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Abstract

In this paper, we study the following second order differential equation: −(Φ(u ′(t))) ′ +φp(u(t)) = εf(t,u(t)) a.e. on Ω =
[0, T ] under nonlinear multivalued boundary value conditions which incorporate as special cases the classicals boundary value
conditions of type Dirichlet, Neumann, and Sturm-Liouville. Using monotone iterative method coupled with lower and upper
solutions method, multifunction analysis, theory of monotone operators, and theory of topological degree, we show existence of
solution and extremal solutions when the lower and upper solutions are well ordered or not. Since the boundary value conditions
do not include the periodic one, we show that our method stay true for the periodic problem.
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1. Introduction

Your text comes here. Separate text sections with this paper is devoted to the study of the following
problem: {

−
(
Φ(u ′(t))

) ′
+φp(u(t)) = εf(t,u(t)) a.e. on Ω = [0, T ],

u ′(0) ∈ B1(u(0)), −u ′(T) ∈ B2(u(T)).
(1.1)

where B1 and B2 are maximal monotone graphs in R2, Φ : R → R is an increasing homeomorphism,
f : Ω×R→ R is Lp−Caratheodory function, p > 1 , which is bounded and increasing with respect to the
second variable, ε ∈ {−1, 1} , Φp(z) = |z|p−2z,p > 1, for all z ∈ R, is the p-Laplacian operator.

The method of lower and upper-solutions coupled with monotone iterative method is an interesting
tool to prove existence of solution and extremal solutions of linear or nonlinear problems in a functional
interval formed by a pair of lower and upper solutions. Several authors have used it in this sense. For
this purpose, see [1, 3, 4, 7, 10, 11, 13] and references therein. The problems studied in [4, 10] and (1.1)
encompasses the classical problems of Dirichlet, Neumann, Neumann-Steklov, Sturm-Liouville, discussed

Email address: arsene.behi@gmail.com (Droh Arsène Béhi)

doi: 10.22436/jnsa.017.01.01

Received: 2023-07-08 Revised: 2023-10-28 Accepted: 2023-12-10

http://dx.doi.org/10.22436/jnsa.017.01.01
http://dx.doi.org/10.22436/jnsa.017.01.01
http://crossmark.crossref.org/dialog/?doi=10.22436/jnsa.017.01.01&domain=pdf


D. A. Béhi, J. Nonlinear Sci. Appl., 17 (2024), 1–18 2

in [1, 7, 13]. In [4, 10], the authors assume that the lower and upper-solutions are well-ordered and they
use a proof that relies on a fixed point theorem for ordered and reflexive Banach spaces due to HeiKilla-Hu
[9]. In this paper, in contrast to [4, 10], we present a version of monotone iterative method which relies
on Leray-Schauder topological degree theory, in the study of boundary problems driven by multivalued
maximal monotone terms. Moreover, we enrich aforementioned works by taking account the case where
the lower and upper solutions are not well ordered.

Thus, the goal of this paper is to establish an existence result of solutions and extremal solutions for
the problem (1.1) by using a method which combines the method of lower and upper-solutions, iterative
monotone method, the theory of the topological degree to the theory of monotone operators, the analysis
of multifunctions when the lower and upper solutions are well ordered or not. Furthermore, since the
boundary value conditions in (1.1) do not include the periodic one, we show that our method of proof stay
true for the periodic problem.

2. Auxiliary results

Our hypotheses on data of the problem (1.1) are the following:

(HΦ) Φ : R −→ R is an increasing continuous map such that:
(a) Φ(0) = 0;
(b) there exist η1,η2,η3 > 0 such that: η1 |x|

p 6 Φ(x)x 6 η2 + η3 |x|
p for all x ∈ R.

Remark 2.1. Suppose that Φ(z) = Φp(z) = |z|p−2 z,p > 2 . Then this function satisfies hypothesis (HΦ).
This function correspond to the one-dimentional operator p-Laplacian. Another interesting case which
satisfies hypothesis (HΦ) is when Φ is defined by Φ(z) = a(z) |z|p−2 z with a : R → ]0,+∞[ continuous,
a(z) > k > 0 for all z > 0 and z 7→ a(z) |z|p−2 z is strictly increasing on R and η1 |z|

p 6 a(z) |z|p 6
η2 + η3 |z|

p. In fact, one can write a(z) = ϕ(|z|) with ϕ : ]0,+∞[→ ]0,+∞[. For examples, we have:

ϕ(|z|) =

√
1 +

(
1 + |z|p−1

)2

1 + |z|p−1 and ϕ(|z|) = 1 +
1

1 + |z|p−1 .

It is well-know that under the monotonicity condition and hypotheses (a) and (b), Φ is a homeomorphism
from R onto R. Φ−1 is strictly monotone and

∣∣Φ−1(z)
∣∣→ +∞ as |z|→ +∞ (see Deimling [8, chap. 3]).

(H0) The problem (1.1) admits a pair of lower and upper solutions {α,β}.
(Hε) (a) ε = 1 if α 6 β on Ω;

(b) ε = −1 if α > β on Ω.
(Hf) f : Ω×R→ R is an increasing function with respect to the second variable such that:

(i) for all x ∈ R, t 7−→ f(t, x) is measurable;
(ii) for a.e. t ∈ Ω, x 7−→ f(t, x) is continuous;

(iii) for every r > 0, there exists γr ∈ Lq (Ω) , 1
p + 1

q = 1, such that for a.e. t ∈ Ω and for all x ∈ R

with |x| 6 r, we have |f(t, x)| 6 γr(t);
(HB) B1 and B2: R −→ P (R) are some maximal monotone maps such that 0 ∈ B1 (0)∩B2 (0).

Remark 2.2. For i = 1, 2, Bi : R→ P(R) being a maximal monotone map, there exists ji a convex, proper,
lower semicontinuous map such that Bi = ∂ji. Let j ′i(x

−) and ji(x+) be the left and the right derivative of
ji at x for all x ∈ R. We have Bi(x) =

[
j ′i(x

−); ji(x+)
]

with |j ′i(x
−)|, |j ′i(x

+)| < +∞ .

Now, we define our notions of definition of solution, lower and upper solutions of the problem (1.1).

Definition 2.3. A function u ∈ C1 (Ω) such that Φ(u ′(.)) ∈W1,p(Ω) is said to be a solution of the problem
(1.1), if it verifies (1.1).
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Definition 2.4.

(a) A function β ∈ C1 (Ω) such that Φ(β ′(.)) ∈ W1,p(Ω) is said to be an upper solution of the problem
(1.1), if: {

−(Φ(β ′(t))) ′ +Φp(β(t)) > εf(t,β(t)) a.e. on Ω = [0, T ],
β ′(0) ∈ B1(β(0)) − R+,−β ′(T) ∈ B2(β(T)) − R+.

(b) A function α ∈ C1 (Ω) such that Φ(α ′(.)) ∈W1,p(Ω) is said to be a lower solution of problem (1.1), if:{
−(Φ(α ′(t))) ′ +Φp(α(t)) 6 εf(t,α(t)) a.e. on Ω = [0, T ]
α ′(0) ∈ B1(α(0)) + R+,−α ′(T) ∈ B2(α(T)) + R+.

Definition 2.5. A lower solution α of (1.1) is said to be strict if all solution u of (1.1) with u(t) > α(t), ∀t ∈
[0, T ] is such that u(t) > α(t), ∀t ∈ [0, T ].

Definition 2.6. A upper solution β of (1.1) is said to be strict if all solution u of (1.1) with u(t) 6 β(t),∀t ∈
[0, T ] is such that u(t) < β(t), ∀t ∈ [0, T ].

Proposition 2.7. Let α be a lower solution of (1.1) such that:

(i) for all t0 ∈ ]0, T [ , there exists ε0 > 0 and Ω0 an open interval such that t0 ∈ Ω0 and

−
(
Φ(α ′(t))

) ′
+Φp(α(t)) 6 εf(t, x) a.e. t ∈ Ω0, for all x ∈ [α(t),α(t) + ε0];

(ii) α ′(0) ∈ B1(α(0)) + R∗+;
(iii) −α ′(T) ∈ B2(α(T)) + R∗+,

then α is strict lower solution of (1.1).

Proof. Let u be a solution of problem (1) such that α(t) 6 u(t) for all t ∈ Ω. Let us assume that u is not
strict, then there exists t̄ ∈ [0, T ] such that α(t̄) = u(t̄). Whence

A = {t ∈ [0, T ] : α(t) = u(t)} 6= 0

A is closed and bounded. Let t0 = minA. Then

min
[0,T ]

[u(t) −α(t)] = u(t0) −α(t0).

(a) If t0 ∈ ]0, T [, then u ′(t0) − α
′(t0) = 0 and there exist Ω0 and ε0 > 0 according to (i). We can choose

t1 ∈ Ω0 such that t1 < t0 , u ′(t1) < α
′(t1), and

∀t ∈ [t1, t0], (u(t),u ′(t)) ∈ ]α(t),α(t) + ε0[×
]
α ′(t) − ε0,α ′(t) + ε0

[
.

Therefore, for almost t ∈ [t1, t0],

−(Φ(α ′(t))) ′ − f(t,u(t),u ′(t)) − Ξ(u(t)) 6 0.

Since Φ is an increasing homeomorphism, we have

Φ(u ′(t0)) −Φ(α ′(t0)) = 0

and
Φ(u ′(t1)) < Φ(α ′(t1)).

Also we have

Φ(u ′(t1)) −Φ(α ′(t1)) = −

∫t0

t1

(Φ(u ′(s))) ′ − (Φ(α ′(s))) ′ds

= −

∫t0

t1

−f(s,u(s),u ′(s)) − Ξ(u(s)) − (Φ(α ′(s))) ′ds > 0,

which contradicts (2).
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(b) We suppose that t0 = 0, then α ′(0) 6 u ′(0) and it follows that

Φ(u ′(0)) −Φ(α ′(0)) > 0.

Since α ′(0) ∈ B1(α(0))+ e0, e0 > 0, because of the monotonicity of B1, if α(0) > u(0), we have α ′(0) > u ′(0).
Then Φ(α ′(0)) > Φ(u ′(0)). So Φ(u ′(0)) −Φ(α ′(0)) < 0, which contradicts (3).

(c) We suppose that t0 = T , then α ′(T) > u ′(T). It follows that:

Φ(u ′(T)) −Φ(α ′(T)) 6 0.

Since −α ′(T) ∈ B2(α(T)) + e0, e0 > 0, because of the monotonicity of B1, if α(T) > u(T), we have
α ′(T) < u ′(T). Then Φ(α ′(T)) < Φ(u ′(T)). So Φ(u ′(T)) −Φ(α ′(T)) > 0, which contradicts (4). Then, t0
not exist. So, A = ∅.

Proposition 2.8. Let β be an upper solution of (1.1) such that:

(i) for all t0 ∈ ]0, T [ , there exist ε0 > 0 and Ω0 an open interval such that t0 ∈ Ω0 and

−
(
Φ(β ′(t))

) ′
+Φp(β(t)) > f(t, x) a.e. t ∈ Ω0, for all x ∈ [β(t) − ε0,β(t)];

(ii) β ′(0) ∈ B1(β(0)) − R∗+;
(iii) −β ′(T) ∈ B2(β(T)) − R∗+ ,

then β is strict upper solution of (1.1).

Proof. The proof is similar to the one of proposition 2.7.

Let us introduce the following set:

D =
{
u ∈ C1(Ω) : Φ(u ′) ∈W1,q(0, T),u ′(0) ∈ B1(u(0)) and − u ′(T) ∈ B2(u(T))

}
.

Lemma 2.9. If the hypotheses (HΦ) and (HB) hold, then for all h ∈ Lq(Ω), the problem

(Ph)

{
−(Φ(u ′(t))) ′ +φp(u(t)) = h(t) a.e. on Ω = [0, T ],
u ′(0) ∈ B1(u(0)), −u ′(T) ∈ B2(u(T)).

(2.1)

has an unique solution uh in C1(Ω).

Proof. Let l,m ∈ R. We consider the following two-point boundary value problem:{
−(Φ(u ′(t))) ′ +Φp(u(t)) = h(t) a.e. on Ω = [0, T ],
u(0) = l, u(T) = m.

(2.2)

Let us set γ(t) =
(
1 − t

T

)
l+ t

Tm. Then γ(0) = l and γ(T) = m. We consider the function y defined by
y(t) = u(t) − γ(t) and rewrite (2.2) in the terms of the function y:{

−(Φ(y ′(t) + γ ′(t))) ′ +Φp(y(t) + γ(t)) = h(t) a.e. on Ω = [0, T ],
y(0) = y(T) = 0. (2.3)

This is a homogeneous Dirichlet problem for (2.2). To solve (2.3), we argue as follows. Let π :W1,p
0 (Ω) −→

W−1,q (Ω) be nonlinear operator defined by:

〈π(y), z〉0 =

∫T
0
Φ(y ′(t) + γ ′(t))z ′(t)dt+

∫T
0
Φp(y(t) + γ(t))z(t)dt,∀y, z ∈W1,p

0 (Ω) ,
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where 〈〉0 denotes the duality brackets for the pair
(
W−1,q (Ω) ,W1,p

0 (Ω)
)

. We show that π is strictly
monotone, demicontinuous, and coercive (see the proof of proposition 3.10 of Béhi-Adjé-Goli [4]) . So, π is
surjective. Moreover, since π is strictly monotone, we infer that there exists an unique y ∈ W1,p

0 ((0, T))
such that π(y) = h . For any test function φ, we have

〈π(y),φ〉0 = 〈h,φ〉0 ⇔
∫T

0
Φ(y ′(t) + γ ′(t))φ ′(t)dt =

∫T
0
(h(t) −Φp(y(t) + γ(t)))φ(t)dt.

From the definition of the distributional derivative, it follows that

−
(
Φ(y ′(t) + γ ′(t))

) ′
= h(t) −Φp(y(t) + γ(t)) a.e. on Ω.

Whence y is the unique solution of problem (2.3). Then u = y+ γ ∈ C1 (Ω) is the unique solution of the
problem (2.2). We can define the solution map σ : R×R −→ C1 (Ω), which assigns to each pair (l,m) the
unique solution of the problem (2.2). Let Q : R×R −→ R×R be defined by:

Q(l,m) =
(
−Φ(σ(l,m) ′(0)),Φ(σ(l,m) ′(T))

)
.

We show that Q is monotone, continuous, and coercive (see the proof of proposition 3.10 of Béhi-Adjé [4]).
We infer that Q is maximal monotone (being continuous, monotone) and coercive. Thus Q is surjective.
Now, let B : R×R −→ P (R×R) be defined by

B(l,m) = (Φ ◦B1(l),Φ ◦B2(m)) for all (l,m) ∈ R×R.

We have B is maximal monotone (see Claim 4 in the proof of Proposition 3.8 in Bader-Papageorgiou [2])).
Next, let θ : R×R −→ P (R×R) be defined by

θ(l,m) = Q(l,m) +B(l,m) for all (l,m) ∈ R×R.

Then θ is maximal monotone (see Brezis [5], Corollary 2.7, p. 36 or Zeidler [12], Theorem 32.I, p. 897).
Moreover, since Q is coercive, B is maximal monotone and (0, 0) ∈ B(0, 0), it follows that θ is coercive. Thus
θ is surjective. We infer that we can find (l,m) ∈ R×R such that (0, 0) ∈ θ(l,m). So Φ(u(0)) ∈ Φ ◦B1(l)
and −Φ(u(T)) ∈ Φ ◦ B2(m). Whence, by acting with Φ−1, we obtain (u ′(0),−u ′(T)) ∈ (B1(l),B2(m)).
Therefore x0 = σ(l,m) is the unique solution of the problem (2.1).

Lemma 2.10. Suppose that hypotheses (HB) and (Hf) hold and α and β are lower and upper solutions of (1.1). If u
is solution of (1.1), then ‖u ′‖∞ < M with

M = Φ−1
[
Φ

(
max {|α(T) −β(0)|, |β(T) −α(0)|}

T

)
+ T

(
max

{
‖α‖p−1∞ , ‖β‖p−1∞ }

+ ‖γr‖q
)]

and
r > max {‖α‖∞, ‖β‖∞} .

Proof. Since u ∈ C1(Ω), by the mean value theorem, we can find t0 ∈ (0, T) such that u(T) −u(0) = Tu ′(t0).

It follows that u ′(t0) =
u(T) − u(0)

T
. Then, from (1.1), we have

|u ′(t0)| 6
max {|α(T) −β(0)|, |β(T) −α(0)|}

T
.

Then,

Φ(|u ′(t0)|) 6 Φ

(
max {|α(T) −β(0)|, |β(T) −α(0)|}

T

)
. (2.4)
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Therefore,
|Φp(u(t))| 6 max

{
‖α‖p−1∞ , ‖β‖p−1∞ }

. (2.5)

By integration of (1.1) on (t0, t), ∀ t ∈ (t0, T) (similarly, we can integrate (1.1) on (t, t0),∀ t ∈ (0, t0)), we
have

Φ(u ′(t)) = Φ(u ′(t0)) +

∫t
t0

(Φp(u(s)) − εf(s,u(s)))ds on Ω.

Then, we have

u ′(t) = Φ−1
[
Φ(u ′(t0)) +

∫t
t0

(Φp(u(s)) − εf(s,u(s)))ds
]

on Ω.

It follows that

|u ′(t)| 6 Φ−1
[
Φ(|u ′(t0)|) +

∫t
t0

(|Φp(u(s))|+ |f(s,u(s))|)ds
]

on Ω. (2.6)

Thus, using hypotheses (2.4), (2.5), and (2.6), we obtain

‖u ′‖∞ 6 Φ−1
[
Φ

(
max {|α(T) −β(0)|, |β(T) −α(0)|}

T

)
+ T

(
max

{
‖α‖p−1∞ , ‖β‖p−1∞ }

+ ‖γr‖q
)]

.

We introduce the following operator G : C1(Ω)→ D ⊆ C1(Ω) defined by:

G(u)(t) = u(0) +
∫t

0
Φ−1 ◦

(
Φ(u ′(0)) −

∫y
0
(εf(s,u(s)) −Φp(u(s)))ds

)
dy.

Lemma 2.11. G is completely continuous.

Proof. Let un −→ u in C1 (Ω). To establish the continuity of the operator G, we will show that G(un) −→
G(u) in C1 (Ω). That’s mean G(un) −→ G(u) in C (Ω) and (G(un))

′ −→ (G(u)) ′ in C (Ω). For n > 1, we
have:

−(Φ(u ′n(t)))
′ +Φp(un(t)) = εf(t,un(t)) a.e. t ∈ [0, T ]

⇔ u ′n(t) = Φ
−1 ◦ (Φ(u ′n(0)) −

∫t
0
εf(s,un(s)) −Φp((un(s))ds) a.e. t ∈ [0, T ]

⇔ u ′n(t) = (G(un))
′(t) a.e. t ∈ [0, T ].

Since Φ,Φp and N are continuous, respectively, in Lq (Ω) and C (Ω), we have

lim
n→+∞N(un)(.) = f(.,u(.)) in Lq(Ω), lim

n→+∞Φ(u ′n(0)) = Φ(u ′(0))

and
lim
n→+∞Φp(un(t)) = Φp(u(t)),

where N is the Nemytski’s operator associated to f. Using the previous arguments and the dominated
convergence theorem, we have

lim
n→+∞

∫t
0
εf(t,un(s)) −Φp(un(t))dt =

∫t
0
εf(t,u(s)) −Φp(u(t))dt.

It follows that

lim
n→+∞Φ(u ′n(0)) −

∫t
0
εf(t,un(s)) −Φp(un(t))dt = Φ(u ′(0)) −

∫t
0
εf(t,u(s)) −Φp(u(t))dt.
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Since Φ is an homeomorphism, Φ−1 exists and is continuous. Finally, we have

lim
n→+∞Φ−1 ◦

(
Φ(u ′n(0)) −

∫t
0
f(t,un(s)) −Φp(un(t))dt

)
= Φ−1 ◦

(
Φ(u ′(0)) −

∫t
0
εf(t,u(s)) −Φp(u(t))dt

)
⇔ lim
n→+∞(G(un)) ′ = (G(u)) ′ ∈ C(Ω).

By integration, we obtain: limn→+∞G(un) = G(u) in C(Ω). Therefore, G is continuous. Let us show that
G is relatively compact. If un −→ u in C1 (Ω), then there exists R > 0 such that un,u ∈ BC1(R). Let Π be a
bounded set of C1(Ω). We set ∆ = {G(u) : u ∈ Π}. Since Π is bounded, there exists R > 0 such that:

‖G(u)‖∞ < R+MT .

It follows that:
‖G(u)‖C1 < R+ (M+ 1)T .

Therefore, there exist R1 > 0 such that G(u) ∈ BC1(R1). For u ∈ Π and s1, s2 ∈ Ω,

∣∣Φ(G(u)) ′(s1) −Φ(G(u)) ′(s2)
∣∣ = ∣∣∣∣∫s1

s2

Nf(u)(t) −Φp(u(t))dt

∣∣∣∣ 6 |s2 − s1|
1
p

(
‖γr‖q + ‖R+MT‖

p−1
q

)
.

We infer that for all ε > 0, there exist δ > 0 such that

|s1 − s2| < δ⇒
∣∣Φ(G(u)) ′(s1) −Φ(G(u)) ′(s2)

∣∣ < ε.

It suffice to take δ =

(
ε

‖γr‖q + ‖R+MT‖
p−1
q

)p
. Therefore, Φ being an homeomorphism, for all ε > 0, it

exists δ > 0, such that for all u ∈ Π, s1, s2 ∈ Ω, if |s1 − s2| < δ, then∣∣(G(u)) ′(s1) − (G(u)) ′(s2)
∣∣ = ∣∣Φ−1 ◦Φ((G(u)) ′(s1)) −Φ

−1 ◦Φ((G(u)) ′(s2))
∣∣ < ε.

∆ is uniformly equicontinuous and bounded on C1 (Ω). By Ascoli-Arzela ’s theorem, ∆ = G(Π) is relatively
compact in C1 (Ω). Since G is continuous and G(Π) is relatively compact in C1 (Ω) for every bounded
subset Π of C1 (Ω), G is completely continuous.

Proposition 2.12. If hypotheses (H0), (HΦ), and (Hf) hold, then the problem (1.1) admits a solution u if u is a
fixed point of the operator G.

Proof. If u is solution of ( 1.1), then (Φ(u ′)) ′ ∈ Lq (Ω) because of hypothesis (Hf)(iv). By integration,
we have Φ(u ′) ∈ Lq (Ω). So, Φ(u ′) ∈ W1,q (Ω). We also have u ′(0) ∈ B1(u(0)) and −u ′(T) ∈ B2(u(T)).
Therefore, u ∈ D. Furthermore, we have

−
(
Φ(u ′(t))

) ′
= f(t,u(t)) −Φp(u(t)) ae on Ω.

That’s mean
u(t) = G(u)(t) ae on Ω.

As consequence, u is a fixed point of G. Reciprocally, if u is a fixed point of G, we have u ∈ D ⊆ C1 (Ω), and
G(u)(t) = u(t) ae on Ω. Then, −(Φ(u ′(t))) ′ = f(t,u(t)) −Φp(u(t)) ae on Ω and u ′(0) ∈ B1(u(0)) and
−u ′(T) ∈ B2(u(T)). So, u is solution of (1.1). Finally, by Lemma 2.10, we have ∀u ∈ C1 (Ω) , ‖(G(u)) ′‖∞ <
M.
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3. Existence of solutions and extremal solutions with well-ordered lower and upper solutions

3.1. Existence results
We introduce the functional interval:

U = [α,β] =
{
u ∈W1,p ((0, T)) : α(t) 6 u(t) 6 β(t) for all t ∈ Ω

}
,

and the operator τ :W1,p ((0, T)) −→W1,p ((0, T)) defined by

τ(u)(t) = max {α(t), min {u(t),β(t)}} =


α(t), if u(t) < α(t),
u(t), if α(t) 6 u(t) 6 β(t),
β(t), if u(t) > β(t).

For all (t, x) ∈ Ω×W1,p(Ω), let us set N1(x)(t) = f1(t, x) = f(t, τ(x)(t)). For all x ∈ [α(t),β(t)], we have
f1(t, x) = f(t, x). Moreover, a.e. t ∈ Ω and all x ∈ R, we have |f1(t, x)| 6 γr(t) with r = max {‖α‖∞ , ‖β‖∞}+
MT . We consider the following auxilary problem{

−(Φ(u ′(t))) ′ +φp(u(t)) = f1(t,u(t)) a.e. on Ω = [0, T ],
u ′(0) ∈ B1(u(0)), −u ′(T) ∈ B2(u(T)).

(3.1)

The problem (3.1) is equivalent to fixed point problem of the operator G : C1 (Ω)→ D ⊆ C1 (Ω) defined by

G(u)(t) = u(0) +
∫t

0
Φ−1 ◦

(
Φ(u ′(0)) −

∫y
0
(f1(s,u(s)) −Φp(u(t)))ds

)
dy,

we have ∥∥G(u)∥∥∞ < max {‖α ‖∞ , ‖β‖∞}+MT .

Theorem 3.1. Suppose that there exist a lower solution α and a upper solution β such that ∀t ∈ [0, T ], α(t) 6 β(t).
Then the problem (1.1) admits at least one solution u such that

α(t) 6 u(t) 6 β(t), ∀t ∈ [0, T ].

Moreover, if α and β are strict, then

α(t) 6 u(t) 6 β(t), ∀t ∈ [0, T ] and dLS[IdC1 −G,Πα,β, 0] = 1,

where Πα,β =
{
u ∈ C1 (Ω) : ∀t ∈ [0, T ],α(t) 6 u(t) 6 β(t)

}
and G is the fixed point operator of problem (1.1).

Proof. The proof will be established in many steps.

Claim 3.2. Every solution of (3.1) is such that α(t) 6 u(t) 6 β(t), ∀t ∈ Ω.

Proof. α ∈ C1 (Ω) is a lower solution of the problem (1.1), then{
−(Φ(α ′(t))) ′ +Φp(α(t)) 6 f(t,α(t)) a.e. on Ω = [0, T ],
α ′(0) ∈ B1(α(0)) + R+,−α ′(T) ∈ B2(α(T)) + R+. (3.2)

Substraction of (3.2) from (3.1) yields

(Φ(α ′(t))) ′ − (Φ(u ′(t)) ′ +Φp(u(t)) −Φp(α(t)) > f1(t,u(t)) − f(t,α(t)). (3.3)

We multiply (3.3) by (α− u)+ ∈W1,p ((0, T)) and then integrate on Ω. We obtain∫T
0

[
(Φ(α ′(t))) ′ − (Φ(u ′(t))) ′

]
(α− u)+ (t)dt

−

∫T
0
(Φp(α(t)) −Φp(u(t))) (α− u)+ (t)dt >

∫T
0
[f1(t,u(t)) − f(t,α(t))] (α− u)+ (t)dt.

(3.4)
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The integration by parts of the left-hand side in inequality, yields∫T
0

[
(Φ(α ′(t)) ′ − (Φ(u ′(t)) ′

]
(α− u)+ (t)dt−

∫T
0
(Φp(α(t)) −Φp(u(t))) (α− u)+ (t)dt

=
(
Φ(α ′(T)) −Φ(u ′(T))

)
(α− u)+ (T) −

(
Φ(α ′(0)) −Φ(u ′(0))

)
(α− u)+ (0)

−

∫T
0

[
Φ(α ′(t)) −Φ(u ′(t))

]
(α− u) ′+ (t)dt−

∫T
0
(Φp(α(t)) −Φp(u(t))) (α− u)+ (t)dt

>
∫T

0
[f1(t,u(t)) − f(t,α(t))] (α− u)+ (t)dt.

We set [
(α− u)+

] ′
(t) =

{
(α− u) ′ (t), if α(t) > u(t),
0, if α(t) 6 u(t).

Also, from the boundary conditions in (3.1) and (3.2), we have:

−u ′(T) ∈ B1(u(T)) and −α ′(T) ∈ B1(α(T)) + eT with eT > 0.

If α(T) > u(T), then from the monotony of B2 (see hypothesis (HB)), we have α ′(T) 6 u ′(T). Since Φ is
increasing, we have Φ(α ′(T)) 6 Φ(u ′(T)). So, it follows that

(Φ(α ′(T)) −Φ(u ′(T)))(α(T) − u(T)) 6 0. (3.5)

In a similar fashion, using the boundary conditions u ′(0) ∈ B1(u(0)) and α ′(0) ∈ B1(α(0)) + e0 with
e0 > 0, if α(0) > u(0), we have α ′(0) > u ′(0). We infer that Φ(α ′(0)) > Φ(u ′(0)). It follows that

(Φ(α ′(0)) −Φ(u ′(0)))(α(0) − u(0)) > 0. (3.6)

Also, since Φ is an increasing homeomorphism, we have∫T
0

(
Φ(α ′(t)) −Φ(u ′(t))

)
(α− u) ′+ (t)dt =

∫
{α>u}

(
Φ(α ′(t)) −Φ(u ′(t))

)
(α− u) ′ (t)dt > 0, (3.7)

where {α > u} = {t ∈ [0, T ] : α(t) > u(t)} . Moreover, since Φp is strictly increasing, we have∫T
0

(
Φp(α

′(t)) −Φp(u
′(t))

)
(α− u) ′ (t)dt =

∫
{α>u}

(
Φp(α

′(t)) −Φp(u
′(t))

)
(α− u) ′ (t)dt > 0. (3.8)

Using the inequalities (3.5)), (3.6), (3.7), and (3.8) in the first member of (3.4), we obtain∫T
0

[
(Φ(u ′(t)) ′ − (Φ(α ′(t)) ′

]
(α− u)+ (t)dt−

∫T
0
(Φp(α(t)) −Φp(u(t))) (α− u)+ (t)dt < 0. (3.9)

Furthermore

f1(t,u(t)) − f(t,α(t))) = f(t,α(t)) − f(t,α(t)) = 0 a.e. on {α > u}

⇒
∫T

0
(f1(t,u(t)) − f(t,α(t))) (α− u)+ (t)dt = 0.

(3.10)

Using (3.9) and (3.10) in (3.4), we have a contradiction when |{α > u}| > 0. Therefore , for all t ∈ Ω,
α(t) 6 u(t). In a similar fashion we show that u(t) 6 β(t) for all t ∈ Ω; thus u ∈ U.

Claim 3.3. The operator G is continuous and completely continuous.

Proof. The proof is similar to the one of Lemma 2.11.
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Claim 3.4. The problem (1.1) admits at least one solution such that

α(t) 6 u(t) 6 β(t), ∀t ∈ [0, T ].

Proof. G(C1(Ω)) ⊂ BC1(R) for all R > max {‖α‖∞ , ‖β‖∞}+ (M+ 1)T . Then, by Leray-Schauder’s theorem,
we can say that the operator G has a fixed point u in the ball BC1(R), which is solution of problem (3.1).
Therefore, by Claim 3.2, u is also solution of (1.1).

Claim 3.5. If α and β are strict, then

α(t) 6 u(t) 6 β(t), ∀t ∈ [0, T ] and dLS[IdC1 −G,Πα,β, 0] = 1.

Proof. Suppose that α is a strict lower solution and β is a strict upper solution of (1.1). Let

R > max {‖α‖∞ , ‖β‖∞}+M(T + 1),

be enough small, such that Gu 6= u ∀ u ∈ ∂BC1(R). Because of complete continuity of G, we can compute
the degree of IdC1 −G. The function H defined by H(t,u) = tG(u) is compact on [0, 1]×BC1(R). Suppose
that there exist t ∈ [0, 1] and v ∈ ∂BC1(R) such that v−H(t, v) = 0, then v = tG(v). However ‖v‖C1 = R,
so t

∥∥G(v)∥∥
C1 = R, which contradict the fact that

∥∥G(v)∥∥
C1 < R. So, we can apply homotopy invariance

property and those of normalisation of Leray-Schauder ’s degree to obtain:

dLS
[
IdC1 −G,BC1(R), 0

]
= dLS [IdC1 ,BC1(R), 0] = 1.

Since G is a completely continuous operator associated to (1.1), we have G = G on Πα,β. Therefore

dLS [IdC1 −G,BC1(R), 0] = 1.

Finally, by Claims 3.4 and 3.5, we obtain the proof of Theorem 3.1

3.2. Existence of extremal solutions

Theorem 3.6. If the hypotheses (Hε), (Hf), (HΦ), and (HB) hold, then there exist two monotones sequences (αk)k>1
and (βk)k>1 in C1(Ω) such that φ(α ′k) ∈W1,p(Ω) and φ(β ′k) ∈W1,p(Ω) that converge uniformly in C1(Ω) to
η and w solutions of problem (1.1) and verify inequalities

α(t) 6 α1(t) 6 α2(t) 6 · · · 6 αk(t) 6 η 6 w 6 βk(t) 6 · · · 6 β2(t) 6 β1(t) 6 β(t). (3.11)

Proof. For all v ∈ U fixed, we consider the following problem

(Pv)

{
−(Φ(u ′(t))) ′ +φp(u(t)) = f(t, v(t)) a.e. on Ω = [0, T ],
u ′(0) ∈ B1(u(0)), −u ′(T) ∈ B2(u(T)).

(3.12)

Then, by Lemma 2.9, the problem (3.12) admits an unique solution uv. Let L : U → U be the operator
defined by ∀v ∈ U, Lv = uv, where uv is the unique solution of problem (Pv). Let us show that

(i) α 6 Lα;
(ii) β > Lβ;

(iii) L is nondecreasing.
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In order to prove (i), we set Lα = α1. We have{
−(Φ(α ′(t))) ′ +φp(α(t)) 6 f(t,α(t))a.e. on Ω = [0, T ],
α ′(0) ∈ B1(α(0)) + R+, −α ′(T) ∈ B2(α(T)) + R+,{
−(Φ(β ′(t))) ′ +φp(β(t)) > f(t,β(t)) > f(t,α(t)) a.e. on Ω = [0, T ]
β ′(0) ∈ B1(β(0)) − R+, −β ′(T) ∈ B2(β(T)) − R+.

So α and β are lower and upper solutions of (Pα) such that α(t) 6 β(t),∀t ∈ Ω. Then by the Lemma 2.9,
α1 is the unique solution of (Pα) such that α1 ∈ U. In order to prove (ii), we set Lβ = β1. We have{

−(Φ(α ′(t))) ′ +φp(α(t)) 6 f(t,α(t)) 6 f(t,β(t)) a.e. on Ω = [0, T ],
α ′(0) ∈ B1(α(0)) + R+, −α ′(T) ∈ B2(α(T)) + R+,{
−(Φ(β ′(t))) ′ +φp(β(t)) > f(t,β(t)) a.e. on Ω = [0, T ],
β ′(0) ∈ B1(β(0)) − R+, −β ′(T) ∈ B2(β(T)) − R+.

So α and β are lower and upper solutions (Pβ) such that α(t) 6 β(t),∀t ∈ Ω. Then by Lemma 2.9, β1 is
the unique the solution of (Pβ) such that β1 ∈ U.

Let us show (iii). Let π, v2 ∈ U such that v1 6 v2. We set Lvi = ui,∀i ∈ {1; 2}. We have{
−
(
Φ(u ′1(t))

) ′
+φp(u1(t)) 6 f(t, v1(t)) 6 f(t, v2(t)) a.e. on Ω = [0, T ],

u ′1(0) ∈ B1(u1(0)) + R+, −u ′1(T) ∈ B2(u1(T)) + R+,{
−(Φ(β ′(t))) ′ +φp(β(t)) > f(t,β(t)) > f(t, v2(t)) a.e. on Ω = [0, T ],
β ′(0) ∈ B1(β(0)) − R+, −β ′(T) ∈ B2(β(T)) − R+.

So u1 and β are lower and upper solutions of the problem (Pv2) such that u1(t) 6 β(t),∀t ∈ Ω. By Lemma
2.9, u2 the unique solution of (Pv2) is such that u2 ∈ [u1,β]. Thus L is non decreasing on U. We define the
sequences (αk)k>1 and (βk)k>1 as

α0 = α,α1 = Lα = Lα0, . . . ,αk+1 = Lαk,k = 1, 2, . . . ,
β0 = β,β1 = Lβ = Lβ0, . . . ,βk+1 = Lβk,k = 1, 2, . . . .

By induction, αk(t) 6 βk(t) for all k ∈N and for all t ∈ Ω. Then

α 6 α1 6 α2 6 · · · 6 αk 6 βk 6 . . .β2 6 β1 6 β

in [0, T ]. We have, for all k, uk ∈ {αk,βk}.
Let us show that {uk}k>1 is bounded in W1,p(Ω). Let us consider the following sequence of problems

−(Φ(u ′n(t)))
′ +Φp(un(t)) = h(t) a.e. on Ω = [0, T ]. (3.13)

By integration by parts, we obtain

−Φ(u ′n(T))un(T) +Φ(u ′n(0))un(0) +
∫T

0
Φ(u ′n(t))u

′
n(t)dt+

∫T
0
Φp(un(t))un(t)dt = 〈h(t),un〉p . (3.14)

Since un ∈ D, we have u ′n(0) ∈ B1(un(0)) and −u ′n(T) ∈ B1(un(T)) for all n > 1. We recall that
(0, 0) ∈ GrBi, i = 1, 2, then

u ′n(0)un(0) > 0 and u ′n(T)un(T) 6 0. (3.15)

Moreover, the map Φ being increasing, we have

Φ(u ′n(0))u
′
n(0) > 0 and Φ(u ′n(T))u

′
n(T) > 0. (3.16)
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From (3.15) and (3.16), we obtain

Φ(u ′n(0))un(0) > 0 and Φ(u ′n(T))un(T) 6 0. (3.17)

From (3.14) and (3.17), we infer that :

〈h(t),un〉2 >
∫T

0
Φ(u ′n(t))u

′
n(t)dt+

∫T
0
Φp(un(t))un(t)dt. (3.18)

By hypothesis (b) on Φ, we have∫T
0
Φ(u ′n(t))u

′
n(t)dt+

∫T
0
Φp(un(t))un(t)dt >

∫T
0

(
η1
∣∣u ′n(t)∣∣p + |un(t)|

p)dt. (3.19)

It follows from (3.18) and (3.19) that

〈h(t),un〉p >
∫T

0

(
η1
∣∣u ′n(t)∣∣p + |un(t)|

p)dt.
Whence

‖un‖p−1 6 η7 for some η7 > 0.

Therefore the sequence {un}n>1 ⊆ W1,p ((0, T)) is bounded. Passing to the subsequence, if necessary, it
converges weakly in W1,p(Ω). Due to the compact embedding of W1,p(Ω) in C(Ω), the sequence {uk}k>1
converges strongly in C(Ω). Furthermore, it follows directly from (3.13) that the sequence

{
(φ(u ′k))

′}
k>1

is bounded in Lq(Ω). Then, by integration, the sequence
{
φ(u ′k)

}
is bounded in Lq(Ω). Therefore, the

sequence
{
φ(u ′k)

}
k>1 is bounded in W1,q(Ω). Then, the sequence

{
φ(u ′k)

}
k>1 admits a subsequence

which converges weakly inW1,q(Ω). Due to the compact embedding ofW1,q(Ω) in C(Ω), this subsequence{
φ(u ′k)

}
k>1 converges strongly to φ(u ′) in C(Ω). Since φ is a homeomorphism, φ−1 exists. Then, acting

by φ−1, we have that the sequence
{
u ′k
}
k>1 converges strongly to u ′ in C(Ω). Furthermore, the sequence

{φp(uk)}k>1 converges strongly to φp(u) in C(Ω).
Let us set v = limk→∞ αk and w = limk→∞ βk. Then, v,w ∈ C(Ω) and v ′ = limn→∞ α ′k, w ′ =

limn→∞ β ′k. For all k ∈N and for all uk ∈ {αk,βk}, we consider the sequence of problems{
−
(
Φ(u ′k(t))

) ′
+φp(uk(t)) = f(t,uk(t)) a.e. on Ω = [0, T ],

u ′k(0) ∈ B1(uk(0)), −u ′k(T) ∈ B2(uk(T)).

Passing to the limit as k → +∞ , we see that v and w are some solutions of the problem (1.1). Also we
have, for k ∈N∗,

α 6 α1 6 α2 6 · · · 6 αk 6 v 6 w 6 βk 6 · · ·β2 6 β1 6 β on Ω.

4. Existence of solutions and extremal solutions with non well-ordered lower and upper solutions

4.1. Existence results
Theorem 4.1. Suppose that there exist a lower solution α and an upper solution β of (1.1) such that

∃t ∈ [0, T ] such that α(t) > β(t). (4.1)

Then the problem (1.1) admits at least one solution u, such that

min {α(tu),β(tu)} 6 u(tu) 6 max {α(tu),β(tu)} for some tu ∈ [0, T ] (4.2)

and
‖u‖∞ 6 max {‖α‖∞ , ‖β‖∞}+MT . (4.3)
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Proof. We set λ = max {‖α‖∞ , ‖β‖∞}. We consider the function f∗ : [0, T ]×R2 → R, for i = 1, 2, and
multifunctions B∗i : R→ P(R) defined, respectively, by

f∗(t,u) =


2, if u > λ+ 1,
(1 + λ− u) [f(t,u)] + 2(u− λ), if λ < u 6 λ+ 1,
f(t,u), if − λ 6 u 6 λ,
(1 + λ+ u) [f(t,u)] + 2(u+ λ), if − λ− 1 6 u < −λ,
−2, if u < −λ− 1,

and
B∗i = Bi +Ai,

where

Ai(u) =


c∗i (u) + 1, if u > λ+ 1,
(c∗i (u) + 1)(u− λ), if λ < u 6 λ+ 1,
0, if − λ 6 u 6 λ,
(c∗i (u) + 1)(u+ λ), if − λ− 1 6 u < −λ,
−(c∗i (u) + 1), if u < −λ− 1,

Bi(u) = [j ′(u−); j ′(u+)], and c∗i (u) = max {|j ′(u−)|, |j ′(u+)|} a positive real number which depends on
u. For i = 1, 2, Ai is maximal monotone and int (Ai) ∩ Bi = ∅. Then, the multifunction B∗i is maximal
monotone. We also have 0 ∈ B∗1(0) ∩ B∗2(0). Furthermore, f∗ is Caratheodory function. We consider the
following modified problem{

−(Φ(u ′(t))) ′ +Φp(u(t)) = εf
∗(t,u(t)) a.e. on [0, T ],

u ′(0) ∈ B∗1(u(0)),−u ′(T) ∈ B∗2(u(T)).
(4.4)

We can verified that α is a lower solution and β is a upper solution of (4.4). Let β̃, α̃ : R→ R defined by
β̃(t) = λ+ 2 and α̃(t) = −λ− 2,∀t ∈ R. We have

−
(
Φ(β̃ ′(t))

) ′
+Φp(β̃(t)) = (λ+ 2)2 > 2 = f∗(t, β̃(t)) a.e. on [0, T ], β̃ ′(0) = 0, and − β̃ ′(T) = 0.

Since B∗1(β̃(0)) and B∗2(β̃(T)) are some closed interval of R∗+, we can find ei ∈ R∗+, for i = 1, 2, such that

0 = β̃ ′(0) ∈ B∗2(β̃(0)) − e0 and 0 = −β̃ ′(T) ∈ B∗2(β̃(T)) − eT .

Therefore, β̃ is a upper solution of (4.4),

−
(
Φ(α̃ ′(t))

) ′
+Φp(α̃(t)) = − (λ+ 2)2 < −2 = f∗(t, α̃(t)) a.e. on [0, T ], α̃ ′(0) = 0, and − α̃ ′(T) = 0.

Since B∗1(α̃(0)) and B∗2(α̃(T)) are some closed interval of R∗+, we can find li ∈ R∗+, for i = 1, 2, such that

0 = α̃ ′(0) ∈ B∗2(α̃(0)) + l0 and 0 = −α̃ ′(T) ∈ B∗2(α̃(T)) + lT .

Therefore, α̃ is a lower solution of (4.4). Furthermore,

∀t ∈ [0, T ], α̃(t) 6 min {α(t),β(t)} 6 max {α(t),β(t)} 6 β̃(t).

Let us introduce the sets

Πα̃,β =
{
u ∈ C1 : ∀t ∈ [0, T ], α̃(t) < u(t) < β(t)

}
, Π

α,β̃ =
{
u ∈ C1 : ∀t ∈ [0, T ],α(t) < u(t) < β̃(t)

}
,

and
Π
α̃,β̃ =

{
u ∈ C1 : ∀t ∈ [0, T ], α̃(t) < u(t) < β̃(t)

}
.
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By using the definition (4.1), we obtain
Πα̃,β ∩Πα,β̃ = ∅.

Also we have
Πα̃,β ∪Πα,β̃ ⊂ Πα̃,β̃.

Let us consider
Π = Π

α̃,β̃ \
(
Πα̃,β ∪Πα,β̃

)
.

Then
Π =

{
u ∈ Π

α̃,β̃ : ∃(t1, t2) ∈ [0, T ]2 such that β(t1) < u(t1) and u(t2) < α(t2)
}

and
∂Π
α̃,β̃ = ∂Π

α,β̃ ∪ ∂Πα,β̃ ∪ ∂Π.

Since all constant functions between β(̃t) and α(̃t) are into Π, Π is non-empty. Let G∗ be the fixed point
operator associated with problem (4.4). Suppose that there exists u ∈ ∂Π such that G∗(u) = u and
‖u‖∞ = λ+ 2. There exists t0 ∈ [0, T ] such that u(t0) = max[0,T ] u = λ+ 2 or u(t0) = min[0,T ] u = −λ− 2.
Let us consider the case u(t0) = max[0,T ] u = λ + 2. If t0 ∈ ]0, T [, then u ′(t0) = 0 and there exists
ε > 0 such that u(t) > λ + 1 for all t ∈ [t0, t0 + ε]. Moreover −(Φ(u ′(t))) ′ +Φp(u(t)) = −2. Then
(Φ(u ′(t))) ′ = 2 + |u(t)|p. Whence, Φ(u ′(t)) =

∫t
t0
(Φ(u ′(t))) ′ dt > 0, for all t ∈ [t0, t0 + ε]. It follows that

u is increasing on [t0, t0 + ε]. That’s contradict the existence of t0. If t = 0,u ′(0) = 0, and we obtain the
contradiction 0 ∈ B∗1(u(0)) ⊂ R∗+. If t0 = T ,u ′(T) = 0, and we obtain the contradiction 0 ∈ B∗2(u(T)) ⊂ R∗+.
In the similar fashion, we obtain contradiction with the case u(t0) = min[0,T ] u = −λ− 2. Therefore

[u ∈ ∂Π,G∗(u) = u]⇒ ‖u‖∞ < λ+ 2. (4.5)

Let u ∈ ∂Π such that G∗(u) = u. It becomes from (4.5) that ‖u‖∞ < λ+ 2, and u ∈ ∂Πα̃,β ∪ ∂Πα,β̃. It
follows, there exists t0 ∈ [0, T ] such that u(t0) = α(t0) or u(t0) = β(t0), that implies

|u(t0)| < max {‖α‖∞ , ‖β‖∞} .

We infer that
[u ∈ ∂Π,G∗(u) = u⇒ ‖u‖∞ < λ] . (4.6)

We have two cases.

1st case: We assume there exists u ∈ ∂Π such that G∗(u) = u. From (4.6), we infer that ‖u‖∞ < λ, that
implies that u is a solution of (1.1), and (4.2) and (4.3) are satisfied. Then, there exists σ ∈ [0, T ] such
that u(σ) = α(σ) or u(σ) = β(σ).

2nd case: We assume that G∗(u) 6= u for all u ∈ ∂Π. Then, as in the proof of Theorem 3.1, for R >
max {‖α‖∞, ‖β‖∞}, we have:

dLS

(
IdC1 −G∗,Πα̃,β̃, 0

)
= dLS (IdC1 −G∗,BC1(R), 0) = dLS (IdC1 ,BC1(R), 0) = 1.

By additivity property of Leray Schauder’s degree, we infer that:

dLS (IdC1 −G∗,Π, 0)

= dLS

(
IdC1 −G∗,Πα̃,β̃, 0

)
− dLS

(
IdC1 −G∗,Πα,β̃, 0

)
− dLS

(
IdC1 −G∗,Πα̃,β, 0

)
= −1.

So, there exists u ∈ Π such that G∗(u) = u and ‖u‖∞ < λ. Therefore u is solution of (1.1), and (4.2)
and (4.3) are satisfied.
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4.2. Existence of extremal solutions

Theorem 4.2. If the hypotheses (Hf), (HΦ), and (HB) hold, then there exists a sequence of lower-solutions (αk)k>1
and a sequence of upper-solutions (βk)k>1 in C1(Ω) of (1.1) such that

∃t ∈ [0, T ] such that αk(t) > βk(t).

Then there exist two monotones sequences (min {αk,βk})k>1 and (max {αk,βk})k>1) in C1(Ω) such that Φ(α ′k),
Φ(β ′k) ∈W1,p(Ω), which converge uniformly in C1(Ω) to η and w solutions of problem (1.1) and verify inequlities

min {α,β} 6 min {α1,β1} 6 · · · 6 min {αk,βk} < η
6 w < max {αk,βk} 6 · · · 6 max {α2,β2} 6 max {α1,β1} 6 max {α,β} .

Proof. Let us introduce the following set

U∗ = [min {α,β} , max {α,β}] =
{
u ∈W1,p(Ω) : min {α(t),β(t)} 6 u(t) 6 max {α(t),β} on Ω

}
.

For all v ∈ U∗ fixed, we consider the following problem

(Pv)

{
−(Φ(u ′(t))) ′ +φp(u(t)) = εf(t, v(t)) a.e. on Ω = [0, T ],
u ′(0) ∈ B1(u(0)), −u ′(T) ∈ B2(u(T)).

(4.7)

Then, by Lemma 2.9, the problem (4.7) admits an unique solution uv. Let L∗ : U∗ → U∗ be the operator
defined by ∀v ∈ U∗, L∗v = uv, where uv is the unique solution of problem (Pv). When α and β are well
ordered, for some t ∈ Ω, L∗ coincides with L. Then by Theorems 3.1 and 3.6, the problem admits a solution
and some extremal solutions.

Now suppose that α and β are in reversed order for some t ∈ Ω. Let us introduce the following set

Λ = {t ∈ Ω : β(t) < u(t) < α(t)} .

Let us show that

(i) α > L∗α;
(ii) β 6 L∗β;

(iii) L∗ is decreasing.

In order to prove (i), we set L∗α = α1. We have{
−(Φ(β ′(t))) ′ +φp(β(t)) > −f(t,β(t)) > −f(t,α(t)) a.e. on Λ,
β ′(0) ∈ B1(β(0)) − R+, −β ′(T) ∈ B2(β(T)) − R+,{
−(Φ(α ′(t))) ′ +φp(α(t)) 6 −f(t,α(t)) a.e. on Λ,
α ′(0) ∈ B1(α(0)) + R+, −α ′(T) ∈ B2(α(T)) + R+.

So α and β are lower and upper solution of (Pα) such that α(t) > β(t), on Λ. Then by Lemma 2.9, α1 is
the unique solution of (Pα) such that α1 ∈ U∗. In order to prove (ii), we set L∗β = β1. We have{

−(Φ(α ′(t))) ′ +φp(α(t)) 6 −f(t,α(t)) < −f(t,β(t)) a.e. on Λ,
α ′(0) ∈ B1(α(0)) + R+, −α ′(T) ∈ B2(α(T) + R+,{
−(Φ(β ′(t))) ′ +φp(β(t)) > −f(t,β(t)) a.e. on A,
β ′(0) ∈ B1(β(0)) − R+, −β ′(T) ∈ B2(β(T)) − R+.

So α and β are lower and upper solutions (Pβ) such that α(t) > β(t), on Λ. Then by Lemma 2.9, β1 is the
unique solution of (Pβ) such that β1 ∈ U∗.
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Let us show (iii). Let v1, v2 ∈ U∗ such that v1 6 v2. We set Lvi = ui,∀i ∈ {1; 2}. We have{
−(Φ(α ′(t))) ′ +φp(α(t)) 6 −f(t, v2(t)) a.e. on Λ,
α ′(0) ∈ B1(α(0)) + R+, −α ′(T) ∈ B2(α(T)) + R+,{
−
(
Φ(u ′1(t))

) ′
+φp(u1(t)) > −f(t, v1(t)) > −f(t, v2(t)) a.e. on Λ,

u ′1(0) ∈ B1(u1(0)) + R+, −u ′1(T) ∈ B2(u1(T)) + R+.

So α and u1 are lower and upper solutions of the problem (Pv2) such that u1(t) > β(t),∀t ∈ Ω. By the
Lemma 2.9, u2 the unique solution of (Pv2) is such that u2 ∈ ]β,u1]. Thus L∗ is decreasing on U∗. Then,
arguing as in the proof of Theorem 3.6, we find two sequences (αk)k>1 and (βk)k>1, which converge
uniformely in C1 (Ω) to η∗ and w∗ solutions of (1.1) such that, for k ∈N∗,

β 6 β1 6 β2 6 · · · 6 βk < η∗ 6 w∗ < αk 6 · · ·α2 6 α1 6 α on Λ. (4.8)

Let us consider the two sequences (min {αk,βk})k>1 and (max {αk,βk})k>1. From (3.11) and (4.8), we
deduce

min {α,β} 6 min {α1,β1} 6 · · · 6 min {αk,βk}
6 max {αk,βk} 6 · · · 6 max {α2,β2} 6 max {α1,β1} 6 max {α,β} on Λ.

We have, for all k ∈ N∗,uk ∈ {min {αk,βk} , max {αk,βk}}. Arguing as in the proof of Theorem 3.6, it
follows that the sequence (uk)k>1 is bounded. So it admits a subsequence, which converge to a solution u of
problem (1.1). Therefore, the sequences (min {αk,βk})k>1 and (max {αk,βk})k>1 admit some subsequences,
which converge to η = min {η,η∗} and w = max {w,w∗}, respectively. Thus, for k ∈N∗

min {α,β} 6 min {α1,β1} 6 · · · 6 min {αk,βk} < η 6< w

< max {αk,βk} 6 · · · 6 max {α2,β2} 6 max {α1,β1} 6 max {α,β} on Ω.

5. Special cases

For i = 1, 2, let Ii be a real closed interval containing 0. We consider the following indicator function

EIi(x) =

{
0, if x ∈ Ii,
+∞, if otherwise.

We set Bi = ∂EIi , the subdifferential in the sense of convex analysis of EIi , for all i = 1, 2.

1. If Ii = {0}, then Bi(x) = R for all x ∈ R and for all i = 1, 2. Hence, the problem (1.1) becomes the
classical problem of Dirichlet.

2. If Ii = R, then Bi(x) = {0} for all x ∈ R and for all i = 1, 2. Hence, the problem (1.1) becomes the
classical problem of Neumann.

3. If Bi(x) = 1
ai
x,ai 6= 0, for all i = 1, 2, then the problem (1.1) becomes the classical problem of

Sturm-Liouville.

6. Example

Let us consider the following problem −

((
1 +

1

1 + (u ′(t))3

)
(u ′(t))3

) ′
+ (u(t))3 = ε

(
(u(t))3

e3t + 1
+ 1

)
a.e. on Ω = [0, T ],

u ′(0) ∈ B1 (u(0)) , −u ′(T) ∈ B2 (u(T)) .

(6.1)
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Here

Φ(x) =

(
1 +

1
1 + x3

)
x3, Φp(x) = x

3, with p = 4; f(t, x) =
x3

e3t + 1
+ 1.

It easy to check that the hypotheses (HΦ) and (Hf) are satisfied. Suppose that, for i = 1, 2,

Bi(x) =


∅, if x > eT + 1,
R+, if x = eT + 1,
{0} , if x ∈

]
−eT − 1, eT + 1

[
,

R−, if x = −eT − 1,
∅, if x < −eT − 1.

or Bi(x) = ∂EIi(x).

Then hypothesis (HB) is satisfied. Let us set α(t) = 1 and β(t) = 2. We check that α and β are, respectively,
well ordered lower and upper solutions of (6.1). Then, by Theorem 3.1, the problem (6.1) admits a solution
in the functional interval [α,β]. Let us set α(t) = et and β(t) = t + 5. We check that α and β are,
respectively, non well ordered lower and upper solutions of (6.1). Then, by Theorems 4.1 and 4.2, problem
(6.1) admits a solution and extremal solutions in the functional interval [min {α,β} , max {α,β}].

7. Periodic problem

We recall that the problem (1.1) does not contain the periodic problem. However our method can be
used to deal with it. Let us consider the following periodic problem{

−(Φ(u ′(t))) ′ +Φp(u(t)) = f(t, (u(t)) a.e. on Ω = [0, T ],
u(0) = u(T), u ′(0) = (u ′(T),

(7.1)

when the lower and upper solutions are well ordered. We define the set D as

D =
{
u ∈ C1(Ω) : Φ(u ′) ∈W1,q(0, T),u(0) = u(T) and u ′(0) = u ′(T)

}
.

Arguing as in the proof of Lemma 2.9, we prove that the following problem has an unique solution{
−(Φ(u ′(t))) ′ +Φp(u(t)) = h(t) a.e. on Ω = [0, T ],
u(0) = u(T), u ′(0) = (u ′(T).

We replace in this case the auxiliary problem (2.2) by the following nonhomogeneous Dirichlet problem{
−(Φ(u ′(t))) ′ +Φp(u(t)) = h(t) a.e. on Ω = [0, T ],
u(0) = u(T) = a.

It follows that G : C1(Ω)→ D ⊆ C1(Ω) defined by

G(u)(t) = u(0) +
∫t

0
Φ−1 ◦

(
Φ(u ′(0)) −

∫y
0
(εf(s,u(s)) −Φp(u(s)))ds

)
dy,

is completely continuous and so as in the proof of Theorem 3.1, we end up solving the abstract fixed point
problem

u = G(u). (7.2)

Using Leray-Schauder topological degree, we solve (7.2) and show that u ∈ C1 (Ω) is a solution of (1.1)
in the interval U. Finally, arguing as in the proof of Theorem 3.6, we show existence of monotones
sequences (αk)k>1 and (βk)k>1 in C1(Ω) such that φ(α ′k) ∈ W1,p(Ω) and φ(β ′k) ∈ W1,p(Ω), which
converge uniformly in C1(Ω) to η and w solutions of problem (7.1) and verify inequalities

α(t) 6 α1(t) 6 α2(t) 6 · · · 6 αk(t) 6 η 6 w 6 βk(t) 6 · · · 6 β2(t) 6 β1(t) 6 β(t).
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Now, we consider the following periodic problem{
−(Φ(u ′(t))) ′ +Φp(u(t)) = −f(t, (u(t)) a.e. on Ω = [0, T ],
u(0) = u(T), u ′(0) = u ′(T),

(7.3)

when the lower and upper solutions are non well ordered. Then, we consider the following modified
problem: 

−(Φ(u ′(t))) ′ +Φp(u(t)) = f
∗(t,u(t)) ae on Ω = [0, T ],

u(0) = u(T),
u ′(0) = K∗(u(T),u ′(T)),

where f∗ is defined as in the proof of Theorem 4.1 and K∗ : R×R→ R is defined by:

K∗(u,y) =


3, if u > λ+ 1,
(1 + λ− u)y+ 3(u− λ), if λ < u 6 λ+ 1,
y, if − λ 6 u 6 λ,
(1 + λ+ u)y+ 3(u+ λ), if − λ− 1 6 u < −λ,
−3 if u < −λ− 1.

Finally, arguing as in the proof of Theorems 4.1 and 4.2, we obtain the analogous results for the problem
(7.3).
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