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Abstract
The aim of this survey article, is to present in one place the recently published results on SJS-metric spaces, their generaliza-

tions and applications. We start with SJS-metric spaces and study their properties. Then we deal with abstract SJS-topological
spaces induced by SJS-metric and present several classical results including Cantor’s intersection theorem. Next the notion of
sequentially compactness on SJS-metric spaces and properties of sequentially compact SJS-metric spaces are studied. Some
fixed point theorems are obtained for integral type contractive mappings. Finally we prove several new results on fixed point
for rational type contractive mappings, obtain Ekeland’s variational principle on SJS-metric spaces as an application and in the
end also present results regarding best SJS-proximity point with application.
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1. Introduction and Preliminaries

Maurice Fréchet [27] introduced metric spaces in his work ”Sur quelques points du calcul fonctionnel”.
A metric space is a set together with a metric (a real valued distance function between points of the set)
on the set and this metric also induces topological properties like open and closed sets, which lead to
the study of more abstract topological spaces [41]. However soon after the introduction of the concept of
metric spaces by Fréchet in his seminal paper, it was felt by researchers that these conditions of metric
are too abstract and unrealistic. There are two types of extensions/generalizations of a metric; replace
real number set R by some other larger set or relax one of the conditions in the definition of a metric.
There are many attempts in the literature to relax/generalize them by several researchers see probabilistic
metric spaces [49], 2-metric spaces [28], fuzzy metric spaces [40], modular metric space with the Fatou
property [45], generalized D-metric spaces [20, 50], b-metric spaces [16], pseudometric spaces/dislocated
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metric spaces [33], cone metric spaces [34], partial metric spaces [13], generalized cone metric spaces
[4], JS-metric spaces [37], and so on [21, 36]. Recently Beg et al.[6] gave a very general notion of SJS-
metric (see Definition 2.1) which does not satisfy the triangle inequality and symmetry, and studied its
properties with several examples. In this survey article we present all these results on SJS-metric spaces,
their generalizations and applications published in different journals, due to Beg et al. [6–8, 52–54].

First we recall some basic notions and notations for subsequent use.
Let A be a non-empty set and d : A×A→ [0,∞] be a mapping. For any a ∈ A, define the set

C(d,A,a) = {{an} ⊂ A : lim
n→∞d(an,a) = 0}.

Jleli and Samet [37] have given the following definition regarding a generalized metric space.

Definition 1.1 ([37]). Let d : A×A→ [0,∞] be a mapping which satisfies the following conditions:

(i) d(a,b) = 0 implies a = b for all a,b ∈ A;
(ii) for every (a,b) ∈ A×A, we have d(a,b) = d(b,a);

(iii) if (a,b) ∈ A×A and {an} ∈ C(d,A,a), then d(a,b) 6 p lim supn→∞ d(an,b), for some p > 0.

The pair (A,d) is a generalized metric space, also known as JS-metric space.

Jleli and Samet [37] observed that any metric space, b-metric space and dislocated metric spaces are
JS-metric space. Our below example shows that a rectangular metric space [11] may not be a JS-metric
space.

Example 1.2. Let X = R and d : X2 → [0,∞) be defined as follows. d(x,y) = d(y, x) for any x,y ∈ X,
d(x,y) = 0 if x = y and for x 6= y.

d(x,y) =


1
n , if x = 1, y = 1 + 1

n for any n > 2,
1
n2 , if x = 2, y = 1 + 1

n for any n > 2,
3, otherwise.

Then it can be easily verified that (X,d) is a rectangular metric space but it is not a metric space, because

d(1,
3
2
) + d(

3
2

, 2) =
3
4
< 3 = d(1, 2).

Here we see that {1 + 1
n }n>2 ∈ C(d,X, 1) but there exits no C > 0 for which

d(1, 2) 6 C lim sup
n→∞ d(1 +

1
n

, 2).

Hence X is not a JS-metric space.

We now give the definitions of S-metric space and Sb-metric space.

Definition 1.3 ([58]). Let X be a non-empty set and S : X3 → [0,∞) be a function satisfying the following
conditions, for each x,y, z,w ∈ X:

(i) S(x,y, z) = 0 if and only if x = y = z;
(ii) S(x,y, z) 6 S(x, x,w) + S(y,y,w) + S(z, z,w).

The function S is called an S-metric and the pair (X,S) is called an S-metric space.

Definition 1.4 ([51]). Let X be a nonempty set and s > 1 be a given number. Also let a function Sb : X3 →
[0,∞) satisfies the following conditions, for each x,y, z,w ∈ X:

(i) Sb(x,y, z) = 0 if and only if x = y = z;
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(ii) Sb(x,y, z) 6 s[Sb(x, x,w) + Sb(y,y,w) + Sb(z, z,w)].

The pair (X,Sb) is called an Sb-metric space.
A symmetric Sb-metric is a function which satisfies the conditions (i) and (ii) and also the following

condition:
Sb(x, x,y) = Sb(y,y, x)

for all x,y ∈ X.

Definition 1.5 ([48]). Let X be a non-empty set and Sd : X3 → [0,∞) be a mapping which satisfies the
following conditions for all x,y, z,w ∈ X:

(i) Sd(x,y, z) = 0 implies x = y = z;
(ii) Sd(x,y, z) 6 k[Sd(x, x,w) + Sd(y,y,w) + Sd(z, z,w)], where k > 1.

The function Sd is said to be a dislocated Sb-metric and the pair (X,Sd) is called a dislocated Sb-metric
space. In the case when k = 1, Sd is known as the dislocated S-metric.

2. SJS-metric spaces

Menger [49] was the first to propose probabilistic metric spaces, a generalization of metric spaces. Dur-
ing the last six decades a lot of further generalizations/extension of metric spaces was introduced/proposed
by the researchers; 2-metric spaces [28], pseudometric spaces/dislocated metric spaces [33], partial metric
spaces [13], modular metric space with the Fatou property [45], fuzzy metric spaces [40], cone metric
spaces [34], b-metric spaces [16], generalized D-metric spaces [11, 20, 50], generalized cone metric spaces
[4] and so on. Sedghi et al. [58] gave the concept of S-metric spaces by modifying D-metric and G-metric
spaces. Following this Souayan and Mlaiki [62] proposed the concept of Sb-metric spaces as a generaliza-
tion of S-metric spaces. Afterwards Rohen et al. [51] have given the definition of Sb-metric space in a more
generalized way and they renamed the usual Sb-metric space as symmetric Sb-metric space. Recently Jleli
and Samet [37] introduced the idea of JS-metric spaces, which is one of the interesting generalization of
usual metric spaces. They also showed that any standard metric space, b-metric space, dislocated metric
space and modular metric space with the Fatou property are JS-metric space. In this section we continue
to study these efforts to further weaken the hypothesis of a metric. First we present SJS-metric spaces
with examples and study their properties (see [6]). Let X be a nonempty set and J : X3 → [0,∞] be a
function. Let us define the set

S(J,X, x) = {{xn} ⊂ X : lim
n→∞ J(x, x, xn) = 0}

for all x ∈ X.

Definition 2.1. Let X be a nonempty set and J : X3 → [0,∞] satisfies the following conditions:

(J1) J(x,y, z) = 0 implies x = y = z for any x,y, z ∈ X;
(J2) there exists some b > 0 such that for any (x,y, z) ∈ X3 and {zn} ∈ S(J,X, z), we have

J(x,y, z) 6 b lim sup
n→∞ (J(x, x, zn) + J(y,y, zn)).

Then the pair (X, J) is called an SJS-metric space.

Additionally if J also satisfies

(J3) J(x, x,y) = J(y,y, x) for all x,y ∈ X,

then we call it a symmetric SJS-metric space.
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Example 2.2. Let X = R ∪ {−∞,∞} and J : X3 → [0,∞] be defined by J(x,y, z) = |x| + |y| + |z| for all
x,y, z ∈ X, then clearly (J1) is satisfied. For any z 6= 0, S(J,X, z) = ∅. If z = 0, then for {zn} ∈ S(J,X, 0), we
have

J(x,y, 0) 6
1
2

lim sup
n→∞ (J(x, x, zn) + J(y,y, zn))

for all x,y ∈ X. Then (J2) is also satisfied. So (X, J) is an SJS-metric space. Clearly it is not symmetric.

Example 2.3. Let X = R ∪ {−∞,∞} and J : X3 → [0,∞] be defined by J(x,y, z) = |x|+ |y|+ 2|z| for all
x,y, z ∈ X. Clearly the conditions (J1) and (J3) are satisfied. Also one can check that for any x,y, z ∈ X

J(x,y, z) 6 lim sup
n→∞ (J(x, x, zn) + J(y,y, zn))

for any sequence {zn} ∈ S(J,X, z). In a similar way as in Example 2.2 we can show that condition (J2) is
also satisfied. Hence X is a symmetric SJS-metric space.

Example 2.4. Let X = R∪ {−∞,∞} and J : X3 → [0,∞] be defined by J(x,y, z) = 1 if x,y, z are all finite and
J(x,y, z) = ∞ if any one of x,y, z is ∞. Clearly the conditions (J1) and (J3) are satisfied. Also we see that
for any z ∈ X, S(J,X, z) = ∅. Therefore the condition (J2) is also trivially satisfied. Hence X is a symmetric
SJS-metric space.

Remark 2.5.

(1) Let (X,S) be an S-metric space (see Definition 1.3). Clearly S satisfies condition (J1). Now let (x,y, z) ∈
X3 and {zn} converges to z in (X,S), then S(z, z, zn)→ 0 as n→∞ and from the condition (ii) we have

S(x,y, z) 6 lim sup
n→∞ (S(x, x, zn) + S(y,y, zn)).

Therefore S satisfies (J2) also. Hence X is an SJS-metric space. It is also symmetric.

(2) Let (X,Sb) be an Sb-metric space with coefficient s > 1 (see Definition 1.4). Then clearly Sb satisfies
(J1) and it also satisfies (J2) for b = s. So an Sb-metric space is an SJS-metric space.

(3) If (X,Sd) is a dislocated Sb-metric space with coefficient k > 1 (see Definition 1.5), then clearly Sd
satisfies the condition (J1) and condition (J2) for b = k. So a dislocated Sb-metric space is an SJS-metric
space.

Definition 2.6. Let (X, J) be an SJS-metric space, then a sequence {xn} ⊂ X is said to be convergent to an
element x ∈ X if {xn} ∈ S(J,X, x).

Definition 2.7. Let (X, J) be an SJS-metric space. A sequence {xn} ⊂ X is said to be Cauchy if

lim
n,m→∞ J(xn, xn, xm) = 0.

Definition 2.8. An SJS-metric space is said to be complete if every Cauchy sequence in X is convergent.

Definition 2.9. Let (X, J) be an SJS-metric space and T : X → X be a self mapping. Then T is called
continuous at a ∈ X if for any ε > 0 there exists δ ≡ δ(ε) > 0 such that for any x ∈ X, J(Ta, Ta, Tx) < ε
whenever J(a,a, x) < δ.

Theorem 2.10. In an SJS-metric space (X, J) if {xn} converges to both x and y for x,y ∈ X, then x = y.

Proof. Now,
J(x, x,y) 6 b lim sup

n→∞ (2J(x, x, xn)).

Since xn → x, then limn→∞ J(x, x, xn) = 0, which implies J(x, x,y) = 0 that is x = y.
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Theorem 2.11. Let (X, J) be an SJS-metric space and {xn} ⊂ X converges to some x ∈ X. Then J(x, x, x) = 0.

Proof. Since {xn} converges to x it follows that {xn} ∈ S(J,X, x) and thus

J(x, x, x) 6 b lim sup
n→∞ (2J(x, x, xn)),

which implies J(x, x, x) = 0.

Theorem 2.12. In a symmetric SJS-metric space (X, J) if a Cauchy sequence {xn} has a convergent subsequence,
then {xn} is also convergent in X.

Proof. Let {xn} has a convergent subsequence {xnk} which converges to x ∈ X. Now since (X, J) is sym-
metric, we have

J(x, x, xn) = J(xn, xn, x) 6 b lim sup
k→∞ (2J(xn, xn, xnk)).

Taking n,k→∞ we have limn→∞ J(x, x, xn) = 0. So {xn} converges to x.

Theorem 2.13. In an SJS-metric space (X, J) if T is continuous at a ∈ X, then for any sequence {xn} ∈ S(J,X,a)
implies {Txn} ∈ S(J,X, Ta).

Proof. Let ε > 0 be given. Since T is continuous at a, then for ε > 0 there exists δ > 0 such that
J(a,a, x) < δ implies J(Ta, Ta, Tx) < ε.

As {xn} converges to ′a′, so for δ > 0 there exists N ∈ N such that J(a,a, xn) < δ for all n > N.
Therefore for any n > N, J(Ta, Ta, Txn) < ε and thus Txn → Ta as n→∞.

3. SJS-topological spaces

In this section we discuss SJS-topological spaces induced by SJS-metric and prove several classical
theorems including Cantor’s intersection theorem in this setting (see [6]).

Definition 3.1. Let (X, J) be an SJS-metric space. The open and closed ball of center x ∈ X and radius
r > 0 in X are defined as

BJ(x, r) = {y ∈ X : J(x, x,y) < r}, BJ[x, r] = {y ∈ X : J(x, x,y) 6 r}.

Remark 3.2. It may happen that in an SJS-metric space X, x /∈ BJ(x, r) for some r > 0 and x ∈ X. In Example
2.2 if we take x = 1 and r = 2, then J(1, 1, 1) = 3 and therefore 1 /∈ BJ(1, 2).

Theorem 3.3. Let (X, J) be an SJS-metric space. Let τ = {∅} ∪ {U( 6= ∅) ⊂ X : for any x ∈ U there exists r > 0
such that BJ(x, r) ⊂ U}. Then τ forms a topology on X, called the topology induced by J and (X, τ) is said to be a
SJS-topological space.

Proof. Clearly X ∈ τ. Now let {Gα}α∈Λ, Λ being an indexing set, be a collection of members of τ and
G = ∪α∈ΛGα. If x ∈ G, then there exists some β ∈ Λ such that x ∈ Gβ. So there exists r > 0 such that
BJ(x, r) ⊂ Gβ ⊂ G. Hence G ∈ τ.

Also let G,H ∈ τ and y ∈ G∩H. Then there exist r1, r2 > 0 such that BJ(y, r1) ⊂ G and BJ(y, r2) ⊂ H.
If we take r = min{r1, r2}, then we have BJ(y, r) ⊂ G∩H and so G∩H ∈ τ. Therefore τ forms a topology
on X.

Definition 3.4. Let (X, J) be an SJS-topological space and F ⊂ X. Then F is said to be closed if there exists
an open set U ⊂ X such that F = Uc.

Theorem 3.5. Let (X, J) be an SJS-topological space and F ⊂ X be closed. Let {xn} ⊂ F be such that {xn} ∈
S(J,X, x), then x ∈ F.
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Proof. If possible let x /∈ F. Then x ∈ Fc = U, where U is open. So there exists r > 0 such that BJ(x, r) ⊂ U.
Now limn→∞ J(x, x, xn) = 0 so for r > 0 there exists N ∈ N such that J(x, x, xn) < r whenever n > N.
Thus xn ∈ BJ(x, r) ⊂ U for all n > N, a contradiction. Hence x ∈ F.

Theorem 3.6. Let (X, J) be an SJS-topological space and F ⊂ X be closed. If X is complete, then (F, JF) is also
complete.

Proof. Let {xn} ⊂ F be Cauchy in F. Since X is complete and {xn} is Cauchy in X also, there exists z ∈ X
such that {xn} ∈ S(J,X, z). As F is closed, then by Theorem 3.5 we have z ∈ F. Thus {xn} is convergent in F.
Therefore F is complete.

Theorem 3.7. Let (X, J) be an SJS-topological space and T be continuous self mapping on X. Then for any open set
U, T−1(U) is open.

Proof. Let U be any open set in X, if T−1(U) = ∅, then we are done. So let T−1(U) 6= ∅ and a ∈ T−1(U).
Then Ta ∈ U and since U is open there exists ε > 0 such that BJ(Ta, ε) ⊂ U. T is continuous at ′a′ so
there exists δ > 0 such that J(x, x,a) < δ implies J(Tx, Tx, Ta) < ε. Therefore T(BJ(a, δ)) ⊂ BJ(Ta, ε) ⊂ U
implying that BJ(a, δ) ⊂ T−1(U). Hence T−1(U) is open.

Definition 3.8. Let (X, J) be an SJS-metric space and A ⊂ X. Then diam(A) = sup{J(a,a,b) : a,b ∈ X}.

Definition 3.9. In an SJS-topological space (X, J), a sequence {Fn} of subsets of X is said to be decreasing
if F1 ⊃ F2 ⊃ F3 ⊃ ... .

Following theorem gives conditions under which the intersection of such a sequence is non empty.

Theorem 3.10 (Cantor’s intersection property). Let (X, J) be a complete SJS-metric space and {Fn} be a decreas-
ing sequence of nonempty closed subsets of X such that diam(Fn) → 0 as n → ∞. Then the intersection ∩∞n=1Fn
contains exactly one point.

Proof. Let xn ∈ Fn be arbitrary for all n ∈ N. Since {Fn} is decreasing, we have {xn, xn+1, . . .} ⊂ Fn for all
n ∈N.

Now for any n,m ∈ N with n,m > k we have J(xn, xn, xm) 6 diam(Fk), k > 1. Let ε > 0 be given.
Then there exists some p ∈N such that diam(Fp) < ε since diam(Fn)→ 0 as n→∞. From this it follows
that J(xn, xn, xm) < ε whenever n,m > p. So {xn} is Cauchy in X. By the completeness of X there exists
z ∈ X such that {xn} ∈ S(J,X, z). Since {xn, xn+1, . . .} ⊂ Fn and Fn is closed for each n ∈N, using Theorem
3.5 we have z ∈ ∩∞n=1Fn.

Next we prove the uniqueness of z. Let y ∈ ∩∞n=1Fn be another point, then J(z, z,y) > 0. As diam(Fn)→
0, there exists N0 ∈N such that

diam(Fn) < J(z, z,y) 6 diam(Fn)

for all n > N0, a contradiction. Hence ∩∞n=1Fn = {z} and this completes the proof of our theorem.

Definition 3.11. Let (X, J) be an SJS-metric space and A( 6= ∅) ⊂ X. Then a closed set F (if exists) is said
to be the closure of A if it is largest which satisfies A ⊂ F ⊂ A ∪ {x ∈ X : there exists {xn} ⊂ A such that
{xn} ∈ S(X, J, x)}. We denote F as A.

Remark 3.12. If (X, J) is an SJS-metric space and A( 6= ∅) ⊂ X is closed, then by Theorem 3.5 we have A = A.

Theorem 3.13. Let (X, J) be an SJS-metric space and A( 6= ∅) ⊂ X. Then {x ∈ X : there exists {xn} ⊂ A such that
{xn} ∈ S(X, J, x)} = {x ∈ X : for all r > 0,BJ(x, r)∩A 6= ∅}.
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Proof. Let y ∈ {x ∈ X : for all r > 0,BJ(x, r) ∩A 6= ∅}. Then BJ(y, 1
n) ∩A 6= ∅ for all n ∈ N. So there exists

yn ∈ BJ(y, 1
n) ∩A for all n ∈ N and we have, {yn} ∈ S(X, J,y). Thus y ∈ {x ∈ X : there exists {xn} ⊂ A

such that {xn} ∈ S(X, J, x)}.
Conversely let, z ∈ {x ∈ X : there exists {xn} ⊂ A such that {xn} ∈ S(X, J, x)}. Then there exists {zn} ⊂ A

such that J(z, z, zn)→ 0 as n→∞. Let us choose a r > 0. Then there exists m ∈N such that zn ∈ BJ(z, r)
for all n > m. So BJ(z, r)∩A 6= ∅. Hence z ∈ {x ∈ X : for all r > 0,BJ(x, r)∩A 6= ∅}.

Remark 3.14. Clearly from Theorem 3.3 we have A ⊂ A ⊂ A∪ {x ∈ X : for all r > 0,BJ(x, r)∩A 6= ∅}.

Theorem 3.15. Let (X, J) be an SJS-metric space and A,B be two nonempty subsets of X with A ⊂ B. Then A ⊂ B.

Proof. Clearly A and B are largest closed sets, respectively, satisfying the following

A ⊂ A ⊂ A∪ {x ∈ X : there exists {xn} ⊂ A such that {xn} ∈ S(X, J, x)},

B ⊂ B ⊂ B∪ {x ∈ X : there exists {xn} ⊂ B such that {xn} ∈ S(X, J, x)}.

Now, A∪ B ⊂ A∪ B ⊂ (A∪ B)∪ ({x ∈ X : there exists {xn} ⊂ A such that {xn} ∈ S(X, J, x)}∪ {x ∈ X : there
exists {xn} ⊂ B such that {xn} ∈ S(X, J, x)}) implies that B ⊂ A∪B ⊂ B∪ {x ∈ X : there exists {xn} ⊂ B such
that {xn} ∈ S(X, J, x)}. Since A ∪ B is closed, it follows that A ∪ B ⊂ B. Therefore we have A ∪ B = B and
thus A ⊂ B.

Theorem 3.16. Let (X, J) be a symmetric SJS-metric space and A( 6= ∅) ⊂ X for which A exists. Then diam(A) 6
L diam(A), where L = max{1, 2b, 4b2}.

Proof. Let x,y ∈ A. Then we have to consider three cases.

Case 1. If x,y ∈ A, then
J(x, x,y) 6 diam(A). (3.1)

Case 2. If x ∈ A and y ∈ {x ∈ X : there exists {xn} ⊂ A such that {xn} ∈ S(X, J, x)}, then there exists a
sequence {yn} ⊂ A such that {yn} ∈ S(X, J,y) and we have

J(x, x,y) 6 2b lim sup
n→∞ J(x, x,yn) 6 2b diam(A). (3.2)

Case 3. If x,y ∈ {p ∈ X : there exists {pn} ⊂ A such that {pn} ∈ S(X, J,p)}, then there exists sequences
{xn}, {yn} ⊂ A such that {xn} ∈ S(X, J, x), {yn} ∈ S(X, J,y) and we have

J(x, x,y) 6 2b lim sup
n→∞ J(x, x,yn)

= 2b lim sup
n→∞ J(yn,yn, x) 6 2b lim sup

n→∞ (2b lim sup
m→∞ J(yn,yn, xm)) 6 4b2diam(A).

(3.3)

Therefore from (3.1), (3.2), and (3.3) we get diam(A) 6 L diam(A), L = max{1, 2b, 4b2}.

Theorem 3.17 (Converse of Theorem 3.10). Let (X, J) be a symmetric SJS-metric space in which every nonempty
subset has a closure and {Fn} be a decreasing sequence of nonempty closed subsets of X with diam(Fn) → 0 as
n→∞ . If ∩∞n=1Fn contains exactly one point, then X is complete.

Proof. Let {xn} be a Cauchy sequence in X. Let us choose Gn = {xn, xn+1, xn+2, . . .} for all n ∈ N. Since
{xn} is a Cauchy sequence therefore diam(Gn) → 0 as n → ∞. Also {Gn} is a decreasing sequence of
nonempty closed subsets of X (using Theorem 3.15 such that diam(Gn) → 0 as n → ∞ (from Theorem
3.16). Hence from the given condition we see that ∩∞n=1Gn = {z}, z ∈ X.

Now J(z, z, xn) 6 diam(Gn)→ 0 as n→∞. So {xn} is convergent and X is complete.
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Example 3.18. Let us consider the symmetric SJS-metric space given in Example 2.3. Then we have for
any x ∈ X and for any r > 0,

BJ(x, r) =
{
∅, if |x| > r

2
(−(r2 − |x|), (r2 − |, x|)), if |x| < r

2 ,

and

BJ [x, r] =
{
∅, if |x| > r

2
[−(r2 − |x|), (r2 − |, x|)], if |x| 6 r

2 .

Here we see that the topology τ is given byτ = {∅}∪ {B( 6= ∅) : B ⊂ X\{0}}∪ {B( 6= ∅) : 0 ∈ B and there exists
r > 0 such that

(
−r2 , r2

)
⊂ B}.

Clearly any nonempty subset of X containing 0 is closed.
If A( 6= ∅) ⊂ X, 0 /∈ A and there does not exist a sequence {xn} ⊂ A converging to 0 in X, then there

must exists some r > 0 such that 0 ∈
(
−r2 , r2

)
⊂ X\A and therefore we have A is closed. If A( 6= ∅) ⊂ X is

not closed, 0 /∈ A and there exists a sequence {xn} ⊂ A converging to 0 in X, then A = A∪ {0}. So in (X, J)
any nonempty subset of X has closure.

Example 3.19. (Supporting example for Theorem 3.17) Let us consider the symmetric SJS-metric space
given in Example 2.3. Also let {Fn} be a decreasing sequence of nonempty closed subsets of X such that
diam(Fn) → 0 as n → ∞. If 0 /∈ Fm for some m ∈ N. Then 0 /∈ Fk for all k > m. Now let xk ∈ Fk for all
k > m. Then {xm, xm+1, . . .} ⊂ Fm and also J(xk, xk, xk) 6 diam(Fk) → 0 as m 6 k → ∞. Thus |xk| → 0
as k→∞ and we get J(0, 0, xk) = 2|xk|→ 0 as m 6 k→∞. Since Fm is closed so by Theorem 3.5 we get
0 ∈ Fm, a contradiction.

Therefore 0 ∈ Fn for all n ∈ N. Now if t( 6= 0) ∈ ∩∞n=1Fn, then J(t, t, t) 6 diam(Fn) → 0 as n → ∞
implying that t = 0, a contradiction. Therefore ∩∞n=1Fn = {0}. Here we see that (X, J) is complete.

The condition, SJS-metric space X is symmetric is a sufficient condition in Theorem 3.17. Which can
be shown from our next example.

Example 3.20. If we consider the SJS-metric space given in Example 2.2, then it is not symmetric and the
topology τ is given by τ = {∅} ∪ {B( 6= ∅) : B ⊂ X\{0}} ∪ {B( 6= ∅) : 0 ∈ B and there exists r > 0 such that
0 ∈ (−r, r) ⊂ B}. Clearly any nonempty subset of X containing 0 is closed. If A( 6= ∅) ⊂ X, 0 /∈ A and
there does not exist a sequence {xn} ⊂ A converging to 0 in X, then there must exists some r > 0 such
that 0 ∈ (−r, r) ⊂ X\A and therefore we have A is closed. If A( 6= ∅) ⊂ X is not closed, 0 /∈ A and there
exists a sequence {xn} ⊂ A converging to 0 in X, then A = A ∪ {0}. So in (X, J) any nonempty subset of X
has closure and we can prove that for any decreasing sequence {Fn} of nonempty closed subsets of X such
that diam(Fn)→ 0 as n→∞, ∩∞n=1Fn = {0}, in a similar way as in Example 3.18.

Definition 3.21. Let (X, J) be an SJS-metric space and A( 6= ∅) ⊂ X. Then int(A) is the largest open set
contained in A.

Definition 3.22. Let (X, J) be an SJS-metric space. A subset A of X is said to be nowhere dense in X if A
exists and int(A) = ∅.

Theorem 3.23. Let (X, J) be an SJS-metric space and A( 6= ∅) ⊂ X. If A exists, then int(X\A) = X\A.

Proof. Since A exists, then A ⊂ A ⊂ A ∪ {x ∈ X : there exists {xn} ⊂ A such that {xn} ∈ S(X, J, x)}. Let us
denote the set {x ∈ X : there exists {xn} ⊂ A such that {xn} ∈ S(X, J, x)} by A′. Then (X\A) ∩ (X\A′) ⊂
X\A ⊂ X\A. Now X\A is open so X\A ⊂ int(X\A). If int(X\A) = ∅, then we are done. So let int(X\A) 6= ∅
and x ∈ int(X\A). Then there exists some r > 0 such that BJ(x, r) ⊂ int(X\A) ⊂ X\A. So BJ(x, r) ∩A = ∅
and we have x ∈ X\A′ (using Theorem 3.13). It implies that x ∈ (X\A) ∩ (X\A′) ⊂ X\A. Therefore
int(X\A) ⊂ X\A, which shows that int(X\A) = X\A.
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Theorem 3.24. Let (X, J) be an SJS-metric space and A( 6= ∅) ⊂ X be a nowhere dense set in X. Then for any open
set U 6= ∅ there exists an open set V( 6= ∅) ⊂ U such that V ∩A = ∅.
Proof. Since int(A) = ∅, then A 6= X. So int(X\A) = X\A 6= ∅. Let U be a nonempty open set in X. Then
U ∩ int(X\A) 6= ∅ because if U ∩ int(X\A) = ∅, then U ∩ (X\A) = ∅ implying that U ⊂ A, a contradiction.
Let V = U∩ int(X\A). Then V is open and V ⊂ int(X\A) ⊂ X\A. Therefore V ∩A = ∅.

Definition 3.25. An SJS-metric space (X, J) is said to have property (c) if every nonempty subset of X has
a closure.

Conjecture 3.26. A complete SJS-metric space (X, J) with property (c) is not expressable as a countable
union of nowhere dense sets.

4. Fixed point of integral type contractive mappings

Nowadays fixed point theory is one of the most important and recent trends of research area in math-
ematics for its numerous applications. Fixed point theory has various applications in different branches
of mathematics viz. boundary value problems, nonlinear differential and integral equations, nonlinear
matrix equations, homotopy theory etc. The main purpose of fixed point theory is to deal with several
mappings either of contractive type or nonexpansive type in nature over various generalized spaces and
to investigate the existence of their fixed points therein. Branciari [12] introduced integral type contractive
mappings and proved some fixed point theorems. Following this, researchers have considered various
types of contractive mappings of integral type in several topological spaces and proved fixed point theo-
rems therein [56]. In addition to fixed point, researchers are also interested in investigating the existence
of common fixed points of two or more mappings, coincidence points of mappings and coupled fixed
points of mappings etc. See [19, 26, 30, 31, 38, 63] to make further enrichment of the area of fixed point
theory.

Sedghi et al. [58] introduced the concept of S-metric space by modifying D-metric and G-metric
spaces. Following this article Souayan and Mlaiki [62] introduced the concept of Sb-metric space as a
generalization of S-metric space and established some fixed point theorems on it. Rohen et al. [51]
have given the definition of Sb-metric space in a more generalized way and they renamed the usual Sb-
metric space as symmetric Sb-metric space. Jleli and Samet [37] introduced a generalized metric space
commonly known as JS-metric space, which is one of the interesting generalizations of usual metric
spaces. They showed that any standard metric space, b-metric space [16], dislocated metric space [33]
and Modular metric space with the Fatou property [45] are also JS-metric space. Moreover they have
considered some generalized contractive type mappings in this newly introduced space and proved some
fixed point theorems on it. Following this literature Senapati and Dey [60] proved some coupled fixed
point theorems in the setting of partially ordered JS-metric spaces. Recently Beg et al. [6] introduced the
notion of SJS-metric space and proved several interesting classical results in these spaces. They also gave
examples to show that s-metric spaces and Sb-metric spaces are SJS-metric spaces. The aim of this section
is to give some fixed point theorems together with common fixed point and coupled fixed point theorems
for a class of integral type contractive mappings in the setting of SJS-metric space (see [54]).

Let us consider the following set. Φ = {ϕ : [0,∞) → [0,∞) : ϕ is bounded, Lebesgue-integrable,
summable and for each ε > 0,

∫ε
0 ϕ(t)dt > 0}.

In an SJS-metric space (X, J), dJ : X2 → [0,∞] stands for the function defined as dJ(x,y) = J(x, x,y) for
any x,y ∈ X.

Lemma 4.1. Let ϕ ∈ Φ and {aλ : λ ∈ Λ} ⊂ R+ be a nonempty set. If for some M > 0,
∫aλ

0 ϕ(t)dt 6 M for all
λ ∈ Λ, then

∫a
0 ϕ(t)dt 6M, where a = sup{aλ : λ ∈ Λ} <∞.

Proof. For any n ∈N there exists α ∈ Λ such that aα + 1
n > a. Therefore∫a

0
ϕ(t)dt 6

∫aα+ 1
n

0
ϕ(t)dt =

∫aα
0
ϕ(t)dt+

∫aα+ 1
n

aα

ϕ(t)dt 6M+

∫aα+ 1
n

aα

ϕ(t)dt. (4.1)
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Since ϕ is bounded, there exists L > 0 such that ϕ(t) 6 L for all t ∈ [0,∞). Therefore from (4.1) for any
n ∈N we have

∫a
0 ϕ(t)dt 6M+ L 1

n . Hence
∫a

0 ϕ(t)dt 6M.

Theorem 4.2. Let (X, J) be a complete SJS-metric space and T : X→ X be a self mapping. Also let T satisfies∫dJ(Tx,Ty)

0
ϕ(t)dt 6 k

∫dJ(x,y)

0
ϕ(t)dt (4.2)

for some ϕ ∈ Φ, k ∈ [0, 1) and for all x,y ∈ X. If there exists x0 ∈ X such that δ(J, T , x0) = sup{dJ(T ix0, T jx0) :
i, j > 1} <∞, then T has at least one fixed point in X.

Proof. Now since T satisfies (4.1), for any n ∈N we have∫dJ(Tn+ix0,Tn+jx0)

0
ϕ(t)dt 6 k

∫dJ(Tn−1+ix0,Tn−1+jx0)

0
ϕ(t)dt

for all i, j > 1. Let us take δ(J, Tp+1, x0) = sup{dJ(Tp+ix0, Tp+jx0) : i, j ∈ N} for any non-negative integer
p and for any x0 ∈ X. Then for all i, j > 1,∫dJ(Tn+ix0,Tn+jx0)

0
ϕ(t)dt 6 k

∫δ(J,Tn,x0)

0
ϕ(t)dt.

Since δ(J, Tp+1, x0) 6 δ(J, T , x0) <∞ for any p > 1, from Lemma 4.1 it implies that∫δ(J,Tn+1,x0)

0
ϕ(t)dt 6 k

∫δ(J,Tn,x0)

0
ϕ(t)dt

for any n ∈N. It further implies∫δ(J,Tn+1,x0)

0
ϕ(t)dt 6 kn

∫δ(J,T ,x0)

0
ϕ(t)dt

for all n > 1. Taking n→∞we have
∫δ(J,Tn+1,x0)

0 ϕ(t)dt→ 0. Since ϕ ∈ Φ, we get limn→∞ δ(J, Tn+1, x0) =
0. Now for any 1 6 n < m it follows that dJ(Tnx0, Tmx0) 6 δ(J, Tn, x0) which tends to 0 as n tends to∞. Thus {Tnx0} is a Cauchy sequence in X. By the completeness of X there exists some z ∈ X such that
{Tnx0} ∈ S(J,X, z). Now for any n ∈N we have∫dJ(Tz,Tn+1x0)

0
ϕ(t)dt 6 k

∫dJ(z,Tnx0)

0
ϕ(t)dt.

Taking n→∞ we get
∫dJ(Tz,Tn+1x0)

0 ϕ(t)dt→ 0 and therefore limn→∞ dJ(Tz, Tn+1x0) = 0. From Theorem
2.10 it follows that Tz = z. Hence T has a fixed point in X.

Theorem 4.3. If z and z′ are two fixed points of T in Theorem 4.2 such that dJ(z, z′) <∞, then z = z′.

Proof. Since z and z′ are fixed points of T satisfying condition (4.2), then we obtain∫dJ(z,z′)

0
ϕ(t)dt =

∫dJ(Tz,Tz′)

0
ϕ(t)dt 6 k

∫dJ(z,z′)

0
ϕ(t)dt.

It implies that
∫dJ(z,z′)

0 ϕ(t)dt = 0 as 0 6 k < 1. Since ϕ ∈ Φ we get dJ(z, z′) = 0. Hence z = z′.
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Corollary 4.4. Let (X,S) be a complete S-metric space and T : X→ X satisfies

S(Tx, Tx, Ty) 6 LS(x, x,y)

for all x,y ∈ X, where 0 6 L < 1. Then T has a unique fixed point in X.

Proof. If we set dS(x,y) = S(Tx, Tx, Ty) for all x,y ∈ X, then for any x0 ∈ X and for 1 6 i < j we have

dS(T
ix0, T jx0) = S(T

ix0, T ix0, T jx0)

6 2dS(T ix0, T i+1x0) + S(T
i+1x0, T i+1x0, T jx0)

6 2
[
dS(T

ix0, T i+1x0) + dS(T
i+1x0, T i+2x0)

]
+ S(T i+2x0, T i+2x0, T jx0)

...

6 2[dS(T ix0, T i+1x0) + dS(T
i+1x0, T i+2x0) + · · ·+ dS(T j−2x0, T j−1x0)]

+ S(T j−1x0, T j−1x0, T jx0)

6 2[dS(T ix0, T i+1x0) + dS(T
i+1x0, T i+2x0) + · · ·+ dS(T j−1x0, T jx0)]

6 2[Li + Li+1 + · · ·+ Lj−1]dS(x0.Tx0)

6 2Li
1 − Lj−i

1 − L
dS(x0.Tx0) 6 2

Li

1 − L
dS(x0.Tx0).

For any i, j > 1 we can arrange them as 1 6 i < j and so

sup{dS(T ix0, T jx0) : i, j > 1} 6 sup{2
Li

1 − L
dS(x0.Tx0) : i > 1} =

2LdS(x0, Tx0)

1 − L
<∞.

Now if we take φ(t) = 1 for all t > 0, then we get∫dS(Tx,Ty)

0
ϕ(t)dt 6 L

∫dS(x,y)

0
ϕ(t)dt

for all x,y ∈ X. Also from Remark 2.5 it follows that any S-metric space is a symmetric SJS-metric space.
So all conditions of Theorems 4.2 and 4.3 are satisfied and hence T has a unique fixed point in X.

Remark 4.5. Above Corollary 4.4 is a theorem proved in Sedghi et al. [58].

Proposition 4.6. In an SJS-metric space (X, J) if two mappings T ,S : X → X satisfy T(X) ⊂ S(X), then for any
x0 ∈ X there exists a sequence {yn}, where yn = T(xn) = S(xn+1) for all non-negative integers n.

Proof. Let x0 ∈ X. Then Tx0 ∈ T(X) ⊂ S(X) and therefore there exists x1 ∈ X such that Tx0 = Sx1. Next
Tx1 ∈ T(X) ⊂ S(X), so there exists some x2 ∈ X such that Tx1 = Sx2. Proceeding similarly we can construct
a sequence {yn} in such a way that yn = Txn = Sxn+1 for any n > 0.

Theorem 4.7. Let (X, J) be a complete SJS-metric space and T ,S : X→ X be two commutative mappings such that
S is continuous and T(X) ⊂ S(X). Also let T and S satisfy the following condition:∫dJ(Tx,Ty)

0
ϕ(t)dt 6 k

∫dJ(Sx,Sy)

0
ϕ(t)dt (4.3)

for all x,y ∈ X, where 0 6 k < 1 and ϕ ∈ Φ. If there exists x0 ∈ X such that δ(J, T ,S, x0) = sup{dJ(yi,yj) : i, j ∈
{0}∪N} <∞, then T and S have atleast one common fixed point in X.
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Proof. Let us denote δ(J, T ,S,p+ 1, x0) = sup{dJ(yp+i,yp+j) : i, j ∈ {0}∪N} for any p > 0. Since T satisfies
condition (4.3) we obtain for any n ∈N,∫dJ(yn+i,yn+j)

0
ϕ(t)dt =

∫dJ(Txn+i,Txn+j)
0

ϕ(t)dt 6 k
∫dJ(Sxn+i,Sxn+j)

0
ϕ(t)dt = k

∫dJ(yn−1+i,yn−1+j)

0
ϕ(t)dt

for all i, j > 0, which in turn implies that
∫dJ(yn+i,yn+j)

0 ϕ(t)dt 6 k
∫δ(J,T ,S,n,x0)

0 ϕ(t)dt for all i, j > 0.
Since δ(J, T ,S,n+ 1, x0) 6 δ(J, T ,S, x0) < ∞, then by Lemma 4.1 it follows that

∫δ(J,T ,S,n+1,x0)
0 ϕ(t)dt 6

k
∫δ(J,T ,S,n,x0)

0 ϕ(t)dt for any n > 1. Therefore for any n ∈N we obtain∫δ(J,T ,S,n+1,x0)

0
ϕ(t)dt 6 kn

∫δ(J,T ,S,x0)

0
ϕ(t)dt,

which implies that limn→∞ ∫δ(J,T ,S,n+1,x0)
0 ϕ(t)dt = 0. Since ϕ ∈ Φ it follows that limn→∞ δ(J, T ,S,n+

1, x0) = 0. Now for any 1 6 n < m we have dJ(yn,ym) 6 δ(J, T ,S,n, x0) which tends to 0 as n → ∞.
So {yn} is a Cauchy sequence in X. Since X is complete there exists z ∈ X such that {yn} ∈ S(J,X, z).
So Txn = Sxn+1 → z as n → ∞. Since S is continuous, {Syn} converges to Sz. Now for any n ∈ N

Syn = S(Txn) = T(Sxn) = Tyn−1 and from (4.3) it follows that∫dJ(Tz,Tyn)

0
ϕ(t)dt 6 k

∫dJ(Sz,Syn)

0
ϕ(t)dt.

Therefore limn→∞ dJ(Tz, Tyn) = 0 since ϕ ∈ Φ and we get Tz = Sz. Also using (4.3) we get∫dJ(Tz,T 2z)

0
ϕ(t)dt 6 k

∫dJ(Sz,S(Tz))

0
ϕ(t)dt = k

∫dJ(Sz,T(Sz))

0
ϕ(t)dt = k

∫dJ(Tz,T 2z)

0
ϕ(t)dt.

Since k ∈ [0, 1) we obtain
∫dJ(Tz,T 2z)

0 ϕ(t)dt = 0, which implies T 2z = Tz. Now, S(Tz) = T(Sz) = T(Tz) =
Tz. Hence Tz is a common fixed point of T and S.

Theorem 4.8. If u and u′ are two common fixed points of T and S in Theorem 4.7 such that dJ(u,u′) < ∞, then
u = u′.

Proof. Given that u and u′ are two common fixed points of T and S, so from (4.3) we obtain∫dJ(u,u′)

0
ϕ(t)dt =

∫dJ(Tu,Tu′)

0
ϕ(t)dt 6 k

∫dJ(Su,Su′)

0
ϕ(t)dt = k

∫dJ(u,u′)

0
ϕ(t)dt.

Since 0 6 k < 1 we have
∫dJ(u,u′)

0 ϕ(t)dt = 0 implying that u = u′.

Corollary 4.9. Let T and S be two commuting self mappings of a complete SJS-metric space (X, J). Suppose that S
is continuous, T(X) ⊂ S(X) and sup{dJ(x, Tx) : x ∈ X} < ∞. Also let T and S satisfy the following condition for
some positive integer p: ∫dJ(Tpx,Tpy)

0
ϕ(t)dt 6 k

∫dJ(Sx,Sy)

0
ϕ(t)dt

for all x,y ∈ X, for some k ∈ [0, 1) and ϕ ∈ Φ. If there exists x0 ∈ X such that δ(J, Tp,S, x0) < ∞, then T and S
have atleast one common fixed point in X.

Proof. Clearly Tp and S commute with each other and also Tp(X) ⊂ T(X) ⊂ S(X). So all conditions of
Theorem 4.7 are satisfied and thus Tp and S have a common fixed point in X, say z. Then Tpz = Sz = z.
Since Tp(Tz) = Tz = T(Sz) = S(Tz), it follows that Tz is also a common fixed point of T and S in X. By
the given condition dJ(z, Tz) <∞ and thus from Theorem 4.8 it follows that Tz = z. Hence z is a common
fixed point of T and S.
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Example 4.10. Let us take the complete SJS-metric space (X, J) given in Example 2.2. Let T : X → X be
defined by Tx = x

2 for all x ∈ X and ϕ(t) = t
t+1 for all t ∈ [0,∞). Now for any a > 0 we get∫a

0
ϕ(t)dt =

∫a
0

t

t+ 1
dt = a− log(a+ 1).

Also 1
2 log(a + 1) 6 log( 1

2a + 1) for any a > 0, dJ(x,y) = 2|x| + |y| and dJ(Tx, Ty) = |x| + 1
2 |y| for all

x,y ∈ X. Then clearly ∫dJ(Tx,Ty)

0
ϕ(t)dt 6

1
2

∫dJ(x,y)

0
ϕ(t)dt

for all x,y ∈ X. Also for any x0 ∈ X\{−∞,∞}, xn = Tnx0 = x0
2n for all n > 1 and therefore δ(J, T , x0) 6 3

2 |x0|

and we see that 0 is a fixed point of T in X. Other fixed points of T are −∞ and∞.

Example 4.11. Let us consider X = R ∪ {−∞,∞} and J : X3 → [0,∞] be defined by J(x,y, z) = |x− 1|+
|y− 1|+ |z− 1| for all x,y, z ∈ X. Then it is clearly an SJS-metric space which is not symmetric. Also let
T : X→ X be defined by Tx = x+1

2 for all x ∈ X. If we take ϕ(t) = t2 for all t > 0, then we have∫a
0
ϕ(t)dt =

∫a
0
t2dt =

a3

3
for all a > 0.

Moreover dJ(Tx, Ty) = |x− 1|+ 1
2 |y− 1| and dJ(x,y) = 2|x− 1|+ |y− 1| for all x,y ∈ X. Therefore∫dJ(Tx,Ty)

0
ϕ(t)dt 6

1
4

∫dJ(x,y)

0
ϕ(t)dt

for any x,y ∈ X. For any x0 ∈ X\{−∞,∞}, xn = Tnx0 = x0
2n + 1 − 1

2n for all n > 1 and thus δ(J, T , x0) 6
3
2 |x0 − 1| and we see that 1 is the only finite fixed point of T in X.

Example 4.12. Let us consider X = R ∪ {−∞,∞} and J : X3 → [0,∞] be defined by J(x,y, z) = |y+ z−
2x|+ |x− z|+ |y− z| for all x,y, z ∈ X. Then it is clearly a symmetric SJS-metric space. Also let T : X → X

be defined by Tx = x
4 + 1

4 for all x ∈ X. If we take ϕ(t) = 1 for all t > 0, then we can verify in a similar
way as in Example 4.10 that ∫dJ(Tx,Ty)

0
ϕ(t)dt 6

1
4

∫dJ(x,y)

0
ϕ(t)dt

for any x,y ∈ X. Also for any x0 ∈ X\{−∞,∞}, δ(J, T , x0) 6
|3x0−1|

4 and we have 1
3 is the only finite fixed

point of T in X.

Example 4.13. Let us consider the complete SJS-metric space (X, J) given in Example 2.2. Let us define
T ,S : X→ X by Tx = x

6 and Sx = x
2 for all x ∈ X. Also let us take ϕ defined in Example 4.10. Then for any

x,y ∈ X, T and S satisfy ∫dJ(Tx,Ty)

0
ϕ(t)dt 6

1
3

∫dJ(Sx,Sy)

0
ϕ(t)dt.

Also for any x0 ∈ X\{−∞,∞} the sequence {yn}n>0 is given by yn = x0
2.3n+1 for all n ∈ {0}∪N and we have

δ(J, T ,S, x0) 6 1
2 |x0|. Here 0 is the unique finite common fixed point of T and S in X. Also −∞ and ∞ are

common fixed points of T and S in X.

The notion of coupled fixed point was introduced in 1987 by Guo and Lakshmikantham (see [31]).
Next we prove a coupled fixed point theorem in the setting of SJS-metric space. First we define coupled
fixed point of a mapping.

Definition 4.14. Let X be a non-empty set and f : X2 → X be a mapping. A point (a,b) ∈ X2 is said to be
a coupled fixed point of f if f(a,b) = a and f(b,a) = b.
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For any (a,b) ∈ X2 we can construct two iterative sequences using f in the following way

f2(a,b) = f(f(a,b), f(b,a)), f2(b,a) = f(f(b,a), f(a,b)),

f3(a,b) = f(f2(a,b), f2(b,a)), f3(b,a) = f(f2(b,a), f2(a,b)).

Proceeding in the similar manner we can get

fn+1(a,b) = f(fn(a,b), fn(b,a)), fn+1(b,a) = f(fn(b,a), fn(a,b)),

for any n > 1. So we get two iterative sequences {fn(a,b)} and {fn(b,a)}.

Theorem 4.15. Let (X, J) be a complete SJS-metric space and f : X2 → X . Also let f satisfies∫dJ(f(x,y),f(u,v))

0
ϕ(t)dt 6 k

∫ 1
2 [dJ(x,u)+dJ(y,v)]

0
ϕ(t)dt

for all x,y,u, v ∈ X, for some k ∈ [0, 1) and ϕ ∈ Φ. If there exists (x0,y0) ∈ X2 such that δ(J, f, (x0,y0)) =
{dJ(f

i(x0,y0), fj(x0,y0)) : i, j > 1} < ∞ and δ(J, f, (y0, x0)) = {dJ(f
i(y0, x0), fj(y0, x0)) : i, j > 1} < ∞, then f

has at least one coupled fixed point in X.

Proof. For any n ∈N from the given contractive condition we have∫dJ(fn+i(x0,y0),fn+j(x0,y0))

0
ϕ(t)dt =

∫dJ(f(fn−1+i(x0,y0),fn−1+i(y0,x0)),f(fn−1+j(x0,y0),fn−1+j(y0,x0)))

0
ϕ(t)dt

6 k
∫ 1

2 [dJ(f
n−1+i(x0,y0),fn−1+j(x0,y0))+dJ(f

n−1+i(y0,x0),fn−1+j(y0,x0))]

0
ϕ(t)dt

for any i, j > 1. Let us take δ(J, fq+1, (x0,y0)) = sup{dJ(fq+i(x0,y0), fq+j(x0,y0) : i, j ∈N} and {dJ(f
q+i(y0,

x0), fq+j(y0, x0) : i, j ∈N} for any q > 0. Then for all i, j ∈N,∫dJ(fn+i(x0,y0),fn+j(x0,y0))

0
ϕ(t)dt 6 k

∫ 1
2 [δ(J,f

n,(x0,y0))+δ(J,fn,(y0,x0))]

0
ϕ(t)dt

for any n > 1. Since δ(J, fq+1, (x0,y0)) 6 δ(J, f, (x0,y0)) <∞ for any q > 1, then using Lemma 4.1 we get∫δ(J,fn+1,(x0,y0))

0
ϕ(t)dt 6 k

∫ 1
2 [δ(J,f

n,(x0,y0))+δ(J,fn,(y0,x0))]

0
ϕ(t)dt (4.4)

for any n ∈N. Similarly we can obtain for any n > 1,∫δ(J,fn+1,(y0,x0))

0
ϕ(t)dt 6 k

∫ 1
2 [δ(J,f

n,(x0,y0))+δ(J,fn,(y0,x0))]

0
ϕ(t)dt. (4.5)

Let Mn = max{δ(J, fn, (x0,y0)), δ(J, fn, (y0, x0))} for all n ∈N. Then from (4.4) and (4.5) we have∫Mn+1

0
ϕ(t)dt 6 k

∫Mn

0
ϕ(t)dt

for all n > 1. Then we obtain
∫Mn+1

0 ϕ(t)dt 6 kn
∫M1

0 ϕ(t)dt for all n ∈N. Since M <∞ it follows that

lim
n→∞

∫Mn+1

0
ϕ(t)dt = 0.
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This shows that limn→∞Mn = 0 as ϕ ∈ Φ. Therefore we get limn→∞ δ(J, fn, (x0,y0)) = 0 = limn→∞ δ(J,
fn, (y0, x0)). Now for any 1 6 n < m we get dJ(fn(x0,y0), fm(x0,y0)) 6 δ(J, fn, (x0,y0)) → 0 as n → ∞.
So {fn(x0,y0)} is Cauchy in X and since X is complete so there exists z1 ∈ X such that fn(x0,y0)→ z1 as n
tending to∞. In a similar way we can find z2 ∈ X such that fn(y0, x0)→ z2 as n tending to∞. Now

∫dJ(f(z1,z2),fn(x0,y0))

0
ϕ(t)dt =

∫dJ(f(z1,z2),f(fn−1(x0,y0),fn−1(y0,x0)))

0
ϕ(t)dt

6 k
∫ 1

2 [dJ(z1,fn−1(x0,y0))+dJ(z2,fn−1(y0,x0))]

0
ϕ(t)dt.

Since fn(x0,y0)→ z1 and fn(y0, x0)→ z2 as n→∞ so we obtain

lim
n→∞

∫dJ(f(z1,z2),fn(x0,y0))

0
ϕ(t)dt = 0.

Therefore it follows that limn→∞ fn(x0,y0) = f(z1, z2). Then by Theorem 2.10 we get f(z1, z2) = z1. In a
similar manner we have f(z2, z1) = z2. Hence (z1, z2) is a coupled fixed point of f in X.

Theorem 4.16. If (z1, z2) and (z′1, z′2) are two coupled fixed points of f in Theorem 4.2 such that dJ(z1, z′1) < ∞
and dJ(z2, z′2) <∞, then (z1, z2) = (z′1, z′2).

Proof. Now

∫dJ(z1,z′1)

0
ϕ(t)dt =

∫dJ(f(z1,z2),f(z′1,z′2))

0
ϕ(t)dt 6 k

∫ 1
2 [dJ(z1,z′1)+dJ(z2,z′2)]

0
ϕ(t)dt (4.6)

and also

∫dJ(z2,z′2)

0
ϕ(t)dt =

∫dJ(f(z2,z1),f(z′2,z′1))

0
ϕ(t)dt 6 k

∫ 1
2 [dJ(z1,z′1)+dJ(z2,z′2)]

0
ϕ(t)dt. (4.7)

If we set L = max{dJ(z1, z′1),dJ(z2, z′2)}, then from (4.6) and (4.7) we can get

∫L
0
ϕ(t)dt 6 k

∫L
0
ϕ(t)dt.

Since k ∈ [0, 1), then we obtain
∫L

0 ϕ(t)dt = 0 and therefore L = 0. Then dJ(z1, z′1) = 0 = dJ(z2, z′2) that is
z1 = z′1 and z2 = z′2. Hence (z1, z2) = (z′1, z′2).

Example 4.17. Let us consider the complete SJS-metric space (X, J) defined in Example 2.2 and ϕ as
defined in Example 4.10. Let f : X2 → X be defined by f(x,y) = x+y

3 for all x,y ∈ X. Then for any
x,y,u, v ∈ X we have ∫dJ(f(x,y),f(u,v))

0
ϕ(t)dt 6

2
3

∫ 1
2 [dJ(x,u)+dJ(y,v)]

0
ϕ(t)dt.

For any a,b ∈ X\{−∞,∞} we get δ(J, f, (a,b)) 6 4
3 |a+ b| and also δ(J, f, (b,a)) 6 4

3 |a+ b|. Here we see
that (0, 0), (−∞,−∞) and (∞,∞) are all coupled fixed points of f.
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5. Fixed point on SJS-metric spaces with two metrics

Maia [46] generalized the classical Banach contraction principle in the setting of a metric space with
two metrics and proved that if T is a contraction mapping with respect to some non complete metric on a
nonempty set X, while X is complete with respect to some metric, then T has a fixed point under certain
conditions. In the past few years Maia’s theorem and its applications in study of differential equations
has been generalized in many directions by several researchers, see Agarwal and O’Regan [1], Smet [57],
Khan et al. [42], Rus et al. [55], Soni [61] and references therein. In this section, we consider a nonempty
set X together with two SJS-metrics and prove several fixed point results for Z-contractive map, Geraghty
type contractive map and interpolative Hardy-Rogers type contractive mapping (see[53]). Examples are
presented to high light the significance of newly obtained fixed point theorems.

Definition 5.1 ([15]). A function ζ : [0,∞)2 → R is called a simulation function, if it satisfies the following
conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all s, t > 0;
(ζ3) if {tn} and {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0,

then lim supn→∞ ζ(tn, sn) < 0.

In an SJS-metric space (X, F), DF : X2 → [0,∞] stands for the function defined as DF(x,y) = F(x, x,y)
for any x,y ∈ X. Set of all simulation functions is denoted by Z. Also we denote by (X, F, J) a nonempty
set X together with two SJS- metrics F, J : X3 → [0,∞]. An example of (X, F, J) is as follows.

Example 5.2. Let X = [−∞,∞] and F, J : X3 → ∞ be defined by F(x,y, z) = |x−
√

2|+ |y−
√

2|+ |z−
√

2|
and J(x,y, z) = |x|+ |y|+ |z| for all x,y, z ∈ X. Then (X, F, J) is an SJS-metric space with two SJS-metric,
where both F and J are purely SJS-metrics, neither S-metrics nor Sb-metrics.

Before proving our main fixed point results we need to extend the notion of Z-contractive map [43],
Geraghty contractive map [29] and Interpolative Hardy-Roger type contractive map [39] to the case of an
SJS-metric space.

Definition 5.3. Let T : X → X be a map defined on an SJS-metric space (X, F), such that for any x,y ∈ X,
DF(Tx, Ty) = ∞ ⇒ DF(x,y) = ∞. Then T is said to be an SJS − Z-contractive if there exists ζ ∈ Z such
that for x,y ∈ X, DF(x,y) <∞ implies ζ(DF(Tx, Ty),DF(x,y)) > 0.

Definition 5.4. Let (X, F) be an SJS-metric space. A map T : X → X is said to be an SJS-Geraghty type
contractive map if the map T satisfies the following contractive condition:

DF(Tx, Ty) 6 β(DF(x,y))DF(x,y) for all x,y ∈ X with DF(x,y) > 0,

where β : (0,∞] → [0, 1) is a function, satisfying (a) β(∞) = 0 and (b) for any sequence {tn} ⊂ (0,∞],
β(tn)→ 1 implies tn → 0.

Definition 5.5. Let (X, F) be an SJS-metric space and T : X → X. The map T is said to be an SJS-
Interpolative Hardy-Rogers type contractive map if there exists µ ∈ [0, 1), ξ,η, ζ ∈ (0, 1) with ξ+ η+ ζ < 1
such that

DF(Tx, Ty) 6 µDF(x,y)ξDF(x, Tx)ηDF(y, Ty)ζ
[

1
2
(DF(x, Ty) +DF(y, Tx))

]1−ξ−η−ζ

(5.1)

for all x,y ∈ X\Fix∗(T), where Fix∗(T) = {x ∈ X : DF(x, Tx) = 0} ⊂ Fix(T), Fix(T) is the set of all fixed
points of T .
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Definition 5.6. Let (X, F) be an SJS-metric space and T be a self mapping on X. Then X is called T -orbitally
complete if for any x0 ∈ X whenever {xm} ⊂ O(T , x0) = {x0, Tx0, T 2x0, . . .}, is a Cauchy sequence, then there
exists an element x ∈ X such that {xm} ∈ S(F,X, x).

Definition 5.7. A self mapping T on an SJS-metric space (X, F) is said to be orbitally continuous if for any
x0 ∈ X, {Tnix0}i>1 ∈ S(F,X,u), u ∈ X, implies {TTnix0}i>1 ∈ S(F,X, Tu).

Now we state and prove our main results.

Theorem 5.8. Let (X, F, J) be a SJS-metric space with two metrics F and J. Assume that for T : X→ X the following
conditions are satisfied:

(1) F(x,y, z) =∞ if and only if J(x,y, z) =∞, otherwise F(x,y, z) 6 J(x,y, z) <∞ for all x,y, z ∈ X;
(2) (X, F) is T -orbitally complete;
(3) T is orbitally continuous with respect to F;
(4) T is SJS −Z-contractive with respect to J;
(5) there exists x0 ∈ X such that δ(J, T , x0) = sup{dJ(T ix0, T jx0) : i, j > 1} <∞ and DJ(Tpx0, Tqx0) > 0 for all

p,q > 1 (p 6= q).

Then T has a fixed point in X. Moreover if z, z′ ∈ X are two fixed points of T such that DJ(z, z′) <∞, then z = z′.

Proof. Let us consider the Picard iterating sequence {xn} by xn = Tnx0 for all n ∈ N. Then for any
(i, j) ∈N2 with i 6= j we have,

0 6 ζ(DJ(xn+i, xn+j),DJ(xn−1+i, xn−1+j)) < DJ(xn−1+i, xn−1+j) −DJ(xn+i, xn+j)

implies DJ(xn+i, xn+j) < DJ(xn−1+i, xn−1+j) for all n ∈ N. So {DJ(xn+i, xn+j)}n∈N is a decreasing
bounded sequence for any i, j(i 6= j) > 1. Thus there exists λ > 0 such that limn→∞ dJ(xn+i, xn+j) = λ

for all i, j(i 6= j) > 1. If λ > 0, then for the sequences tn = DJ(xn+3, xn+2) and sn = DJ(xn+2, xn+1) for all
n ∈N, we have limn→∞ tn = limn→∞ sn = λ and thus

0 6 lim sup
n→∞ ζ(DJ(xn+3, xn+2),DJ(xn+2, xn+1)) = lim sup

n→∞ ζ(tn, sn) < 0,

a contradiction. Therefore lim supn→∞DJ(xn+i, xn+j) = 0 for all i, j > 1 with i 6= j. Hence {xn} is Cauchy
in (X, J). Now due to condition (1) it can be easily seen that {xn} is Cauchy in (X, F). Since (X, F) is T -
orbitally complete, {xn} converges to some {xn} ∈ S(F,X, z). From condition (3) we get {Tn+1x0} converges
to Tz. Hence we have Tz = z.

If possible, let, z, z′ be two fixed points of T such that DJ(z, z′) <∞. If DJ(z, z′) > 0, then we get

0 6 ζ(DJ(Tz, Tz′),DJ(z, z′)) < DJ(z, z′) −DJ(Tz, Tz′) = DJ(z, z′) −DJ(z, z′) = 0, a contradiction.

So we get DJ(z, z′) = 0 implies z = z′.

Theorem 5.9. Let (X, F, J) be a SJS-metric space with two metrics F and J. Assume that for T : X→ X the following
conditions are satisfied:

(1) F(x,y, z) =∞ if and only if J(x,y, z) =∞, otherwise F(x,y, z) 6 J(x,y, z) <∞ for all x,y, z ∈ X;
(2) (X, F) is T -orbitally complete;
(3) T is orbitally continuous with respect to F;
(4) T is SJS-Geraghty type contractive mapping with respect to J;
(5) there exists x0 ∈ X such that δ(J, T , x0) = sup{dJ(T ix0, T jx0) : i, j > 1} <∞ and DJ(Tpx0, Tqx0) > 0 for all

p,q > 1 (p 6= q).

Then T has a fixed point z in X. Moreover if z′ ∈ X is another fixed point of T such that DJ(z, z′) <∞, then z = z′.
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Proof. Let us construct the Picard iterating sequence {xn} by xn = Tnx0 for all n ∈ N. Then for any
particular (i, j) ∈N2, we have

DJ(xn+i, xn+j) = DJ(Txn−1+i, Txn−1+j) 6 β(DJ(Txn−1+i, Txn−1+j))DJ(Txn−1+i, Txn−1+j)

< DJ(Txn−1+i, Txn−1+j) 6 δ(DJ, T , x0) <∞ for all n ∈N.

So {DJ(xn+i, xn+j)}n>0 is a decreasing sequence of reals, which is bounded below. So {DJ(xn+i, xn+j)}n>0
converges in [0,∞). We show that DJ(xn+i, xn+j) → 0 as n → ∞. If possible let DJ(xn+i, xn+j) → q as
n→∞ for some q > 0. Then we have

1 > β(DJ(xn−1+i, xn−1+j)) >
DJ(xn+i, xn+j)

DJ(xn−1+i, xn−1+j)
→ 1 as n→∞.

Thus β(DJ(xn−1+i, xn−1+j)) → 1 as n → ∞, a contradiction. Therefore DJ(xn+i, xn+j) → 0 as n → ∞.
Since (i, j) ∈ N2 is arbitrary we get {xn} is Cauchy in (X, J). Now from condition (1) it can be easily seen
that {xn} is Cauchy in (X, F). Since (X, F) is T -orbitally complete, {xn} converges to some z ∈ X in (X, F).
From condition (3) we get {Tn+1x0} ∈ S(F,X, Tz). Hence we have Tz = z.

If possible, let, there exists z′ ∈ X such that Tz′ = z′ and DJ(z, z′) <∞. If DJ(z, z′) > 0, then we get

DJ(z, z′) = DJ(Tz, Tz′) 6 β(DJ(z, z′))DJ(z, z′) < DJ(z, z′), a contradiction.

So we get DJ(z, z′) = 0 implies z = z′.

Theorem 5.10. Let (X, F, J) be a SJS-metric space with two metrics F and J. Assume that for T : X → X the
following conditions are satisfied:

(1) F(x,y, z) =∞ if and only if J(x,y, z) =∞, otherwise F(x,y, z) 6 J(x,y, z) <∞ for all x,y, z ∈ X;
(2) (X, F) is T -orbitally complete;
(3) T is orbitally continuous with respect to F;
(4) T is SJS-Interpolative Hardy-Rogers type contractive mapping with respect to J;
(5) there exists x0 ∈ X such that δ(J, T , x0) = sup{dJ(T ix0, T jx0) : i, j > 1} <∞.

Then T has a fixed point w in X.

Proof. Let us construct the Picard iterating sequence {xn} by xn = Tnx0 for all n ∈N. If for some m ∈N,
DF(xm, xm+1) = 0, then we have Txm = xm and T has a fixed point trivially. So without loss of generality
we assume thatDF(xl, xl+1) > 0 for all l > 1. Let us take δ(J, Tp+1, x0) = sup{dJ(Tp+ix0, Tp+jx0) : i, j ∈N}

for any non-negative integer p. Clearly δ(J, Tp+1, x0) 6 δ(J, T , x0) <∞ for any p > 1. Then for all i, j > 1,

DJ(T
n+ix0, Tn+jx0) 6 µDJ(T

n−1+ix0, Tn−1+jx0)
ξDJ(T

n−1+ix0, Tn+ix0)
ηDJ(T

n−1+jx0, Tn+jx0)
ζ

×
[

1
2
(DJ(T

n−1+ix0, Tn+jx0) +DJ(T
n−1+jx0, Tn+ix0))

]1−ξ−η−ζ

6 µδ(J, Tn, x0)
ξδ(J, Tn, x0)

ηδ(J, Tn, x0)
ζ

[
1
2
(δ(J, Tn, x0) + δ(J, Tn, x0))

]1−ξ−η−ζ

= µδ(J, Tn, x0) for all n > 1.

Therefore δ(J, Tn+1, x0) 6 µδ(J, Tn, x0) for all n > 1. Thus δ(J, Tn+1, x0) 6 µnδ(J, T , x0) for all n ∈N. From
which it follows that δ(J, Tn+1, x0)→ 0 as n→∞. So limn→∞DJ(Tnx0, Tn+kx0) 6 limn→∞ δ(J, Tn, x0) =
0 that is limn→∞DJ(Tnx0, Tn+kx0) = 0, k > 1. Hence by applying condition (1) we have limn→∞DF(Tnx0,
Tn+kx0) = 0, k ∈ N. So {xn} is Cauchy in (X, F). Since (X, F) is T -orbitally complete it follows that {xn} is
convergent in (X, F) that is there exists some w ∈ X such that {Tnx0} ∈ S(F,X,w). From condition (3) we
get {Tn+1x0} ∈ S(F,X, Tw). Thus Tw = w.
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Example 5.11. Let X = [0, 1], F(x,y, z) = |x− z|+ |y− z| and J(x,y, z) = |x|+ |y|+ 2|z| for all x,y, z ∈ X.
Then both F and J are SJS-metrics on X. Let T : X → X be defined as Tx = x2

3(1+x) for all x ∈ X and
ζ : [0,∞)2 → R be defined by

ζ(t, s) =
{
s
2 − t, if 0 6 s < 1,
s− 1

3 − t, if s > 1.

Then one can verify that T satisfies all conditions of Theorem 5.8. Here 0 is the unique fixed point of T in
X.

Example 5.12. Let X = [0, 1] and F, J be the SJS-metrics defined on X as in above example. Also let
T : X → X be defined by Tx = x

e for all x ∈ X and β : (0,∞] → [0, 1) be defined by β(t) = e−t for all
t ∈ (0,∞]. Then one can easily verify that all conditions of Theorem 5.9 are satisfied and T has a unique
fixed point in X.

Example 5.13. Let X = {−1, 0, 1}, F : X3 → [0,∞] be defined by F(x,y, z) = |x− z|+ |y− z| for all x,y, z ∈ X
and J : X3 → [0,∞] be defined by J(x,y, z) = |x|+ |y|+ 2|z| for all x,y, z ∈ X. Then both F and J are SJS-
metrics on X. Let T : X → X be defined by T(−1) = 1 and T(0) = 0 = T(1). Then Fix∗(T) = {0}. Therefore
X\Fix∗(T) = {−1, 1}. Now if we choose ξ = 1

4 = η, ζ = 1
3 and µ ∈ [ 1√

2
, 1) be any fixed element, then we

see that T satisfies contractive condition (5.1) with respect to J. Also one can verify that T satisfies all the
additional conditions of Theorem 5.10. Therefore T has a fixed point in X.

In this paper we considered two SJS-metrics on a nonempty set X. So we can take several combinations
of metric type structures on a nonempty set X.

Remark 5.14. We can consider the following combinations:

(1) F and J both are S-metrics;
(2) both F and J are Sb-metrics;
(3) one is S-metric another is Sb-metric;
(4) one is either S-metric or Sb-metric and another is purely SJS-metric neither S-metric nor Sb-metric;
(5) both F and J are purely SJS-metrics neither S-metric nor Sb-metric.

6. Sequentially compact SJS-metric space

Compactness [41] plays an extremely important role in mathematical analysis. A generalization of com-
pactness is sequentially compact, if every infinite sequence of points sampled from the space has an
infinite subsequence that converges to some point of the space. Various equivalent notions of compact-
ness, including sequential compactness and limit point compactness, can be developed in general metric
spaces. In general topological spaces, however, different notions of compactness are not necessarily equiv-
alent. The most useful notion, which is the standard definition of the unqualified term compactness, is
phrased in terms of the existence of finite families of open sets that ”cover” the space in the sense that
each point of the space lies in some set contained in the family. This more subtle notion, exhibits com-
pact spaces as generalizations of finite sets. In spaces that are compact in this sense, it is often possible
to patch together information that holds locally into corresponding statements that hold throughout the
space. Thus compactness is a sort of generalization of the notion of finiteness. The power of compactness
is that it provide a finite structure for infinite sets in situation where finiteness makes life easier (such
as in optimization problems). In this section we continue this line of research and define the concept of
sequential compactness on SJS-metric spaces, study their properties and show its applications in fixed
point theory (see [52]).

Now we define sequentially compact SJS-metric space and study their topological properties.
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Definition 6.1. Let (X, J) and (Y, J′) be two SJS-metric spaces and T : X → Y be a mapping. Then T is
called continuous at a ∈ X if for any ε > 0 there exists δ > 0 such that for any x ∈ X, J′(Ta, Ta, Tx) < ε
whenever J(a,a, x) < δ.

Definition 6.2. Let (X, J) be an SJS-metric space. A family {Aα}α∈Λ, Λ be an indexing set, of nonempty
subsets of X is said to have the finite intersection property if for any finite sub-collection of subsets from
{Aα}α∈Λ has nonempty intersection.

Definition 6.3. An SJS-metric space (X, J) is said to be sequentially compact if every sequence {xn} in X
has a convergent subsequence.

Theorem 6.4. If (X, J) is a sequentially compact SJS-metric space, then every countable family of closed sets with
finite intersection property has non-empty intersection.

Proof. Let {Fi}
∞
i=1 be a countable family of closed sets with finite intersection property. Also let xi ∈

F1 ∩ F2 ∩ · · · ∩ Fi for all i ∈ N. Then {xn} is a sequence in X. Now since X is sequentially compact so {xn}

has a convergent subsequence {xnk} which converges to some x ∈ X.
Now if x /∈ ∩∞i=1Fi, then x /∈ Fj for some j ∈ N. Therefore x ∈ X\Fj and so there exists some r > 0

such that BJ(x, r) ⊂ X\Fj. Since J(x, x, xnk)→ 0 as k→∞ so there exists N ∈ N such that J(x, x, xnk) < r
for all k > N and thus xnk ∈ BJ(x, r) ⊂ X\Fj for all k > N but xm ∈ Fj for any m > j. So if we choose
k0 = max{N, j}, then we have xnk0

∈ Fj ∩ (X\Fj), a contradiction.
Hence x ∈ ∩∞i=1Fi and thus ∩∞i=1Fi 6= ∅.

Proposition 6.5. Let (X, J) be a sequentially compact SJS-metric space and F ⊂ X be closed. Then F is also
sequentially compact.

Proof. Let {xn} ⊂ F be an arbitrary sequence. Since X is sequentially compact, then {xn} has a convergent
subsequence {xnk} ∈ S(J,X, x) for some x ∈ X. Now as F is closed therefore by Theorem 3.5 we have x ∈ F.
Hence F is also sequentially compact.

Proposition 6.6. Let (X, J) be an SJS-metric space and A ⊂ X be sequentially compact. Then A is closed.

Proof. To prove A is closed we have to show X\A is open. Without loss of generality let us take X\A 6= ∅.
Let x ∈ X\A and let us assume that BJ(x, 1

n) ∩A 6= ∅ for all n ∈ N. Also let xn ∈ BJ(x, 1
n) ∩A for all

n > 1. Since J(x, x, xn) < 1
n → 0 as n → ∞, so {xn} converges to x. Now A is sequentially compact so

{xn} has a convergent subsequence {xnk} ∈ S(J,X,y) for some y ∈ A. Therefore by Theorem 2.10 we have
x = y, a contradiction. So there exists some N ∈N such that BJ(x, 1

N) ⊂ X\A. Hence A is closed.

Proposition 6.7.

(1) The union of a finite collection of sequentially compact subsets of an SJS-metric space is sequentially compact.
(2) The intersection of an arbitrary family of sequentially compact subsets of an SJS-metric space is sequentially

compact.

Proof.

(a) Let {A1,A2, . . . ,An} be a finite collection of sequentially compact subsets of an SJS-metric space (X, J).
Let A = ∪ni=1Ai and {xn} ⊂ A. Therefore there exists at least one Ai, 1 6 i 6 n such that Ai contains
infinitely many terms of {xn}. Let {xnk} be a convergent subsequence of {xn} |Ai which converges to some
x ∈ Ai. Then x also belongs to A and hence A is also sequentially compact.

(b) Let {Bγ}γ∈Λ be an arbitrary collection of sequentially compact subsets of (X, J). Let {xn} ⊂ B =
∩γ∈ΛBγ. Then {xn} ⊂ Bγ for all γ ∈ Λ. In particular, since Bγ is sequentially compact so {xn} has
a convergent subsequence {xnk} which converges to some x ∈ Bγ. Now since each Bγ is closed by
Proposition 6.6, we get B is closed in X. So x ∈ B and this proves that B is sequentially compact.
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Proposition 6.8. Let (X, J) and (Y, J′) be two SJS-metric spaces and T : X → Y be a continuous mapping. If X is
sequentially compact, then T(X) is also sequentially compact.

Proof. Let {yn} ⊂ T(X) be an arbitrary sequence. Then there exists a sequence {xn} in X such that yn = Txn
for all n ∈ N. Since X is sequentially compact so {xn} has a convergent subsequence {xnk} in X which
converges to some x ∈ X. Since T is continuous therefore it can be easily seen that {Txnk} ∈ S(J′, Y, Tx).
Hence T(X) is also sequentially compact.

Following the literatures [22, 44, 59], we now prove some contractive fixed point theorems on a se-
quentially compact SJS- metric space.

Theorem 6.9. Let (X, J) be a sequentially compact SJS-metric space such that for any continuous map G : X→ X,
J(x, x,Gx) is a continuous function on X. Suppose that T is a continuous map on X such that for all x,y ∈ X with
J(x, x,y) > 0 we have

J(Tx, Tx, Ty) < max{J(x, x, Tx), J(y,y, Ty), J(x, x,y)}.

If for some z ∈ X, J(z, z, Tz) < ∞, then T has a fixed point u in X with dJ(u,u) = 0. Moreover if u′ is another
fixed point of T such that dJ(u′,u′) <∞ and dJ(u,u′) <∞, then u = u′.

Proof. Let us denote dJ(x,y) = J(x, x,y) for all x,y ∈ X and zn = Tnz for all n > 0. If dJ(zn, zn+1) = 0
for some n ∈ N ∪ {0}, then zn = zn+1 and we have zn = zn+k for all k > 1. Therefore dJ(zn, zn+k) = 0
for all k ∈ N. So clearly {zm} converges to u = zn and since T is continuous it follows that Tu = u. So
we assume that dj(zn, zn+1) > 0 for all n > 0. Also let V(y) = dJ(y, Ty), then by our assumption V is
continuous. Now,

V(zn+1) = dj(zn+1, zn+2) < max{dj(zn, zn+1),dj(zn+1, zn+2),dj(zn, zn+1)}

implies V(zn+1) < V(zn) for all n ∈N∪ {0} that is for any n > 0 we have

V(zn+1) < V(zn) < V(z0) = V(z) <∞.

Thus there exists some r > 0 such that limn→∞ V(zn) = r. Since the sequence {zn} has a convergent
subsequence which converges to some u ∈ X and V is continuous it follows that V(u) = r. Also since T is
continuous we get V(Tu) = r. Now if r > 0, then we see that

r = V(Tu) = dJ(Tu, T 2u) < max{dJ(u, Tu),dJ(Tu, T 2u),dJ(u, Tu)} = r,

a contradiction. Therefore r = 0 and we have dJ(u, Tu) = dJ(Tu, T 2u) = 0. So u is a fixed point of T . Now
we prove that the sequence {zn} converges to u. For any given ε > 0, there exists a positive integer M
such that {V(zM),dJ(zM,u)} < ε. Thus we get,

dJ(zn,u) = dJ(Tzn−1, Tu) < max{dJ(zn−1,u),dJ(zn−1, zn),dJ(u, Tu)}
= max{V(zn−1),dJ(zn−1,u))}
< max{V(zn−1),V(zn−2),dJ(zn−2,u)}
= max{V(zn−2),dJ(zn−2,u)}
...
< max{V(zM),dJ(zM,u)} < ε

for all n > M. Hence limn→∞ zn = u and this completes our proof. Clearly dJ(u,u) = 0.

Uniqueness. Let u′ be another fixed point of T such that dJ(u,u′) <∞. Since dJ(u′,u′) <∞ it follows that
dJ(u

′,u′) = 0. If possible, let, dJ(u,u′) > 0, then

dJ(u,u′) = dJ(Tu, Tu′) < max{dJ(u,u),dJ(u′,u′),dJ(u,u′)} = dJ(u,u′),

a contradiction. Hence dJ(u,u′) = 0 and we get u = u′.
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Corollary 6.10. Let (X, J) be a sequentially compact SJS-metric space such that for any continuous map G : X→ X,
J(x, x,Gx) is a continuous function on X. Also let T be a mapping on X such that for all x,y ∈ X with J(x, x,y) > 0
we have

J(Tx, Tx, Ty) < J(x, x,y).

Then for any z in X with J(z, z, Tz) <∞, {Tnz} converges to u and u is a fixed point of T .

Proof. Clearly T satisfies all conditions of Theorem 6.9. So the result of this Corollary follows immediately.

Corollary 6.11. Let (X, J) be a sequentially compact SJS-metric space such that for any continuous map G : X→ X,
J(x, x,Gx) is a continuous function on X. Also let T be a continuous mapping on X such that for all x,y ∈ X with
J(x, x,y) > 0 we have

J(Tx, Tx, Ty) <
1
2
[J(x, x, Tx) + J(y,y, Ty)].

Then for any z in X with J(z, z, Tz) <∞, {Tnz} converges to u and u is a fixed point of T .

Proof. Clearly T satisfies all conditions of Theorem 6.9. So the result of this Corollary follows immediately.

Corollary 6.12. Let (X, J) be a sequentially compact SJS-metric space such that for any continuous map G : X→ X,
J(x, x,Gx) is a continuous function on X and T be a continuous mapping on X such that for all x,y ∈ X with
J(x, x,y) > 0 we have

J(Tx, Tx, Ty) < max{J(x, x, Tx), J(y,y, Ty)}.

Then for any z in X with J(z, z, Tz) <∞, {Tnz} converges to v and v is a fixed point of T .

Proof. Clearly T satisfies all conditions of Theorem 6.9. So the result of this Corollary follows immediately.

Definition 6.13 ([58]). Let X be a non-empty set and S : X3 → [0,∞) be a function satisfying the following
conditions: for each x,y, z,w ∈ X,

(i) S(x,y, z) = 0 if and only if x = y = z;
(ii) S(x,y, z) 6 S(x, x,w) + S(y,y,w) + S(z, z,w).

The function S is called an S-metric and the pair (X,S) is called an S-metric space.

Obviously every S-metric space is a SJS-metric space. Converse is not always true.

Corollary 6.14. Let (X,S) be a sequentially compact S-metric space and T be a continuous mapping on X such that
for all x,y ∈ X with x 6= y we have

S(Tx, Tx, Ty) < max{S(x, x, Tx),S(y,y, Ty),S(x, x,y)}.

Then for any y in X, {Tny} converges to v and v is a fixed point of T .

Proof. If G is a continuous mapping, then for any x ∈ X and any sequence {xn} in X converging to x we
get, |S(xn, xn,Gxn) − S(x, x,Gx)| 6 2[S(xn, xn, x) + S(Gxn,Gxn,Gx)]→ 0 as n→∞. Therefore S(x, x,Gx)
is a continuous function on X whenever G is continuous. Therefore all conditions of Theorem 6.9 are
satisfied and it follows that v is a fixed point of T .

Example 6.15. Let X = [0,∞) and J : X3 → X be defined by J(x,y, z) = |x− y|+ |x− z| for all x,y, z ∈ X
and T : X→ X be defined by Tx = x− tan−1 x for all x ∈ X. Then T satisfies J(Tx, Tx, Ty) < J(x, x,y) for all
x,y ∈ X and also for x0 = 0 the iterative sequence {Tnx0} converges to 0 and we see that 0 is the unique
fixed point of T .
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Example 6.16. Let X = [0, 5] and J : X3 → X be defined by J(x,y, z) = |x− y|+ |x− z| for all x,y, z ∈ X and
T : X→ X be defined by

Tx =

{ 3x
4 , if x ∈ [0, 4],

10 − 7x
4 , if x ∈ [4, 5].

Then T is continuous and satisfies the contractive condition of Corollary 6.14 but it does not satisfy
J(Tx, Tx, Ty) < J(x, x,y) for all x,y ∈ X since J(T4, T4, T5) = 7

4 ≮ J(4, 4, 5). Thus all conditions of Corollary
6.14 are satisfied. Also for z0 = 0 the iterative sequence {Tnz0} converges to 0 and we see that 0 is the
unique fixed point of T .

7. Ekeland’s variational principle

In his classic paper Ekeland [23] proved a theorem (Ekeland’s variational principle) that asserts that
there exists nearly optimal solutions to some optimization problems. Ekeland’s variational principle can
be applied when the lower level set of a minimization problems is not compact, so that the Bolzano–
Weierstrass theorem cannot be used. Ekeland’s principle relies on Cantor intersection theorem and axiom
of choice. Ekeland’s principle also leads to an elegant proof of the famous Caristi fixed point theorem [14].
For further generalizations and applications of Ekeland’s variational principle we refere to [9, 25, 32, 47]
and their references. The aim of this section is first to give a variant of Ekeland’s variational principle in
SJS-metric spaces and, then derive Caristi fixed point theorem as an application (see [7]). These results
generalize/extend several results from the existing literature.

Definition 7.1. In an SJS-metric space (X, J), a mapping ψ : X→ R is said to be lower semi-continuous at
t0 ∈ X if for any ε > 0 there exits some δε > 0 such that ψ(t0) < ψ(t) + ε for all t ∈ BJ(t0, δε).

Definition 7.2. Let (X, J) be an SJS-metric space and {An} be a decreasing sequence of nonempty subsets
of X. Then {An} is said to have vanishing diameter property (vd-property) if for each i ∈ N there exists
some fixed ai ∈ Ai such that J(x, x,ai) 6 J(ai,ai,ai) + ri for all x ∈ Ai, where {ri} ⊂ R+ with ri → 0 as
i→∞.

Definition 7.3. An SJS-metric space (X, J) is said to have vanishing diameter property if for any decreasing
sequence of nonempty subsets {An} of X with vd-property we have diam(An)→ 0 as n→∞.

We now establish Ekeland’s variational principle in an SJS-metric space. Let us denote dJ(x,y) =
J(x, x,y) for all x,y ∈ X.

Theorem 7.4. Let (X, J) be a complete SJS-metric space with coefficient s > 1, such that dJ is continuous in both
variables, sup{J(x, x, x) : x ∈ X} < ∞ and X has vanishing diameter property. Now let, f : X → R be a lower
semi-continuous, proper and lower bounded mapping. Then for every x0 ∈ X and ε > 0 with

f(x0) 6 inf
x∈X

f(x) + ε,

there exists a sequence {xn} ⊂ X and xε ∈ X such that:

(i) xn → xε as n→∞;
(ii) for all n > 1, J(xε, xε, xn) − J(xn, xn, xn) 6 ε

2n ;
(iii) for all x 6= xε, f(x) +

∑∞
n=0

1
sn J(x, x, xn) > f(xε) +

∑∞
n=0

1
sn J(xε, xε, xn);

(iv) f(xε)+
∑∞
n=0

1
sn J(xε, xε, xn) 6 f(x0)+

∑∞
n=0

1
sn J(xn, xn, xn) 6 infx∈X f(x)+ε+

∑∞
n=0

1
sn J(xn, xn, xn).

Proof. Consider the set

Sf(x0) = {x ∈ X : f(x) + dJ(x, x0) 6 f(x0) + dJ(x0, x0)}.
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Since x0 ∈ Sf(x0), then Sf(x0) is nonempty. Let {zn} ⊂ Sf(x0) such that {zn} converges to some z ∈ X.
Then f(zn) + dJ(zn, x0) 6 f(x0) + dJ(x0, x0) for all n ∈ N. Now f is lower semi-continuous at z ∈ X, so
for any ε1 > 0, f(z) < f(t) + ε1

2 for all t ∈ BJ(z, δε1) for δε1 > 0. Also {zn} converges to some z, so there
exists N1 > 1 such that zn ∈ BJ(z, δε1) for all n > N1. Therefore f(z) < f(zn) + ε1

2 for all n > N1. Now
continuity of dJ implies that dJ(zn, x0)→ dJ(z, x0) as n→∞. Thus for all n > N2,

dJ(z, x0) −
ε1

2
< dJ(zn, x0) < dJ(z, x0) +

ε1

2
.

Therefore for all n > N = max{N1,N2} we get,

f(z) + dJ(z, x0) < f(zn) + dJ(zn, x0) + ε1 for all n > N 6 f(x0) + dJ(x0, x0) + ε1.

Since ε1 > 0 is arbitrary, thus f(z) + dJ(z, x0) 6 f(x0) + dJ(x0, x0). Therefore z ∈ Sf(x0). Hence Sf(x0) is
closed. Also for any y ∈ Sf(x0) we get

dJ(y, x0) − dJ(x0, x0) 6 f(x0) − f(y) 6 f(x0) − inf
x∈X

f(x) 6 ε.

We choose x1 ∈ Sf(x0) such that f(x1) + dJ(x1, x0) 6 infx∈Sf(x0){f(x) + dJ(x, x0)}+
ε
2s and let

Sf(x1) = {x ∈ X : f(x) + dJ(x, x0) +
1
s
dJ(x, x1) 6 f(x1) + dJ(x1, x0) +

1
s
dJ(x1, x1)}.

Thus x1 ∈ Sf(x1) and in a similar way as above we can prove that Sf(x1) is also closed. Inductively, we
can suppose that xn−1 ∈ Sf(xn−2) (for n > 2) was already chosen and we consider

Sf(xn−1) = {x ∈ Sf(xn−2) : f(x) +

n−1∑
i=0

1
si
dJ(x, xi) 6 f(xn−1) +

n−1∑
i=0

1
si
dJ(xn−1, xi)}.

Let us choose xn ∈ Sf(xn−1) such that

f(xn) +

n−1∑
i=0

1
si
dJ(xn, xi) 6 inf

x∈Sf(xn−1)
{f(x) +

n−1∑
i=0

1
si
dJ(x, xi)}+

ε

2nsn

and we define the set

Sf(xn) = {x ∈ Sf(xn−1) : f(x) +

n∑
i=0

1
si
dJ(x, xi) 6 f(xn) +

n∑
i=0

1
si
dJ(xn, xi)}.

Clearly xn ∈ Sf(xn) and Sf(xn) is also closed. Now for each y ∈ Sf(xn) we get

1
sn
dJ(y, xn) 6 {f(xn) +

n∑
i=0

1
si
dJ(xn, xi)}− {f(y) +

n−1∑
i=0

1
si
dJ(y, xi)}

6 {f(xn) +

n∑
i=0

1
si
dJ(xn, xi)}− inf

x∈Sf(xn−1)
{f(x) +

n−1∑
i=0

1
si
dJ(x, xi)}

6
1
sn
dJ(xn, xn) +

ε

2nsn
.

(7.1)

Therefore for any y ∈ Sf(xn) we have

dJ(y, xn) − dJ(xn, xn) 6
ε

2n
for all n ∈N.



I. Beg, K. Roy, M. Saha, J. Nonlinear Sci. Appl., 17 (2024), 30–69 54

Thus the decreasing sequence of nonempty closed subsets {Sf(xn)}n>0 has vd-property. Since X has vd-
property therefore diam(Sf(xn)) → 0 as n → ∞. Thus by Cantor’s intersection theorem (see Theorem
3.10) we have ∩∞n=0Sf(xn) = {xε}. Now dJ(xε, xn) 6 diam(Sf(xn)) → 0 as n → ∞ and we have xn → xε
as n→∞. From (7.1) we see that

J(xε, xε, xn) − J(xn, xn, xn) 6
ε

2n
for all n ∈N.

Now

f(x1) + dJ(x1, x0) 6 f(x0) + dJ(x0, x0),

f(x2) + dJ(x2, x0) +
1
s
dJ(x2, x1) 6 f(x1) + dJ(x1, x0) +

1
s
dJ(x1, x1),

6 f(x0) + dJ(x0, x0) +
1
s
dJ(x1, x1),

...

f(xm) +

m−1∑
i=0

1
si
dJ(xm, xi) 6 f(x0) +

m−1∑
i=0

1
si
dJ(xi, xi) for all m > 1.

Also xε ∈ Sf(xq) for all q ∈N, therefore

f(xε) +

q∑
i=0

1
si
dJ(xε, xi) 6 f(xq) +

q∑
i=0

1
si
dJ(xq, xi) 6 f(x0) +

q∑
i=0

1
si
dJ(xi, xi) for all q > 1,

which in turn implies that

f(xε) +

∞∑
i=0

1
si
dJ(xε, xi) 6 f(x0) +

∞∑
i=0

1
si
dJ(xi, xi) 6 inf

x∈X
f(x) + ε+

∞∑
i=0

1
si
dJ(xi, xi).

Moreover for all x 6= xε, we have x /∈ ∩∞n=0Sf(xn) and thus there exists m ∈ N such that x /∈ Sf(xm). So
x /∈ Sf(xq) for all q > m. Therefore

f(x) +

q∑
i=0

1
si
dJ(x, xi) > f(xq) +

q∑
i=0

1
si
dJ(xq, xi) > f(xε) +

q∑
i=0

1
si
dJ(xε, xi) for all q > m.

Hence we see that

f(x) +

∞∑
i=0

1
si
dJ(x, xi) > f(xε) +

∞∑
i=0

1
si
dJ(xε, xi).

Next we have the following consequence of Ekeland’s variational principle in SJS-metric spaces.

Corollary 7.5. Let (X, J) be a complete SJS-metric space with coefficient s > 1, such that dJ is continuous in both
variables, sup{J(x, x, x) : x ∈ X} < ∞ and X has vanishing diameter property. Now let, f : X → R be a lower
semi-continuous, proper and lower bounded mapping. Then for every ε > 0 there exists a sequence {xn} ⊂ X and
xε ∈ X such that

(i) xn → xε as n→∞;
(ii) f(x) +

∑∞
n=0

1
sn J(x, x, xn) > f(xε) +

∑∞
n=0

1
sn J(xε, xε, xn) for every x ∈ X;

(iii) f(xε) +
∑∞
n=0

1
sn J(xε, xε, xn) 6 infx∈X f(x) + ε+

∑∞
n=0

1
sn J(xn, xn, xn).
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As an application of Theorem 7.4 we now prove Caristi’s fixed point theorem in the context of SJS-
metric spaces.

Theorem 7.6. Let (X, J) be a complete SJS-metric space with coefficient s > 1, such that dJ is continuous in both
variables, sup{J(x, x, x) : x ∈ X} < ∞ and X has vanishing diameter property. Let T : X → X be an operator for
which there exists a lower semi-continuous mapping, proper and lower bounded mapping f : X→ R such that

J(u,u, v) + sJ(u,u, Tu) > J(Tu, Tu, v) (7.2)

and

s2

s− 1
J(u,u, Tu) 6 f(u) − f(Tu) for all u, v ∈ X. (7.3)

Then T has at least one fixed point in X.

Proof. Let us assume that for all x ∈ X, Tx 6= x. Using Corollary 7.5 for f, we obtain that for each ε > 0
there exists a sequence {xn} ⊂ X such that xn → xε as n→∞ and

f(x) +

∞∑
n=0

1
sn
J(x, x, xn) > f(xε) +

∞∑
n=0

1
sn
J(xε, xε, xn) for every x 6= xε.

If in the above inequality, we put x = T(xε), then, since T(xε) 6= xε, we get that

f(xε) − f(Txε) <

∞∑
n=0

1
sn

[dJ(Txε, xn) − dJ(xε, xn)]

<

∞∑
n=0

1
sn
sdJ(xε, Txε) (Using (7.2)) = s

∞∑
n=0

1
sn
dJ(xε, Txε) =

s2

s− 1
dJ(xε, Txε).

Also from (7.3) we get s2

s−1dJ(xε, Txε) 6 f(xε) − f(Txε), a contradiction. Therefore there exists at least one
x∗ ∈ X such that Tx∗ = x∗.

Definition 7.7 ([62]). Let X be a nonempty set and s > 1 be a given number. Also let a function Sb : X3 →
[0,∞) satisfies the following conditions, for each x,y, z,w ∈ X:

(i) Sb(x,y, z) = 0 if and only if x = y = z;
(ii) Sb(x,y, z) 6 s[Sb(x, x,w) + Sb(y,y,w) + Sb(z, z,w)].

The pair (X,Sb) is called an Sb-metric space.

[62, Theorem 2.4] by Souayah and Mlaiki follows from our Theorem 7.4 as immediate Corollary 7.8.

Corollary 7.8. Let (X,Sb) be a complete Sb-metric space with coefficient s > 1, such that the Sb-metric is contin-
uous and f : X → R be a lower semi-continuous, proper and lower bounded mapping. Then for every x0 ∈ X and
ε > 0 with

f(x0) 6 inf
x∈X

f(x) + ε,

there exists a sequence {xn} ⊂ X and xε ∈ X such that

(i) xn → xε as n→∞;
(ii) Sb(xε, xε, xn) 6 ε

2n for all n > 1;
(iii) f(x) +

∑∞
n=0

1
snSb(x, x, xn) > f(xε) +

∑∞
n=0

1
snSb(xε, xε, xn) for every x 6= xε;

(iv) f(xε) +
∑∞
n=0

1
snSb(xε, xε, xn) 6 f(x0) 6 infx∈X f(x) + ε.
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Proof. Let {An} be a decreasing sequence of nonempty subsets of X such that it has vd-property. Then for
each i ∈ N there exists some fixed ai ∈ Ai such that Sb(x, x,ai) 6 Sb(ai,ai,ai) + ri = ri for all x ∈ Ai,
where {ri} ⊂ R+ with ri → 0 as i→∞. Let x(i),y(i), z(i) ∈ Ai be arbitrary. Then

Sb(x
(i),y(i), z(i)) 6 s[Sb(x(i), x(i),ai) + Sb(y(i),y(i),ai) + Sb(z(i), z(i),ai)] 6 3sri.

It implies diam(Ai) 6 3sri. Since this is true for all i ∈ N we get diam(Ai) → 0 as ri → ∞. Thus (X,Sb)
has vanishing diameter property. Therefore all the conditions of Theorem 7.4 are satisfied and the result
follows immediately.

Corollary 7.9. Let (X,Sb) be a complete Sb-metric space with coefficient s > 1, such that the Sb-metric is contin-
uous and let T : X → X be an operator for which there exists a lower semi-continuous, proper and lower bounded
mapping f : X→ R, such that:

Sb(u,u, v) + sSb(u,u, Tu) > Sb(Tu, Tu, v) and
s2

s− 1
Sb(u,u, Tu) 6 f(u) − f(Tu) for all u, v ∈ X.

Then T has at least one fixed point in X.

Proof. Using Theorem 7.6 and Corollary 7.8 we get the required proof.

Remark 7.10. [10, Theorem 2.2] is a particular case of our Theorem 7.4.

8. Fixed point of rational type contractive mappings

In this section we prove some fixed point results for rational type contractive mappings in the setting
of SJS-metric space.

Theorem 8.1. Let (X, J) be a complete SJS-metric space and T : X→ X be a mapping which satisfies the following
conditions:

(i) there exists ν1,ν2 ∈ [0, 1) such that ν1 + ν2 < 1 and for all x,y ∈ X,

dJ(Tx, Ty) 6 ν1dJ(x,y) + ν2
dJ(y, Ty)[1 + dJ(x, Tx)]

1 + dJ(x,y)
; (8.1)

(ii) for a mapping ϕ : [0,∞)2 → [0,∞) with ϕ(0, 0) = 0 and which is continuous at (0, 0), we have

dJ(Tx, Ty) 6 ϕ(dJ(x, Tx),dJ(y, Ty)) for all x,y ∈ X.

Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be taken as arbitrary and let us construct the Picard iterating sequence {xn}n>1, where
xn = Txn−1 for all n ∈N. Then we have

dJ(xn, xn+1) = dJ(Txn−1, Txn) 6 ν1dJ(xn−1, xn) + ν2
dJ(xn, xn+1)[1 + dJ(xn−1, xn)]

1 + dJ(xn−1, xn)
= ν1dJ(xn−1, xn) + ν2dJ(xn, xn+1) for all n > 1.

Therefore we have dJ(xn, xn+1) 6 µdJ(xn−1, xn) for all n ∈N, where µ = ν1
1−ν2

. So limn→∞ dJ(xn−1, xn) =
0. Now using condition (ii) we get

dJ(xn, xm) = dJ(Txn−1, Txm−1) 6 ϕ(dJ(xn−1, xn),dJ(xm−1, xm))→ 0 as n,m→∞.
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Thus {xn}n>1 is Cauchy in X and by the completeness of X there exists some u ∈ X such that xn → u as
n→∞. Now,

dJ(Tu, xn+1) = dJ(Tu, Txn) 6 ν1dJ(u, xn) + ν2
dJ(xn, xn+1)[1 + dJ(u, Tu)]

[1 + dJ(u, xn)]
→ 0 as n→∞.

Therefore by Theorem 2.10 we see that Tu = u. Let v be a fixed point of T in X. Then

dJ(v, v) = dJ(Tv, Tv) 6 ν1dJ(v, v) + ν2
dJ(v, Tv)[1 + dJ(v, Tv)]

1 + dJ(v, v)
= (ν1 + ν2)dJ(v, v).

This implies dJ(v, v) = 0. Hence from condition (ii) we have dJ(u, v) = dJ(Tu, Tv) 6 ϕ(dJ(u, Tu),dJ(v, Tv)) =
ϕ(0, 0) = 0. From this it follows that u = v and T has a unique fixed point in X.

Example 8.2. Let X = [0, 2] and J(x,y, z) = |y+ z− 2x|+ |x− z|+ |y− z| for all x,y, z ∈ X. Then (X, J) is a
symmetric SJS-metric space. Let F : X→ X be defined by

F(x) =

{
x+1

2 , if 0 6 x 6 1,
0, otherwise.

Case-I: If x,y ∈ [0, 1], then

dJ(Tx, Ty) = 3|Tx− Ty| = 3|
x+ 1

2
−
y+ 1

2
| =

3
2
|x− y| =

1
2
dJ(x,y).

Case-II: If x,y ∈ (1, 2], then

dJ(Tx, Ty) = 0.

Case-III: If x ∈ [0, 1] and y ∈ (1, 2], then

dJ(Tx, Ty) = 3|Tx− Ty| = 3|
x+ 1

2
− 0| =

3
2
(x+ 1),

dJ(x,y) = 3(y− x),

dJ(y, Ty)[1 + dJ(x, Tx)]
1 + dJ(x,y)

=
3y[1 + 3

2(1 − x)]

1 + 3(y− x)
.

Then by a routine calculation we see that

dJ(Tx, Ty) 6
1
2
dJ(x,y) +

1
4
dJ(y, Ty)[1 + dJ(x, Tx)]

1 + dJ(x,y)
.

Therefore from all the cases we get

dJ(Tx, Ty) 6
1
2
dJ(x,y) +

1
4
dJ(y, Ty)[1 + dJ(x, Tx)]

1 + dJ(x,y)
for all x,y ∈ X.

Also one can check that dJ(Tx, Ty) 6 dJ(x, Tx) + dJ(y, Ty) for all x,y ∈ X. Therefore all conditions of
Theorem 8.1 are satisfied and x = 1 is the unique fixed point of T .

Theorem 8.3. Let (X, J) be a complete SJS-metric space and T : X→ X be a mapping which satisfies the following
conditions:

(i) there exists ν ∈ [0, 1) such that for all x,y ∈ X,

dJ(Tx, Ty) 6 νmax{dJ(x,y),
dJ(y, Ty)[1 + dJ(x, Tx)]

1 + dJ(x,y)
,
dJ(x, Tx)[1 + dJ(y, Ty)]

1 + dJ(Tx, Ty)
};



I. Beg, K. Roy, M. Saha, J. Nonlinear Sci. Appl., 17 (2024), 30–69 58

(ii) for a mapping ϕ : [0,∞)2 → [0,∞) with ϕ(0, 0) = 0 and which is continuous at (0, 0), we have

dJ(Tx, Ty) 6 ϕ(dJ(x, Tx),dJ(y, Ty)) for all x,y ∈ X;

(iii) the mapping T is continuous in X.

Then T has a fixed point in X which is unique.

Proof. Let x0 ∈ X be arbitrarily chosen and we construct the Picard iterating sequence {xn}n>1, where
xn = Txn−1 for all n ∈N. Then we see that

dJ(xn, xn+1) = dJ(Txn−1, Txn)

6 νmax{dJ(xn−1, xn),
dJ(xn, xn+1)[1 + dJ(xn−1, xn)]

1 + dJ(xn−1, xn)
,
dJ(xn−1, xn)[1 + dJ(xn, Txn)]

1 + dJ(Txn−1, Txn)
}

= νmax{dJ(xn−1, xn),
dJ(xn, xn+1)[1 + dJ(xn−1, xn)]

1 + dJ(xn−1, xn)
,
dJ(xn−1, xn)[1 + dJ(xn, xn+1)]

1 + dJ(xn, xn+1)
}

= νmax{dJ(xn−1, xn),dJ(xn, xn+1)} for all n > 1.

Therefore we have dJ(xn, xn+1) 6 νdJ(xn−1, xn) for all n ∈ N. So limn→∞ dJ(xn−1, xn) = 0. Now using
condition (ii) we get

dJ(xn, xm) = dJ(Txn−1, Txm−1) 6 ϕ(dJ(xn−1, xn),dJ(xm−1, xm))→ 0 as n,m→∞.

Thus {xn}n>1 is Cauchy in X and therefore by the completeness of X there exists some v ∈ X such that
xn → v as n→∞. Now since T is continuous, it follows that xn+1 = Txn → Tv as n→∞. Hence Tv = v
and v is a fixed point of T . The uniqueness of fixed point can be achieved in a similar way as Theorem
8.1.

9. Best SJS-proximity point

In fixed point theory the existence of solution of nonlinear equations of the form Tx = x, in which T
is a self mapping defined on a subset of a topological space is studied. But if we consider T as a non-self
mapping then it may so happen that the equation Tx = x has no solution, in this case one can find a
point x which is very much nearer to the concept of fixed point of T . In this case actually we seek for an
approximate solution x ∈ A for the equation d(x, Tx) = d(A,B), where A,B are nonempty subsets of a set
X with a distance function d and T : A → B is a given mapping. Such approximate solutions are called
proximal points for T . For a self mapping over a metric space a proximal point or a best proximity point
is a fixed point. After Fan [24], seminal paper on classical best approximation theorem several researchers
had improved, generlaized and extended the Fan’s result in many directions. A best proximity theorem
for contractive mappings has been given by Basha [2]. Basha [3], also studied necessary and sufficient
condition for deriving the existence of a best proximity point for a non-self proximal contraction maps of
the first and second kind. Subsequently several researchers have proved various proximity point theorems
in different topological spaces (see [5, 17, 18]). Here we study the notion of proximal SJS-quasi-contraction
mappings of first and second kind and also proximal SJS − Z-contraction mappings of first and second
kind on a partially ordered SJS-metric space to prove some proximity point theorems on it (see [8]). An
application to variational inequality problem is also shown generalizing several results from the existing
literature.

Let (X, J) be an SJS-metric space such that (X,v) be a partially ordered set and A,B be two nonempty
subsets of X. Denote dJ(x,y) = J(x, x,y) for all x,y ∈ X. Define

dJ(A,B) = inf{dJ(x,y) : x ∈ A and y ∈ B},
A0 = {x ∈ A : dJ(x,y) = dJ(A,B) for some y ∈ B},
B0 = {y ∈ B : dJ(x,y) = dJ(A,B) for some x ∈ A}.
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Definition 9.1. A point u ∈ A is called a best SJS-proximity point of the mapping T : A→ B if dJ(u, Tu) =
dJ(A,B).

Definition 9.2. A mapping T : A → B is called proximal SJS-quasi-contraction of the first kind if there
exists k ∈ [0, 1) such that for all x,y,u, v ∈ A, x v y or v x, dJ(u, Tx) = dJ(A,B) and dJ(v, Ty) = dJ(A,B),
imply dJ(u, v) 6 kmax{dJ(x,y),dJ(x,u),dJ(y, v),dJ(x, v),dJ(y,u)}.

Definition 9.3. A mapping T : A→ B is called proximal SJS-quasi-contraction of the second kind if there
exists k ∈ [0, 1) such that for all x,y,u, v ∈ A, x v y or y v x, dJ(u, Tx) = dJ(A,B) and dJ(v, Ty) = dJ(A,B),
implies dJ(Tu, Tv) 6 kmax{dJ(Tx, Ty),dJ(Tx, Tu),dJ(Ty, Tv),dJ(Tx, Tv),dJ(Ty, Tu)}.

Definition 9.4. A mapping T : A → B is called proximal SJS − Z-contraction of the first kind if for all
x,y,u, v ∈ A,

dJ(u, Tx) = dJ(A,B), dJ(v, Ty) = dJ(A,B), and dJ(u, v) =∞ ⇒ dJ(x,y) =∞,

and there exists ζ ∈ Z such that x v y or y v x, dJ(x,y) < ∞, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) =
dJ(A,B) ⇒ ζ(dJ(u, v),dJ(x,y)) > 0.

Definition 9.5. A mapping T : A → B is called proximal SJS − Z-contraction of the second kind if for all
x,y,u, v ∈ A,

dJ(u, Tx) = dJ(A,B), dJ(v, Ty) = dJ(A,B), and dJ(Tu, Tv) =∞ ⇒ dJ(Tx, Ty) =∞,

and there exists ζ ∈ Z such that x v y or y v x, dJ(Tx, Ty) < ∞, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) =
dJ(A,B) ⇒ ζ(dJ(Tu, Tv),dJ(Tx, Ty)) > 0.

Definition 9.6. A mapping T : A → B is called proximal SJS-order-preserving if, for all x,y,u, v ∈ A, it
satisfies the following condition:

x v y, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) = dJ(A,B) ⇒ u v v.

Theorem 9.7. Let (X,v) be a nonempty ordered set such that (X, J) be an SJS-metric space. Let A,B be two
nonempty closed subsets of X such that A0 is nonempty. Also let T : A→ B satisfies:

(i) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
(ii) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B).

Then there exists a sequence {xn} in A0 such that either xn v xn+1 and dJ(xn+1, Txn) = dJ(A,B) for all non-
negative integers n or xn+1 v xn and dJ(xn+1, Txn) = dJ(A,B) for all non-negative integers n.

Proof. By the given condition (ii) there exists two elements x0 ∈ A0 and x1 ∈ A such that dJ(x1, Tx0) =
dJ(A,B). Let us take x0 v x1. Since Tx0 ∈ T(A0) ⊂ B0 ⊂ B, then x1 ∈ A0. Now Tx1 ∈ T(A0) ⊂ B0 so
there exists x2 ∈ A such that dJ(x2, Tx1) = dJ(A,B). Then clearly x2 ∈ A0. Since T is proximal SJS-order-
preserving it follows that x1 v x2. Proceeding in a similar way we can construct a sequence {xn} in A0
such that x0 v x1 v x2 v · · · with dJ(xn+1, Txn) = dJ(A,B) for all n > 0.

Proof is similar for the case x1 v x0.

We call the above sequence {xn} as proximally ordered sequence corresponding to the mapping T and
(x0, x1) ∈ A2

0.

Theorem 9.8. Let (X,v) a non-empty partially ordered set and let (X, J) be a complete symmetric SJS-metric space.
Let A and B be nonempty closed subsets of X such that A0 be nonempty. Also let T : A→ B satisfies:

(a) T is a proximal SJS-quasi-contraction of the first kind;
(b) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
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(c) for any proximally ordered convergent sequence {xn} which converges to z, there exists a subsequence {xnk} of
{xn} such that Txnk → Tz as k→∞;

(d) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B);
(e) dJ(x,y) is continuous in both the variables;
(f) for the proximally ordered sequence corresponding to T and (x0, x1) ∈ A0 × A we have δ(J, T , x0, x1) =

sup{dJ(xi, xj) : i, j > 0} <∞.

Then there exists z ∈ A0 such that dJ(z, Tz) = dJ(A,B).

Proof. Let us denote δ(J, Tn, x0, x1) = sup{dJ(xn−1+i, xn−1+j) : i, j > 0} for all n > 1. Then clearly
δ(J, Tn, x0, x1) 6 δ(J, T , x0, x1) < ∞ for all n ∈ N. Now as {xm} is a proximally ordered sequence and
dJ(xn+i, Txn−1+i) = dJ(A,B), dJ(xn+j, Txn−1+j) = dJ(A,B) for all n > 1 and for all i, j > 0, thus

dJ(xn+i, xn+j)
6 kmax{dJ(xn−1+i, xn−1+j),dJ(xn−1+i, xn+i),dJ(xn−1+j, xn+j),dJ(xn−1+i, xn+j),dJ(xn−1+j, xn+i)}
6 kδ(J, Tn, x0, x1)

for any n > 1 and for any i, j > 0 implies that

δ(J, Tn+1, x0, x1) 6 kδ(J, Tn, x0, x1) 6 · · · 6 knδ(J, T , x0, x1)

for all n > 1. Therefore dJ(xn, xn+p) 6 δ(J, Tn+1, x0, x1) → 0 as n → ∞ and for any p > 1. Thus {xn} is
Cauchy in X, since X is complete it follows that there exists z ∈ X such that {xn} ∈ S(J,X, z). By the given
condition (c) we get a subsequence {xnk} such that Txnk → Tz as k → ∞. Since A is closed, then z ∈ A
and Tz ∈ B. From the continuity of dJ we have dJ(z, Tz) = limk→∞ dJ(xnk+1, Txnk) = dJ(A,B). Clearly
we have z ∈ A0.

Theorem 9.9. Let (X,v) a non-empty partially ordered set and let (X, J) be a complete symmetric SJS-metric space.
Let A and B be nonempty closed subsets of X such that A0 be nonempty. Also let T : A→ B satisfies:

(a) T is a proximal SJS-quasi-contraction of the second kind;
(b) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
(c) for any proximally ordered sequence {xn} if {Txn} converges to some y ∈ B, then there exists a subsequence

{xnk} of {xn} such that xnk → z as k→∞ with y = Tz;
(d) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B);
(e) dJ(x,y) is continuous in both the variables;
(f) for the proximally ordered sequence corresponding to T and (x0, x1) ∈ A0 × A we have δT (J, T , x0, x1) =

sup{dJ(Txi, Txj) : i, j > 0} <∞.

Then there exists a best SJS-proximity point of T .

Proof. Let us consider δT (J, Tn, x0, x1) = sup{dJ(Txn−1+i, Txn−1+j) : i, j > 0} for all n > 1. Obviously
δT (J, Tn, x0, x1) 6 δT (J, T , x0, x1) < ∞ for all n ∈ N. Now as {xm} is a proximally ordered sequence and
dJ(xn+i, Txn−1+i) = dJ(A,B), dJ(xn+j, Txn−1+j) = dJ(A,B) for all n > 1 and for all i, j > 0, thus by
condition (a) we have

dJ(Txn+i, Txn+j) 6 kmax{dJ(Txn−1+i, Txn−1+j),dJ(Txn−1+i, Txn+i),dJ(Txn−1+j, Txn+j),
dJ(Txn−1+i, Txn+j),dJ(Txn−1+j, Txn+i)} 6 kδT (J, Tn, x0, x1)

for any n > 1 and for any i, j > 0 implies that

δT (J, Tn+1, x0, x1) 6 kδT (J, Tn, x0, x1) 6 · · · 6 knδT (J, T , x0, x1)
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for all n > 1. Therefore dJ(Txn, Txn+p) 6 δT (J, Tn+1, x0, x1) → 0 as n → ∞ and for any p > 1. Thus
{Txn} is Cauchy in X, since X is complete it follows that there exists some y ∈ X such that {Txn} converges
to y. By the given condition (c) we get a subsequence {xnk} of {xn} such that xnk → z as k → ∞ for
some z ∈ X with y = Tz. Since A is closed, then z ∈ A and Tz ∈ B. From the continuity of dJ we have
dJ(z, Tz) = limk→∞ dJ(xnk , Txnk−1) = dJ(A,B). Thus z is a best SJS-proximity point of T . Clearly we have
z ∈ A0.

Theorem 9.10. Let (X,v) a non-empty partially ordered set and let (X, J) be a complete symmetric SJS-metric
space. Let A and B be nonempty closed subsets of X such that A0 be nonempty. Also let T : A→ B satisfies:

(a) T is a proximal SJS −Z-contraction of the first kind;
(b) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
(c) for any proximally ordered convergent sequence {xn} which converges to z, there exists a subsequence {xnk} of

{xn} such that Txnk → Tz as k→∞;
(d) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B);
(e) dJ(x,y) is continuous in both the variables;
(f) for the proximally ordered sequence corresponding to T and (x0, x1) ∈ A0 × A we have δ(J, T , x0, x1) =

sup{dJ(xi, xj) : i, j > 0} <∞ and xp 6= xq for all p,q > 0 (p 6= q).

Then there exists z ∈ A0 such that dJ(z, Tz) = dJ(A,B).

Proof. Here we see that for any n > 0 and for all i, j(i 6= j) ∈N∪ {0}, 0 < dJ(xn+i, xn+j) 6 δ(J, T , x0, x1) <∞. Because if for some n > 0 and i, j(i 6= j) ∈ N ∪ {0}, dJ(xn+i, xn+j) = 0, then we get xn+i =
xn+j, a contradiction. Since {xn} is a proximally ordered sequence and dJ(xn+i, Txn−1+i) = dJ(A,B),
dJ(xn+j, Txn−1+j) = dJ(A,B) for all n > 1 and for all i, j > 0 with i 6= j, thus by condition (a) we have

0 6 ζ(dJ(xn+i, xn+j),dJ(xn−1+i, xn−1+j)) < dJ(xn−1+i, xn−1+j) − dJ(xn+i, xn+j)

implies dJ(xn+i, xn+j) < dJ(xn−1+i, xn−1+j) for all n ∈N and for all i, j(i 6= j) > 0. So {dJ(xn+i, xn+j)}n∈N

is a decreasing bounded sequence for any i, j(i 6= j) > 0. Thus there exists λ > 0 such that limn→∞ dJ(xn+i,
xn+j) = λ for all i, j(i 6= j) > 0. If λ > 0, then for the sequences tn = dJ(xn+3, xn+2) and sn =
dJ(xn+2, xn+1) for all n ∈N, we have limn→∞ tn = limn→∞ sn = λ and thus

0 6 lim sup
n→∞ ζ(dJ(xn+3, xn+2),dJ(xn+2, xn+1)) = lim sup

n→∞ ζ(tn, sn) < 0,

a contradiction. Therefore lim supn→∞ dJ(xn+i, xn+j) = 0 for all i, j > 0 with i 6= j. Hence {xn} is Cauchy
in X. Since X is complete it follows that there exists some z ∈ X such that {xn} ∈ S(J,X, z). By the given
condition (c) we get a subsequence {xnk} of {xn} such that Txnk → Tz as k → ∞. Since A is closed, then
z ∈ A and Tz ∈ B. From the continuity of dJ we have dJ(z, Tz) = limk→∞ dJ(xnk+1, Txnk) = dJ(A,B).
Clearly we have z ∈ A0.

Theorem 9.11. Let (X,v) a nonempty partially ordered set and let (X, J) be a complete symmetric SJS-metric space.
Let A and B be nonempty closed subsets of X such that A0 be nonempty. Also let T : A→ B satisfies:

(a) T is a proximal SJS −Z-contraction of the second kind;
(b) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
(c) for any proximally ordered sequence {xn} if {Txn} converges to some y ∈ B, then there exists a subsequence

{xnk} of {xn} such that xnk → z as k→∞ with y = Tz;
(d) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B);
(e) dJ(x,y) is continuous in both the variables;
(f) for the proximally ordered sequence corresponding to T and (x0, x1) ∈ A0 × A we have δT (J, T , x0, x1) =

sup{dJ(Txi, Txj) : i, j > 0} <∞ and Txp 6= Txq for all p,q > 0 (p 6= q).
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Then there exists a best SJS-proximity point of T .

Proof. For any n > 0 and for all i, j(i 6= j) ∈ N ∪ {0} we have 0 < dJ(Txn+i, Txn+j) 6 δT (J, T , x0, x1) <∞, otherwise for some n > 0 and i, j(i 6= j) ∈ N ∪ {0}, dJ(Txn+i, Txn+j) = 0 implies that Txn+i =
Txn+j, a contradiction. Since {xn} is a proximally ordered sequence and dJ(xn+i, Txn−1+i) = dJ(A,B),
dJ(xn+j, Txn−1+j) = dJ(A,B) for all n > 1 and for all i, j(i 6= j) > 0, thus by condition (a) we have

0 6 ζ(dJ(Txn+i, Txn+j),dJ(Txn−1+i, Txn−1+j)) < dJ(Txn−1+i, Txn−1+j) − dJ(Txn+i, Txn+j)

implies dJ(Txn+i, Txn+j) < dJ(Txn−1+i, Txn−1+j) for all n ∈ N and for all i, j(i 6= j) > 0. So {dJ(Txn+i,
Txn+j)}n∈N is a decreasing bounded sequence for any i, j > 0 with i 6= j. Thus there exists η > 0 such that
limn→∞ dJ(Txn+i, Txn+j) = η for all i, j(i 6= j) > 0. If η > 0, then for the sequences tn = dJ(Txn+3, Txn+2)
and sn = dJ(Txn+2, Txn+1) for all n ∈N, we have limn→∞ tn = limn→∞ sn = η and thus

0 6 lim sup
n→∞ ζ(dJ(Txn+3, Txn+2),dJ(Txn+2, Txn+1)) = lim sup

n→∞ ζ(tn, sn) < 0,

a contradiction. Therefore lim supn→∞ dJ(Txn+i, Txn+j) = 0 for all i, j(i 6= j) > 0. Thus {Txn} is Cauchy
in X. As X is complete it follows that there exists some y ∈ X such that {Txn} converges to y. By the
given condition (c) we get a subsequence {xnk} of {xn} such that xnk → z as k → ∞ for some z ∈ X
with y = Tz. Since A is closed, then z ∈ A and Tz ∈ B. From the continuity of dJ we have dJ(z, Tz) =
limk→∞ dJ(xnk , Txnk−1) = dJ(A,B). Thus z is a best SJS-proximity point of T . Clearly we have z ∈ A0.

Now we state some corollaries relating to our main theorems.

Corollary 9.12 (proximal SJS-Banach-contraction type of the first kind). Let (X,v) a nonempty partially
ordered set and let (X, J) be a complete symmetric SJS-metric space. Let A and B be nonempty closed subsets of X
such that A0 be nonempty. Also let T : A→ B satisfies:

(a) x v y, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) = dJ(A,B) ⇒ dJ(u, v) 6 kdJ(x,y) for all x,y,u, v ∈ A and
for some k ∈ [0, 1);

(b) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
(c) for any proximally ordered convergent sequence {xn} which converges to z, there exists a subsequence {xnk} of

{xn} such that Txnk → Tz as k→∞;
(d) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B);
(e) dJ(x,y) is continuous in both the variables;
(f) for the proximally ordered sequence corresponding to T and (x0, x1) ∈ A0 × A we have δ(J, T , x0, x1) =

sup{dJ(xi, xj) : i, j > 0} <∞.

Then there exists z ∈ A0 such that dJ(z, Tz) = dJ(A,B).

Proof. Applying Theorem 9.8 we get our required result.

Corollary 9.13 (proximal SJS-Kannan-contraction type of the first kind). Let (X,v) a nonempty partially
ordered set and let (X, J) be a complete symmetric SJS-metric space. Let A and B be nonempty closed subsets of X
such that A0 be nonempty. Also let T : A→ B satisfies:

(a) x v y, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) = dJ(A,B) ⇒ dJ(u, v) 6 k[dJ(x,u) + dJ(y, v)] for all
x,y,u, v ∈ A and for some k ∈ [0, 1

2);
(b) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
(c) for any proximally ordered convergent sequence {xn} which converges to z, there exists a subsequence {xnk} of

{xn} such that Txnk → Tz as k→∞;
(d) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B);
(e) dJ(x,y) is continuous in both the variables;
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(f) for the proximally ordered sequence corresponding to T and (x0, x1) ∈ A0 × A we have δ(J, T , x0, x1) =
sup{dJ(xi, xj) : i, j > 0} <∞.

Then there exists z ∈ A0 such that dJ(z, Tz) = dJ(A,B).

Proof. We can obtain this Corollary by applying Theorem 9.8.

Corollary 9.14 (proximal SJS-Chatterjee-contraction type of the first kind). Let (X,v) a nonempty partially
ordered set and let (X, J) be a complete symmetric SJS-metric space. Let A and B be nonempty closed subsets of X
such that A0 be nonempty. Also let T : A→ B satisfies:

(a) x v y, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) = dJ(A,B) ⇒ dJ(u, v) 6 k[dJ(x, v) + dJ(y,u)] for all
x,y,u, v ∈ A and for some k ∈ [0, 1

2);
(b) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
(c) for any proximally ordered convergent sequence {xn} which converges to z, there exists a subsequence {xnk} of

{xn} such that Txnk → Tz as k→∞;
(d) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B);
(e) dJ(x,y) is continuous in both the variables;
(f) for the proximally ordered sequence corresponding to T and (x0, x1) ∈ A0 × A we have δ(J, T , x0, x1) =

sup{dJ(xi, xj) : i, j > 0} <∞.

Then there exists z ∈ A0 such that dJ(z, Tz) = dJ(A,B).

Proof. Using Theorem 9.8 we obtain this Corollary.

Corollary 9.15. Let (X,v) a nonempty partially ordered set and let (X, J) be a complete symmetric SJS-metric
space. Let A and B be nonempty closed subsets of X such that A0 be nonempty. Also let T : A→ B satisfies:

(a) x v y, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) = dJ(A,B) ⇒ dJ(u, v) 6 dJ(x,y) − ϕ(dJ(x,y)) for all
x,y,u, v ∈ A and for some lower semi-continuous mapping ϕ : [0,∞)→ [0,∞) such that ϕ−1(0) = 0;

(b) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
(c) for any proximally ordered convergent sequence {xn} which converges to z, there exists a subsequence {xnk} of

{xn} such that Txnk → Tz as k→∞;
(d) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B);
(e) dJ(x,y) is continuous in both the variables;
(f) for the proximally ordered sequence corresponding to T and (x0, x1) ∈ A0 × A we have δ(J, T , x0, x1) =

sup{dJ(xi, xj) : i, j > 0} <∞ and xp 6= xq for all p,q(p 6= q) > 0.

Then there exists z ∈ A0 such that dJ(z, Tz) = dJ(A,B).

Proof. We can get our required result by considering ζ(t, s) = s − ϕ(s) − t for all s, t > 0 in Theorem
9.10.

Corollary 9.16. Let (X,v) a nonempty partially ordered set and let (X, J) be a complete symmetric SJS-metric
space. Let A and B be nonempty closed subsets of X such that A0 be nonempty. Also let T : A→ B satisfies:

(a) x v y, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) = dJ(A,B) ⇒ dJ(u, v) 6 ϕ(dJ(x,y))dJ(x,y) for all
x,y,u, v ∈ A and for some mapping ϕ : [0,∞)→ [0, 1) such that lim supt→r+ ϕ(t) < 1 for all r > 0;

(b) T is proximal SJS-order-preserving such that T(A0) ⊂ B0;
(c) for any proximally ordered convergent sequence {xn} which converges to z, there exists a subsequence {xnk} of

{xn} such that Txnk → Tz as k→∞;
(d) there exists elements x0 ∈ A0 and x1 ∈ A such that either x0 v x1 or x1 v x0 and dJ(x1, Tx0) = dJ(A,B);
(e) dJ(x,y) is continuous in both the variables;
(f) for the proximally ordered sequence corresponding to T and (x0, x1) ∈ A0 × A we have δ(J, T , x0, x1) =

sup{dJ(xi, xj) : i, j > 0} <∞ and xp 6= xq for all p,q > 0 and p 6= q.
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Then there exists z ∈ A0 such that dJ(z, Tz) = dJ(A,B).

Proof. If we set ζ(t, s) = sϕ(s) − t for all s, t > 0 in Theorem 9.10 we can obtain this Corollary.

Next we give some examples which support our Theorems.

Example 9.17. Let X = R2 and J : X3 → [0,∞) be defined by J(x,y, z) = |x1 − y1|+ |y1 − z1|+ |x2 − y2|+
|y2 − z2| for all x = (x1, x2),y = (y1,y2) and z = (z1, z2) in X. Then clearly (X, J) is an SJS-metric space.
Also let v be defined on X by (a,b) v (c,d) if and only if a 6 c and b 6 d. Now let us consider the
subsets A = {(0, x) : x ∈ [0, 1]} and B = {(1,y) : y ∈ [0, 1]} of X and T : A→ B be defined by

T(0,a) =
{

(1, a3 ), if 0 6 a < 1
2 ,

(1, a5 ), if 1
2 < a 6 1.

If x = (0,α),y = (0,β),u = (0,γ), and v = (0, δ) are taken from A, then always either x v y or y v x
clearly.

Case 1: If 0 6 α,β < 1
2 , then we get,

dJ(u, Tx) = dJ(A,B) ⇒ dJ((0,γ), (1,
α

3
)) = 1 ⇒ 1 + |γ−

α

3
| = 1 ⇒ γ =

α

3
.

Similarly we can get δ = β
3 from dJ(v, Ty) = dJ(A,B). Therefore we have dJ(u, v) = dJ((0,γ), (0, δ)) =

|γ− δ| = 1
3 |α−β| = 1

3dJ(x,y).

Case 2: If 0 6 α < 1
2 and 1

2 6 β 6 1, then we get γ = α
3 from the relation dJ(u, Tx) = dJ(A,B) and

dJ(v, Ty) = dJ(A,B) ⇒ dJ((0, δ), (1,
β

5
)) = 1 ⇒ 1 + |δ−

β

5
| = 1 ⇒ δ =

β

5
.

Thus we get

dJ(u, v) = dJ((0,γ), (0, δ)) = |γ− δ| = |
α

3
−
β

5
| 6

3
4

max{dJ(x,y),dJ(u, x),dJ(v,y),dJ(u,y),dJ(v, x)}.

Case 3: If 1
2 6 α,β 6 1, then we get,

dJ(u, Tx) = dJ(A,B) ⇒ dJ((0,γ), (1,
α

5
)) = 1 ⇒ 1 + |γ−

α

5
| = 1 ⇒ γ =

α

5
.

Similarly we can get δ = β
5 from dJ(v, Ty) = dJ(A,B). Therefore we have dJ(u, v) = dJ((0,γ), (0, δ)) =

|γ − δ| = 1
5 |α − β| = 1

5dJ(x,y). Therefore x v y, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) = dJ(A,B) ⇒
dJ(u, v) 6 3

4 max{dJ(x,y),dJ(x,u),dJ(y, v),dJ(x, v),dJ(y,u)} for all x,y,u, v ∈ A and hence T is a proximal
SJS-quasi-contraction of the first kind.

Any proximal SJS-quasi-contraction of the second kind may not be proximal SJS-quasi-contraction of
the first kind. For this we cite an example which is given below.

Example 9.18. Let us consider the SJS-metric space (X, J), where X = R2 and J : X3 → [0,∞) be defined
by J(x,y, z) = |x1 − y1|+ |y1 − z1|+ |x2 − y2|+ |y2 − z2| for all x = (x1, x2),y = (y1,y2) and z = (z1, z2) in
X. Also let v be defined on X by (a,b) v (c,d) if and only if a 6 c and b 6 d. Now let us consider the
subsets A = {(−1, x) : x ∈ [0, 1]} and B = {(1,y) : y ∈ [0, 1]} of X and T : A → B be defined by space. Also
let v be defined on X by (a,b) v (c,d) if and only if a 6 c and b 6 d. Now let us consider the subsets
A = {(0, x) : x ∈ [0, 1]} and B = {(1,y) : y ∈ [0, 1]} of X and T : A→ B be defined by

T(−1, x) =
{

(1, 0), if x ∈ Q,
(1, 1), if x /∈ Q.

Let us take u = (−1,α), v = (−1,β), x = (−1,γ), and y = (−1, δ), then always either x v y or y v x clearly.
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Case 1: If γ, δ ∈ Q, then

dJ(u, Tx) = dJ(A,B) ⇒ dJ((−1,α), (1, 0)) = 2 ⇒ 2 + |α| = 2 ⇒ α = 0.

Similarly we can show that dJ(v, Ty) = dJ(A,B) implies β = 0. Thus dJ(Tu, Tv) = dJ((1, 0), (1, 0)) = 0.

Case 2: Let γ, δ ∈ R\Q, then

dJ(u, Tx) = dJ(A,B) ⇒ dJ((−1,α), (1, 1)) = 2 ⇒ 2 + |α− 1| = 2 ⇒ α = 1.

Similarly we can show that dJ(v, Ty) = dJ(A,B) implies β = 1. Thus dJ(Tu, Tv) = dJ((1, 0), (1, 0)) = 0.

Case 3: If γ ∈ Q and δ ∈ R\Q, then by a routine verification we get α = 0 and β = 1. Therefore
dJ(Tu, Tv) = dJ((1, 0), (1, 0)) = 0. Hence T is a proximal SJS-quasi-contraction of the second kind. But
in Case 3 if we take x = (−1, 1) and yε = (−1, 1 + ε), where ε ∈ (R\Q)+ with ε → 0, then dJ(u, vε) =
dJ((−1, 0), (−1, 1)) = 1, dJ(x,yε) = ε, dJ(x,u) = 1, dJ(yε, vε) = ε, dJ(x, vε) = 0, and dJ(yε,u) = 1+ ε and
therefore max{dJ(x,yε),dJ(u, x),dJ(vε,yε),dJ(u,yε),dJ(vε, x)} = 1+ ε for all→ 0. So we cannot find any
k ∈ [0, 1) such that dJ(u, vε) 6 kmax{dJ(x,yε),dJ(u, x),dJ(vε,yε),dJ(u,yε),dJ(vε, x)} for all ε ∈ (R\Q)+

with ε→ 0. Therefore T is not a proximal SJS-quasi-contraction of the first kind.

Example 9.19. Consider the SJS-metric space (X, J) similar to Example 9.18. Take A = {(0, x) : x ∈ [0, 1]}
and B = {(1,y) : y ∈ [0, 1]} and define T : A→ B by

T(0,a) =
{

(1, a5 ), if 0 6 a < 1
2 ,

(1, a4 ), if 1
2 6 a < 1.

Define the order relation v on X by (a,b) v (c,d) if and only if a 6 c and b 6 d. Then x v y, dJ(u, Tx) =
dJ(A,B), and dJ(v, Ty) = dJ(A,B) ⇒ dJ(u, v) 6 7

12 max{dJ(x,y),dJ(x,u),dJ(y, v),dJ(x, v),dJ(y,u)} for
all x,y,u, v ∈ A and we see that T is a proximal SJS-quasi-contraction of the first kind. Also if we
take x0 = (0, 1

2) and x1 = (0, 1
8), then x1 v x0 and dJ(x1, Tx0) = 1 = dJ(A,B). Here {xm} is defined by

xi+1 = (0, 1
8.5i ) for all i > 0 and thus δ(J, T , x0, x1) 6

1
2 <∞. Moreover, another conditions of Theorem 9.8

are also satisfied by T . Hence applying Theorem 9.8 we see that (0, 0) is the unique best proximity point
of T .

Example 9.20. Let us consider the SJS-metric space (X, J) defined as above (see Example 9.18). Also let
A = {(x, 0) : x ∈ [0, 1]}, B = {(y, 1) : y ∈ [0, 1]}, and T : A→ B be defined by

T(a, 0) = (
a2

3(1 + a)
, 1)

for all a ∈ [0, 1]. Let the order relation v be defined on X by (a,b) v (c,d) if and only if a 6 c and b 6 d.
In addition let us take the simulation function given in Example 5.11. Let us take u = (α, 0), v = (β, 0), x =
(γ, 0), and y = (δ, 0), then always either x v y or y v x clearly. Now let us consider the following cases.

Case 1: If 0 < γ, δ < 1, then

dJ(u, Tx) = dJ(A,B) ⇒ dJ((α, 0), (
γ2

3(1 + γ)
, 1)) = 1 ⇒ 1 + |α−

γ2

3(1 + γ)
| = 1 ⇒ α =

γ2

3(1 + γ)
.

Similarly we get β = δ2

3(1+δ) using the relation dJ(v, Ty) = dJ(A,B). Then

dJ(u, v) = dJ((α, 0), (β, 0)) = |α−β| = |
γ2

3(1 + γ)
−

δ2

3(1 + δ)
| =

|γ− δ|

3
γδ+ γ+ δ

(1 + γ)(1 + δ)
.

Therefore
ζ(dJ(u, v),dJ(x,y)) =

1
2
dJ(x,y) − dJ(u, v) > 0.
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Case 2: If γ = 1, 0 < δ 6 1, then using the relations dJ(u, Tx) = dJ(A,B) and dJ(v, Ty) = dJ(A,B) we get
α = 1

6 and β = δ2

3(1+δ) . Thus dJ(u, v) = |α−β| = 1
3(

1
2 −

δ2

(1+δ)) and hence we get

ζ(dJ(u, v),dJ(x,y)) =
1
2
dJ(x,y) − dJ(u, v) > 0.

Case 3: If γ = 0, 0 6 δ < 1, then using the relations dJ(u, Tx) = dJ(A,B) and dJ(v, Ty) = dJ(A,B) we get
α = 0 and β = δ2

3(1+δ) . Thus dJ(u, v) = |α−β| = δ2

3(1+δ) and therefore we get

ζ(dJ(u, v),dJ(x,y)) =
1
2
dJ(x,y) − dJ(u, v) > 0.

Case 4: If γ = 0 and δ = 1, then we get α = 0 and β = 1
6 from the relations dJ(u, Tx) = dJ(A,B) and

dJ(v, Ty) = dJ(A,B). So dJ(u, v) = 1
6 , dJ(x,y) = 1, and therefore we get

ζ(dJ(u, v),dJ(x,y)) = dJ(x,y) −
1
3
− dJ(u, v) > 0.

Hence dJ(u, Tx) = dJ(A,B), dJ(v, Ty) = dJ(A,B), and dJ(u, v) = ∞ ⇒ dJ(x,y) = ∞ and for the
simulation function ζ ∈ Z we have x v y or y v x, dJ(x,y) < ∞, dJ(u, Tx) = dJ(A,B), and dJ(v, Ty) =
dJ(A,B) ⇒ ζ(dJ(u, v),dJ(x,y)) > 0 for all x,y,u, v ∈ A. For x0 = ( 1

3 , 0) and x1 = ( 1
36 , 0) we see that x1 v x0

with dJ(x1, Tx0) = dJ(A,B). Also clearly δ(J, T , x0, x1) 6
1
3 < ∞ and another conditions of Theorem 9.10

are also satisfied. Here we see that (0, 0) is the unique best proximity point of T .

Next we present an application of above results to a variational inequality problem.
Let H be a real Hilbert space, with the inner product 〈., .〉 and induced norm ‖.‖. Let K be a nonempty

closed and convex subset of H and Υ : H → H be a mapping. Consider the variational inequality
problem:

Find v ∈ K such that 〈Υv,w− v〉 > 0 for all w ∈ K.

Let us consider the metric projection operator PK : H → K. Then for all w ∈ K the following inequality
holds:

‖v− PKv‖ 6 ‖v−w‖.

Lemma 9.21 ([35]). Let y ∈H. Then w ∈ K satisfies the inequality 〈w− y, z−w〉 > 0 for all z ∈ K, if and only
if PK(y) = w.

Lemma 9.22 ([35]). Let Υ : H→H be a mapping. Then v ∈ K is a solution of 〈Υv,w− v〉 > 0 for all w ∈ K, if
and only if PK(v− µΥv) = v, with µ > 0.

Definition 9.23. Let (X,v) a nonempty partially ordered set and (X, J) be a complete symmetric SJS-metric
space. Also let T : X→ X be a mapping. A sequence {xn} is said to be ordered sequence corresponding to
the mapping T and some pair (x0, x1) ∈ X2 if either x0 v x1 v x2 v · · · and xn+1 = Txn for all n > 0 or
x0 w x1 w x2 w · · · and xn+1 = Txn for all n > 0.

If H is a real Hilbert space, with the inner product 〈., .〉, then it is an SJS-metric space with the
SJS-metric defined by J〈.,.〉(x,y, z) = ‖x − z‖ + ‖y − z‖, where ‖.‖ is the induced norm. Clearly all the
topological properties of (H, 〈., .〉) and (H,dJ〈.,.〉) are same.

Let us denote Fix(Υ) = {v ∈H : Υv = v}. Now we consider the following hypotheses:

(a1) (H,v) is a partially ordered set with the SJS-metric defined as above;
(b1) PK(IK − µΥ)(= Ψ) : K→ K, with µ > 0, satisfies for all x,y ∈ K with either x v y or y v x,

‖Ψx−Ψy‖ 6 kmax{‖x− y‖, ‖x−Ψx‖, ‖y−Ψy‖, ‖x−Ψy‖+ ‖y−Ψx‖
2

}, k ∈ [0, 1);
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(c1) x v y implies Ψx v Ψy for all (x,y) ∈ K2;
(d1) for any ordered convergent sequence {xn} converging to u, there exists a subsequence {xnk} of {xn}

such that Ψxnk → Ψu as k→∞;
(e1) there exists h0,h1 ∈ K such that either h0 v h1 or h1 v h0 and h1 = Ψh0.

Theorem 9.24. Assume that conditions (a1)-(e1) hold, then problem (8.1) admits atleast one solution that is
Fix(Ψ) 6= ∅. Moreover, there exists an ordered sequence {hn} ⊂ K such that hn+1 = PK(hn − µΥhn) for
every n > 0 and limn→∞ hn = h∗ ∈ Fix(Ψ).

Proof. By Lemma 9.22, e∗ ∈ K is a solution of 〈Υe∗,w− e∗〉 > 0 for all w ∈ K if and only if Ψe∗ = e∗.
Now by setting A = B = K we see that Ψ and dJ〈.,.〉 satisfies all the hypotheses (a) to (e) of Theorem 9.8.
Also for any ordered sequence {xn} we have for all n > 1,

‖xn − xn+1‖ = ‖Ψxn−1 −Ψxn‖

6 kmax{‖xn−1 − xn‖, ‖xn−1 −Ψxn−1‖, ‖xn −Ψxn‖,
‖xn−1 −Ψxn‖+ ‖xn −Ψxn−1‖

2
}.

Therefore we get ‖xn − xn+1‖ 6 k‖xn−1 − xn‖ for all n ∈N. Therefore we obtain that for all 1 6 n < m,
dJ〈.,.〉(xn, xm) = 2‖xn−xm‖ 6 2

1−k‖x0 −x1‖ that is δ(J〈.,.〉,Ψ, x0, x1) = sup{dJ〈.,.〉(xi, xj) : i, j > 0} 6 2
1−k‖x0 −

x1‖ <∞. Therefore Ψ satisfies all the conditions of Theorem 9.8 and thus (8.1) has at least one solution h∗

in K.

In a similar way assuming the following conditions.

(a2) (H,v) is a partially ordered set with the SJS-metric defined as above;
(b2) PK(IK − µΥ)(= Ψ) : K→ K, with µ > 0, satisfies for all x,y ∈ K with either x v y or y v x,

‖Ψ2x−Ψ2y‖ 6 kmax{‖Ψx−Ψy‖, ‖Ψx−Ψ2x‖, ‖Ψy−Ψ2y‖, ‖Ψx−Ψ
2y‖+ ‖Ψy−Ψ2x‖

2
},k ∈ [0, 1);

(c2) x v y implies Ψx v Ψy for all (x,y) ∈ K2;
(d2) for any ordered sequence {xn} if {Ψxn} converges to some y ∈ K, then there exists a subsequence

{xnk} of {xn} such that xnk → z as k→∞ with y = Tz;
(e2) there exists h0,h1 ∈ K such that either h0 v h1 or h1 v h0 and h1 = Ψh0.

We obtain the following Theorem.

Theorem 9.25. Assume that conditions (a2)-(e2) hold, then problem (8.1) admits atleast one solution that is
Fix(Ψ) 6= ∅. Moreover, there exists an ordered sequence {hn} ⊂ K such that hn+1 = PK(hn − µΥhn) for
every n > 0 and limn→∞ Ψhn = h∗ ∈ Fix(Ψ).

10. Discussion and conclusion

In this article we presented recently published resuts on the study of SJS-metric, related topological
spaces and sequentially compact SJS-metric spaces with several classical theorems like Cantor’s inter-
section theorem, Ekeland’s varitional priciple, Caristi’s fixed point theorem, best SJS-proximity point
theorem, etc. Proving Baire’s Category Theorem in SJS-metric spaces is still an open challenging prob-
lem. This is a very challenging area of research and there are vast opportunities for future research work
on Bolzano Weierstrass Theorem, Lebesgue’s Covering Theorem, notion of totally bounded and some
thing like Ascoli’s theorem on sequentially compact SJS-metric spaces, some notion of convexity. We also
expect further applications of these spaces in approximation theory, variational problems, nonconvex
minimization problems, fixed point theory, optimization theory, and controll theory.
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[43] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat,

29 (2015), 1189–1194. 5
[44] W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, Cham, (2014). 6
[45] W. M. Kozlowski, Modular function spaces, Marcel Dekker, New York, (1988). 1, 2, 4
[46] M. Maia, Un’osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova, 40 (1968), 139–143. 5
[47] I. Meghea, Ekeland Variational Principle, Old City Publishing, Philadelphia, PA; Éditions des Archives Contempo-
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