Ψŵ) =

(
ΨTuQ11H((Ψuû)⊗ (Ψuû))
ΨTvQ22H((Ψvv̂)⊗ (Ψvv̂))

)
, Q̂2(ŵ) = ΨTQ2(Vŵ) =

(
ΨTuQ12H((Ψuû)⊗ (Ψvv̂))
ΨTvQ21H((Ψvv̂)⊗ (Ψuû))

)
,

or in compact general form
ΨTiQijH((Ψiû)⊗ (Ψjv̂)),

where Ψi = Ψu and Ψj = Ψv, i, j = 1, 2. The calculation of H is obtained by using the properties of the
Kronecker product and the reduced tensor Ĥ = H(Ψi ⊗Ψj) ∈ RN×kikj , so that it is obtained

ΨTiQijH((Ψiû)⊗ (Ψjv̂)) = ΨTiQijĤ(û⊗ v̂), (4.2)

where the small matrix ΨTiQijĤ ∈ Rki×kikj , which is precomputable, is computed in the offline stage.
By separating the high dimensional variables in (4.2), the computational cost of the reduced quadratic
nonlinear terms in the online stage is reduced and their dimension is equal to the dimension of the
ROMs, i.e., O(k3

i). Without using the tensor techniques, the online computational cost scales with the
dimension N of the FOM, i.e., O(Nki) since the dimension of the reduced quadratic terms depends on
the high-dimensional FOM, e.g., (Ψiû)� (Ψjv̂) [26].

Even if the computation of Ĥ is completed in the offline phase, the dimension of Ψi ⊗ Ψj is still the
full dimension N. This leads to inefficiency. By using µ-mode matricization of tensors [3, 4], Ψi ⊗ Ψj
is computed in an efficient way, and the computational cost is reduced. The particular structure of
Kronecker product is exploited to develop tensorial algorithms [4, 5]. The reduced matrix Ĥ can be
defined as follows:

Ĥ =

 Ψi(1, :)⊗Ψj(1, :)
...

Ψi(N, :)⊗Ψj(N, :)

 , (4.3)

it exploits the structure of H(Ψi ⊗ Ψj) without constructing H explicitly. ”MULTIPROD” [22] is used to
increase computational efficiency. It is a fast and memory efficient MATLAB operator. For any two vectors
a and b, the Kronecker product property is given as

(vec(ba>))> = (a⊗ b)> = a> ⊗ b>, (4.4)

where vec(·) denotes the vectorization of a matrix. The matrix Ĥ = H(Ψi ⊗ Ψj) can be written with the
identity in (4.4) as

Ĥ(m, :) = (vec(Ψi(m, :)>Ψj(m, :))>, m ∈ {1, 2, . . . ,N}.

Reshaping the matrix Ψi ∈ RN×ki as Ψ̃i ∈ RN×1×ki and calculating MULTIPROD of Ψj and Ψ̃i in the
second and third dimensions, it is obtained

Ĥ = MULTIPROD(Ψj, Ψ̃i) ∈ RN×kj×ki ,

where the reduced matricized tensor Ĥ ∈ RN×kikj is taken by reshaping the matrix Ĥ into a matrix of
dimension N× kikj. The computation of Ĥ in (4.3) requires N for loops, where in each iteration the
matrix product of two matrices of sizes kj × 1 and 1× ki is formed. However with MULTIPROD, the
matrix products are computed simultaneously in a single loop, which reduces the computational cost
of the reduced matricized tensor in the offline stage [18]. Matricized tensor Ĥ ∈ RN×kikj can also be
computed using the Hadamard product which is defined as H(w⊗ v) = w� v. The matricized tensor is
evaluated over the reduced dimensions ki and kj, which are smaller than the dimension N of the FOMs.
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5. Numerical results

In this section, the numerical results for the one- and two- dimensional tumor growth systems are
presented. The solutions of FOM and POD are compared and the entropy structures are shown. The time
averaged relative L2-error is used to show the efficiency of the solutions of ROM

‖w −Ψŵ‖rel =
1
Nt

Nt∑
n=1

‖wn −Ψŵn‖L2

‖wn‖L2
. (5.1)

5.1. Tumor growth model in one dimension
The first example is a one-dimensional tumor growth model (2.1) in the space-time domain [0, 100]×

(0, 50] with 600 number of mesh points and time step ∆t = 0.05. The parameters and initial conditions
are set as in [12] as

α = 1, d1 = α/2, d2 = 5/2, µ = 0, q1 = 10, q2 = 20, (u0, v0) = (exp(−10x), 0).

In Figure 1, the normalized singular values decay slowly (linearly) which is characteristic of traveling
wave solution problem such as the tumor growth model. The decay of the Kolmogorov-n-widths of, e.g.,
n−1/2 [14, 24] describes the best-possible error for a linear-subspace ROM of size r. Due to the slow decay
of the normalized singular values, the FOM is captured by the ROM with a relatively large number of the
POD modes in Figure 2 and Table 1 with the RIC tolerance tolRIC = 10−4.
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Figure 1: Decay of the singular values for one dimensional problem.
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Figure 2: FOM and ROM solutions for one dimesional problem.

Table 1: FOM-ROM errors for tol=10−4 and speedups for one dimensional problem.

# POD-u # POD-v Error-u Error-v Wall clock time FOM Wall clock time ROM Speedup

25 25 5.89e-03 1.15e-02 4.0034 2.5383 1.6
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5.2. Tumor growth model in two dimensions

As a second example, we consider the two-dimensional tumor growth model in [7] with parameters
α = 2, Dα = Dv = 0.025, q2 = 20, q1 = 10, µ = 0. The initial condition is given by

u0(x,y) = χC(x,y) exp−0.25(x2+y2), v0(x,y) = 0,

where χC(x,y) denotes the characteristic function

C = (x,y) ∈ R2 : (x− 0.55)2/4.5 + (y− 1.4)2/0.5 − 2 > 0.

Number of mesh points is taken as 200 and the time step is ∆t = 0.1. Figure 3 shows singular values that
slowly decay as in the one-dimensional tumor growth model in Figure 1. The tolerance of RIC is assumed
to be tolRIC = 10−5. The ROM solutions in Figure 5 are very close to the full solutions in Figure 4, with
a small L2 error, as shown in Table 2. In both numerical tests, the speed-ups are small due to the large
number of POD modes required to capture full-order solutions.
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Figure 3: Decay of the normalized singular values for two dimensional problem.

Figure 4: FOM solutions of u (top) and v (bottom) components for two dimensional problem.

Table 2: FOM-ROM errors for tol= 10−5 and speedups for two dimensional problem.

# POD-u # POD-v Error-u Error-v Wall clock time FOM Wall clock time ROM Speedup

15 15 8.20e-04 6.62e-04 57.5272 10.2238 5.6
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Figure 5: ROM solutions of u (top) and v (bottom) components for two dimensional problem.

5.3. Entropy preservation

The entropy E of the tumor growth model is defined as

E =

∫
Ω

εdΩ =

∫
Ω

(v log(v) + (1 − u− v) log(1 − u− v))dΩ.

Figures 6-7 show the decay of entropy of FOM and ROM entropy are illustrated for one- and two-
dimensional cases [7]. The entropy is well preserved by the ROMs.
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Figure 6: Entropy decay for one dimesional problem.
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Figure 7: Entropy decay for two dimensional problem.
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6. Conclusions

Semi-discretization with finite differences in space leads to linear-quadratic ODE systems for the tu-
mor growth model, allowing separate offline and online computation. The full-order solutions are com-
puted using the linearly implicit Kahan’s method by solving one nonlinear system of equations for each
time step. In this way, FOMs are computed accurately and quickly for fine spatial and temporal dis-
cretizations. By applying tensor techniques to the linear-quadratic systems of tumor growth model the
online computation of the ROMs is further accelerated. This results in the solutions of the reduced-order
system requiring much less computation time. The solutions of ROM depend affinely on the parameters
in both the linear and quadratic parts. This allows the prediction of patterns of the tumor growth model
for different parameter values without interpolation. The bifurcation of the tumor growth model can be
studied by using the ROMs technique.
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