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Abstract

We present a number of fixed point results for general classes of maps defined on a variety of extension type and admissible
type spaces.
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1. Introduction

In this paper we present fixed point results for classes of maps defined on Hausdorff topological
spaces. These include the PK, BPK, and KKM types maps so in particular include the Kakutani maps, the
acyclic maps, the O’Neill maps, the admissible maps of Gorniewicz, the approachable maps, the permissi-
ble maps of Dzedzej and others (see [9]). Our spaces include ES(compact), AES(compact), ES admissible,
and AES admissible for a subclass of the KKM class. Our results are new and extend previously know
results in the literature; see [3–5, 9, 10, 12–16] and the references therein.

Now we describe the maps considered in this paper. Let H be the C̆ech homology functor with com-
pact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological
spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus
H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded vector space, Hq(X) being the q-
dimensional C̆ech homology group with compact carriers of X. For a continuous map f : X → X, H(f) is
the induced linear map f? = {f?q}, where f?q : Hq(X) → Hq(X). A space X is acyclic if X is nonempty,
Hq(X) = 0 for every q > 1, and H0(X) ≈ K.

Let X, Y, and Γ be Hausdorff topological spaces. A continuous single valued map p : Γ → X is called a
Vietoris map (written p : Γ ⇒ X) if the following two conditions are satisfied:

(i) for each x ∈ X, the set p−1(x) is acyclic;
(ii) p is a perfect map, i.e., p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.
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Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is a nonempty subset of Y). A
pair (p,q) of single valued continuous maps of the form X

p← Γ
q→ Y is called a selected pair of φ (written

(p,q) ⊂ φ) if the following two conditions hold:

(i) p is a Vietoris map;
(ii) q(p−1(x)) ⊂ φ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [9]. A upper semicontinuous map φ : X → Y

with compact values is said to be admissible (and we write φ ∈ Ad(X, Y)) provided there exists a selected
pair (p,q) of φ. An example of an admissible map is a Kakutani map. A upper semicontinuous map
φ : X → CK(Y) is said to be Kakutani (and we write φ ∈ Kak(X, Y)); here Y is a Hausdorff topological
vector space and CK(Y) denotes the family of nonempty, convex, compact subsets of Y.

Now we consider a general class of maps, namely the PK maps of Park. Let X and Y be Hausdorff
topological spaces. Given a class X of maps, X(X, Y) denotes the set of maps F : X → 2Y (nonempty
subsets of Y) belonging to X, and Xc the set of finite compositions of maps in X. We let

F(X) = {Z : Fix(F) 6= ∅ for all F ∈ X(Z,Z)} ,

where Fix(F) denotes the set of fixed points of F.
The class U of maps is defined by the following properties:

(i) U contains the class C of single valued continuous functions;
(ii) each F ∈ Uc is upper semicontinuous and compact valued; and

(iii) Bn ∈ F(Uc) for all n ∈ {1, 2, . . .}; here Bn = {x ∈ Rn : ‖x‖ 6 1}.

We say F ∈ PK(X, Y) if for any compact subset K of X there is a G ∈ Uc(K, Y) with G(x) ⊆ F(x) for each
x ∈ K. Recall PK is closed under compositions [12, 13].

Next we describe a class of maps more general than the PK maps in our setting. Let X be a convex
subset of a Hausdorff topological vector space and Y a Hausdorff topological space. If S, T : X → 2Y are
two set valued maps such that T(co(A)) ⊆ S(A) for each finite subset A of X, then we call S a generalized
KKM mapping w.r.t. T . Now the set valued map T : X → 2Y is said to have the KKM property if for any
generalized KKM map S : X→ 2Y w.r.t. T the family {S(x) : x ∈ X} has the finite intersection property (the
intersection of each finite subfamily is nonempty). We let

KKM(X, Y) = {T : X→ 2Y |T has the KKM property}.

Note PK(X, Y) ⊂ KKM(X, Y) (see [5]). Next we recall the following result [5].

Theorem 1.1. Let X be a convex subset of a Hausdorff topological vector space and Y,Z be Hausdorff topological
spaces.

(i) T ∈ KKM(X, Y) iff T |4 ∈ KKM(4, Y) for each polytope 4 in X;
(ii) if T ∈ KKM(X, Y) and f ∈ C(Y,Z), then fT ∈ KKM(X,Z);

(iii) if Y is a normal space,4 a polytope of X and if T : 4→ 2Y is a set valued map such that for each f ∈ C(Y,4)
we have that fT has a fixed point in 4, then T ∈ KKM(4, Y).

Next we recall the following fixed point result for KKM maps. Recall a nonempty subset W of a
Hausdorff topological vector space E is said to be admissible if for any nonempty compact subset K of W
and every neighborhood V of 0 in E there exists a continuous map h : K → W with x− h(x) ∈ V for all
x ∈ K and h(K) is contained in a finite dimensional subspace of E (for example every nonempty convex
subset of a locally convex space is admissible).

Theorem 1.2 ([4]). Let X be an admissible convex set in a Hausdorff topological vector space and T ∈ KKM(X,X)
be a closed compact map. Then T has a fixed point in X.
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Next we will present an analogue of Theorem 1.1 (ii) for Tf (see [14]).

Theorem 1.3. Let X be an admissible convex set in a Hausdorff topological vector space, Y a convex set in a
Hausdorff topological vector space, and Y a normal space. If T ∈ KKM(X, Y) is a upper semicontinuous map with
compact values and f ∈ C(Y,X), then Tf ∈ KKM(Y, Y).

Also we recall from [14] the following two properties. Let C and X be convex subsets of a Hausdorff
topological vector space E with C ⊆ X and Y a Hausdorff topological space.

(i) If T ∈ KKM(X, Y), then G ≡ T |C ∈ KKM(C, Y).
(ii) If T ∈ KKM(X, Y), T(X) ⊆ Z ⊆ Y and Z is closed in Y, then T ∈ KKM(X,Z).

Next we describe the better admissible class of maps BPK due to Park [16]. Let X be a convex subset
of a Hausdorff topological vector space and Y a Hausdorff topological space. Now F ∈ BPK(X, Y) if
F : X→ 2Y and for any polytope P in X and any continuous map f : F(P)→ P we have that f(F|P) : P → 2P

has a fixed point.
From Theorem 1.1 (parts (i) and (iii)) note BPK(X, Y) ⊆ KKM(X, Y) when Y is normal (the classes

coincide for closed compact maps). We also note the following properties.
Let C and X be convex subsets of a Hausdorff topological vector space Ewith C ⊆ X and Y a Hausdorff

topological space.

(i) If F ∈ BPK(X, Y), then G ≡ F|C ∈ BPK(C, Y).

Consider any polytope P in C and any continuous map f : G(P)→ P. Now since P is a polytope in X and
(note G(P) = F(P) since P ⊆ C) f : F(p)→ P is a continuous map, then, since F ∈ BPK(X, Y) there exists an
x ∈ P with x ∈ fF|P(x), i.e., x ∈ fG(x), since x ∈ P ⊆ C. Thus G = F|C ∈ BPK(C, Y).

(ii) If F ∈ BPK(X, Y) with F(X) ⊆ Z ⊆ Y, then F ∈ BPK(X,Z).

Note F : X → 2Y and let G : X → 2Z be the map obtained by restricting the range of F. Consider any
polytope P in X and any continuous map f : G(P) → P. Now since G(P) = F(P), then f : F(P) → P is
continuous and since F ∈ BPK(X, Y), there exists an x ∈ P with x ∈ fF|P(x) = fG|P(x). Thus F ∈ BPK(X,Z).

(iii) If F ∈ BPK(X, Y) and f ∈ C(Y,X), then fF ∈ BPK(X,X).

Note fF : X → 2X. Consider any polytope P in X and any continuous map g : fF(P) → P. We must show
there exists an x ∈ P with x ∈ g(fF)|P(x). To see this note gfF|P = hF|P : P → 2P, where h = gf : F(p)→ P

is a continuous map (note h(F(P)) = g(fF(P)) ⊆ P). Since F ∈ BPK(X, Y), there exists an x ∈ P with
x ∈ hF|P(x), i.e., x ∈ (gf)F|P(x) = g(fF)|P(x). Thus fF ∈ BPK(X,X).

Theorem 1.4 ([16]). Let X be an admissible convex set in a Hausdorff topological vector space and F ∈ BPK(X,X)
be a closed compact map. Then F has a fixed point in X.

Recall the Tychonoff cube T is the Cartesian product of copies of the unit interval and T lies in an
appropriate locally convex topological vector space E [7, 8]. Note since any convex subset of a locally
convex topological vector space is admissible, then T is a convex admissible subset of E. Now Theorem
1.2 (alternatively, Theorem 1.4) guarantees the following theorem.

Theorem 1.5. Let F ∈ KKM(T , T) (alternatively, F ∈ BPK(T , T)) be a closed map. Then F has a fixed point in T .

For a subset K of a topological space X, we denote by CovX(K) the directed set of all coverings of K by
open sets of X (usually we write Cov(K) = CovX(K)). Given a map F : X → 2X and α ∈ Cov(X), a point
x ∈ X is said to be an α-fixed point of F if there exists a member U ∈ α such that x ∈ U and F(x)∩U 6= ∅.

Given two maps F,G : X → 2Y and α ∈ Cov(Y), F and G are said to be α-close if for any x ∈ X there
exists Ux ∈ α, y ∈ F(x)∩Ux and w ∈ G(x)∩Ux.
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Theorem 1.6 ([2]). Let X be a regular topological space, F : X → 2X an upper semicontinuous map with closed
values and suppose there exists a cofinal covering θ ⊆ CovX(F(X)) such that F has an α-fixed point for every α ∈ θ.
Then F has a fixed point.

Remark 1.7. From Theorem 1.6 in proving the existence of fixed points in uniform spaces for upper semi-
continuous compact maps with closed values it suffices [3, page 298] to prove the existence of approximate
fixed points (since open covers of a compact set A admit refinements of the form {U[x] : x ∈ A} where U
is a member of the uniformity [11, page 199] so such refinements form a cofinal family of open covers).
Note also that uniform spaces are regular (in fact completely regular [6]). Also note in Theorem 1.6 if F is
compact valued, then the assumption that X is regular can be removed. For convenience in this paper we
apply Theorem 1.6 only when the space is uniform.

2. Fixed point results

By a space we mean a Hausdorff topological space. Let Q be a class of topological spaces. A space Y
is an extension space for Q (written Y ∈ ES(Q)) if ∀X ∈ Q, ∀K ⊆ X closed in X, any continuous function
f0 : K→ Y extends to a continuous function f : X→ Y.

Suppose X ∈ ES(compact). We say H ∈ GR(X,X) if H : X → 2X satisfies the following property: if
Z = H(X) ⊆ X is compact, ∀θ ∈ C(Z, T), ∀ψ ∈ C(T ,X) we have that θHψ ∈ KKM(T , T); here T is the
Tychonoff cube.

Remark 2.1. Note one could replace KKM(T , T) with BPK(T , T) in the above if one wishes.

Remark 2.2.

(i) Note a PK map is an example of a GR map. To see this suppse H ∈ PK(X,X), Z = H(X) ⊆ X is
compact, θ ∈ C(Z, T) and ψ ∈ C(T ,X). Note H ∈ PK(X,Z) and θHψ ∈ PK(T , T) since PK maps
are closed under compositions [12, 13]. Now since PK(T , T) ⊆ KKM(T , T), then θHψ ∈ KKM(T , T).
Consequently PK(X, Y) ⊆ GR(X, Y) (as a result the Kakutani maps, the acyclic maps, the admissibe
maps of Gorniewicz, and the approachable maps are examples of GR maps).

(ii) Now let us consider the KKM maps when X is a convex subset of a Hausdorff topological vector
space, H ∈ KKM(X,X), Z = H(X) ⊆ X is compact, θ ∈ C(Z, T) and ψ ∈ C(T ,X). From Section 1 note
H ∈ KKM(X,Z) and (see Theorem 1.1) θH ∈ KKM(X, T). We only have Theorem 1.3 so one cannot
conclude anything about θHψ for a general H here.

Theorem 2.3. Let X ∈ ES(compact) and F ∈ GR(X,X) a upper semicontinuous compact map with compact values.
Then F has a fixed point.

Proof. Recall from [10] that every compact space is homeomorphic to a closed subset of the Tychonoff cube
T , so as a result Z = F(X) can be embedded as a closed subset Z? of T ; let s : Z→ Z? be a homeomorphism.
Also let i : Z ↪→ X and j : Z? ↪→ T be inclusions. Now since X ∈ ES(compact) and is−1 : Z? → X, then
is−1 extends to a continuous function h : T → X. Let G = jsFh and note js ∈ C(Z, T) and h ∈ C(T ,X).
Since F ∈ GR(X,X), then G ∈ KKM(T , T) and also note G is an upper semicontinuous (compact) map with
compact values, so a closed map [1]. Now Theorem 1.5 guarantees an x ∈ T with x ∈ Gx. Let y = h(x),
and so y ∈ hjsF(y), i.e., y = hjs(q) for some q ∈ F(y). Since hj(w) = is−1(w) for w ∈ Z?, we have
hjs(q) = (hj)s(q) = i(q) = q, and so y ∈ F(y).

A space Y is an approximate extension space for Q (written Y ∈ AES(Q)) if ∀α ∈ Cov(Y), ∀X ∈ Q,
∀K ⊆ X closed in X, and any continuous function f0 : K→ Y, there exists a continuous function f : X→ Y

such that f|K is α-close to f0.

Theorem 2.4. Let X ∈ AES(compact) and F ∈ GR(X,X) a upper semicontinuous compact map with compact
values. Then for any α ∈ CovX(F(X)) we have that F has an α-fixed point.
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Proof. Let α ∈ CovX(Z), where Z = F(X). Now Z can be embedded as a closed subset Z? of T ; let
s : Z→ Z? be a homeomorphism. Let i : Z ↪→ X and j : Z? ↪→ T be inclusions. Next let α ′ = α∪ {X\Z} and
note α ′ is an open covering of X. Since X ∈ AES(compact) let the continuous map h : T → X be such that
h|Z? and s−1 are α ′-close. Thus (note α ′ = α∪ {X\Z}) hs : Z→ X and i : Z→ X are α-close. Let G = jsFh
and since F ∈ GR(X,X) we have G ∈ KKM(T , T) and also note G is an upper semicontinuous (compact)
map with compact values, so a closed map. Now Theorem 1.5 guarantees an x ∈ T with x ∈ Gx. Let
y = h(x), and so y ∈ hjsF(y), i.e., y = hjs(q) for some q ∈ F(y). Since hs and i are α-close there exists
U ∈ α with hs(q) ∈ U and i(q) ∈ U, i.e., q ∈ U and y = hjs(q) = hs(q) ∈ U. Thus q ∈ U, y ∈ U, so y ∈ U
and F(y)∩U 6= ∅ (since q ∈ F(y)). As a result F has an α-fixed point.

Now Theorem 1.6, Remark 1.7, and Theorem 2.5 immediately yields the following result.

Theorem 2.5. Let X ∈ AES(compact) be a uniform space and F ∈ GR(X,X) be a upper semicontinuous compact
map with compact values. Then F has a fixed point.

One could generalize the above results by considering ES admissible and AES admissible (generaliza-
tion of admissible in Section 1) as defined below. Let W be a space.

Definition 2.6. We say W is ES admissible if for all compact subsets K of W and all α ∈ CovW(K), there
exists a continuous function πα : K→W such that

(i) πα and i : K ↪→W are α-close;
(ii) πα(K) is contained in a subset Cα ⊆W and Cα ∈ ES(compact).

Definition 2.7. We say W is AES admissible if for all compact subsets K of W and all α ∈ CovW(K), there
exists a continuous function πα : K→W such that

(i) πα and i : K ↪→W are α-close;
(ii) πα(K) is contained in a subset Cα ⊆W, Cα ∈ AES(compact) and Cα is a uniform space.

LetW be ES admissible (respectively, AES admissible). We say H ∈ GR0(W,W) if H :W → 2W satisfies
the following property: if K = H(W) ⊆ W is compact, ∀α ∈ CovW(K) we have that παH ∈ GR(Cα,Cα);
here πα and Cα are as in Definition 2.6 (respectively, Definition 2.7).

Remark 2.8. The PK maps are an example of GR0 maps. To see this suppse H ∈ PK(W,W), K = H(W) ⊆W
is compact, α ∈ CovW(K) and πα ∈ C(K,W); here πα and Cα are as in Definition 2.6 (respectively,
Definition 2.7). Note H ∈ PK(Cα,K) and πα ∈ C(K,Cα) so παH ∈ PK(Cα,Cα) ⊆ GR(Cα,Cα) since PK
maps are closed under compositions and also note Remark 2.2 (i).

Theorem 2.9. Let W be ES admissible and F ∈ GR0(W,W) be an upper semicontinuous compact map with
compact values. Then for any α ∈ CovW(F(W)) we have that F has an α-fixed point.

Proof. Let α ∈ CovW(K), where K = F(W). Since W is ES admissible, there exists a πα ∈ C(K,W) and
a Cα ∈ ES(compact) as described in Definition 2.6. Note F ∈ GR0(W,W) so Fα = παF ∈ GR(Cα,Cα)
and also note Fα is an upper semicontinuous compact map with compact values. Now Theorem 2.3
guarantees a x ∈ Cα with x ∈ Fα(x) = παF(x), i.e., x ∈ παq for some q ∈ F(x). Since πα and i are α-close,
there exists U ∈ α with πα(q) ∈ U and i(q) ∈ U, i.e., q ∈ U and x ∈ U. As a result x ∈ U and F(x)∩U 6= ∅
(since q ∈ F(x)). Thus F has an α-fixed point.

Now Theorem 1.6, Remark 1.7, and Theorem 2.9 immediately yields the following result.

Theorem 2.10. Let W be a uniform space, let W be ES admissible, and let F ∈ GR0(X,X) be an upper semicontin-
uous compact map with compact values. Then F has a fixed point.

Theorem 2.11. Let W be AES admissible and F ∈ GR0(W,W) be an upper semicontinuous compact map with
compact values. Then for any α ∈ CovW(F(W)) we have that F has an α-fixed point.
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Proof. Let α ∈ CovW(K), where K = F(W). Since W is AES admissible there exists a πα ∈ C(K,W)
and a Cα ∈ AES(compact) with Cα a uniform space as described in Definition 2.7. Let Fα = παF and
note Fα ∈ GR(Cα,Cα) and also note Fα is an upper semicontinuous compact map with compact values.
Theorem 2.5 guarantees an x ∈ Cα with x ∈ Fα(x) = παF(x) and the same argument as in Theorem 2.9
concludes the proof.

Theorem 2.12. LetW be a uniform space,W be AES admissible, and F ∈ GR0(W,W) be an upper semicontinuous
compact map with compact values. Then F has a fixed point.
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