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Université Amadou Mahtar Mbow, Senegal.

Abstract

In this paper, we propose an iterative algorithm, which is based on the Mann iterative method for solving simultaneously
common fixed point problem with a finite family of demicontractive mappings and systems of variational inequalities involving
an infinite family of strongly accretive operators. Under suitable assumptions, we prove the strong convergence of this algorithm
in Banach spaces. Application to systems of constrained convex minimization problem is provided to support our main results.
The results of this paper improve and extend results of [M. Eslamian, C. R. Math. Acad. Sci. Paris, 355 (2017), 1168–1177], and
of many others.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H and C is a nonempty closed
convex subset of H. A mapping A : H→ H is said to be k-strongly monotone if there exists k ∈ (0, 1) such
that for all x,y ∈ D(A),

〈Ax−Ay, x− y〉H > k‖x− y‖2.

Recall that the mapping T : C→ C is said to be Lipschitz if there exists an L > 0 such that

‖Tx− Ty‖ 6 L‖x− y‖, ∀ x,y ∈ C,

if L < 1, T is called contraction and if L = 1, T is called nonexpansive. We denote by Fix(T) the set of
fixed points of the mapping T , that is Fix(T) := {x ∈ D(T) : x = Tx}. We assume that Fix(T) is nonempty.
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If T is nonexpansive mapping, it is well known Fix(T) is closed and convex. A map T is called quasi-
nonexpansive if ‖Tx− p‖ 6 ‖x− p‖ holds for all x in C and p ∈ Fix(T). The mapping T : C→ C is said to
be firmly nonexpansive, if

‖Tx− Ty‖2 6 ‖x− y‖2 − ‖(x− y) − (Tx− Ty)‖2, ∀x,y ∈ C.

A mapping T : C→ H is called k-strictly pseudo-contractive if there exists k ∈ [0, 1) such that

‖Tx− Ty‖2 6 ‖x− y‖2 + k‖x− y− (Tx− Ty)‖2, ∀x,y ∈ C.

A map T is called k-demi-contractive if Fix(T) 6= ∅ and for k ∈ [0, 1), we have

‖Tx− p‖ 6 ‖x− p‖+ k‖x− Tx‖2, ∀x ∈ C, p ∈ Fix(T). (1.1)

We note that the following inclusions hold for the classes of the mappings: firmly nonexpansive ⊂ non-
expansive ⊂ quasi-nonexpansive ⊂ k-strictly pseudo-contractive ⊂ k-demi-contractive. Demicontractive
mappings constitute one of the most general classes of nonexpansive type mappings with important ap-
plications for which the fixed points can be obtained by iterative schemes, there was and still is a great
interest in studying their properties, see [15, 19, 20] and most of the references therein. Construction of
fixed points of nonlinear mappings is an important subject in the theory of nonlinear mappings and find
applications in a variety of applied areas, in particular, in inverse problems, partial differential equations,
image recovery, and signal processing (see, [1, 3]). Mann iteration algorithm [18] is widely used for solv-
ing a fixed point equation of the form Tx = x. This algorithm is a sequence {xn}, which is generated by
the following recursive way: {

x0 ∈ C,
xn+1 = αnxn + (1 −αn)Txn,

where {αn} is a sequence in (0, 1). But Mann’s iteration process has only weak convergence, even in
Hilbert space setting. Therefore, many authors try to modify Mann’s iteration to have strong convergence
for nonlinear operators; see, for example, [9, 20, 21] and the references therein. The varational inequility
problem (VIP) is to find x∗ ∈ C such that

〈Ax∗,y− x∗〉 > 0, ∀y ∈ C, (1.2)

we denote the set of solutions of variational inequality problem of the mapping A on set C in (1.2)
by VI(C,A). The important problems of the VI(C,A) are existence and uniqueness of solutions. It is
known that, if A is a strongly monotone and Lipschitzian mapping on C, then the VI(C,A) has a unique
solution. One of the interesting problems is how to find a solution of the VI(C,A) if A is others. In recent
years, variational inequalities have been used to study a large variety of problems arising in structural
analysis, economics, optimization, operations research, and engineering sciences (see, e.g., [7, 23, 24] and
the references therein). Observe that the feasible set C of the variational inequality problem can always
be represented as the fixed point set of some operator, say, C = Fix(PC). Following this idea, Yamada [23]
considered the variational inequality problem VI(A, Fix(T)), which calls for finding a point x∗ ∈ Fix(T)
such that

〈Ax∗,y− x∗〉 > 0, ∀y ∈ Fix(T).

Yamada [23] considered the following hybrid steepest-descent iterative method:

xn+1 = (I− µαnA)Txn,

where A is a Lipschitzian continuous and strongly monotone operator and T is a nonexpansive oper-
ator. Under some appropriate conditions, the sequence {xn} converges strongly to the unique point in
VI(A, Fix(T)). The literature on variational inequalities is vast, and the hybrid steepest-descent method
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has received great attention from many authors, who improved it in various ways; see, e.g., [13] and ref-
erences therein. Recently, in 2017, Eslamian proposed an explicit parallel algorithm for finding common
solutions to a system of variational inequalities over the set of common fixed points of a finite family of
demi-contractive operators, as follows.

Theorem 1.1 ([13]). Let H be a real Hilbert space. Let for each i ∈ {1, 2, . . . ,m}, Fi : H → H be a ki-inverse
monotone operator and Ti : H → H be a λi-demicontractive operator such that I− Ti is demiclosed at 0. Assume

that
m⋂
i=1
A−1
i 0

⋂ m⋂
i=1

Fix(Ti) 6= ∅. Let {xn} be the sequence generated by x0,ν ∈ H and by

{
yn

(i) = (I− µ(i)β
(i)
n Fi)Tixn, i = 1, 2, . . . ,n,

xn+1 = γ
(0)
n ν+

∑m
i=1 γ

(i)
n yn

(i), ∀n > 0,

where Tin = α
(i)
n I+ (1 −α

(i)
n )Ti. Let the sequences {αn}, {βn}, and {γn} satisfy the following conditions:

(i) yn(i) ⊂ [ai,bi] ⊂ (0, 1) and
∑m
i=0 γ

(i)
n = 1;

(ii) limn→∞ γ(0)
n = 0 and

∑m
i=0 γ

(0)
n =∞;

(iii) {µ(i)β
(i)
n } ⊂ [ci,di] ⊂ (0, 2ki);

(iv) λi < α
(i)
n 6 ei < 1.

Then the sequence {xn} converges strongly to x∗ ∈
m⋂
i=1
A−1
i 0

⋂ m⋂
i=1

Fix(Ti).

Note that, most of the algorithms proposed and studied for solving (1.2) are largely confined to real
Hilbert spaces. This is understandable because, as is well known, among all infinite dimensional Banach
spaces, Hilbert spaces have the nicest geometric properties, most of which characterize inner product
spaces and make problems posed in real Hilbert spaces more manageable than those posed in more
general Banach spaces. This leads to this important natural question.

Question 1.2. Can we construct a new iterative method based on the Mann iteration for solving simultaneously
common fixed point problem involving a finite family of demicontractive mappings and systems of variational in-
equalities in Banach spaces?

The purpose of this paper is to answer the above question in the affirmative. Thus, we introduce a
perturbed Mann iteration for solving simultaneously common fixed point problem with a finite family of
demicontractive mappings and systems of variational inequalities involving an infinite family of strongly
accretive operators. We prove the strong convergence of this algorithm in Banach spaces without any
compactness assumption.

2. Preliminaries

Let E be a Banach space with norm ‖ · ‖ and dual E∗. Let ϕ : [0,+∞)→ [0,∞) be a strictly increasing
continuous function such that ϕ(0) = 0 and ϕ(t) → +∞ as t → ∞. Such a function ϕ is called gauge.
Associated to a gauge, a duality map Jϕ : E→ 2E

∗
defined by:

Jϕ(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||ϕ(||x||), ||x∗|| = ϕ(||x||)}.

If the gauge is defined by ϕ(t) = tq−1, q > 1, then the corresponding duality map is called the generalized
duality mapping from E to 2E

∗
defined by

Jq(x) :=
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖q and ‖x∗‖ = ‖x‖q−1} .
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J2 is called the normalized duality mapping and is denoted by J. Notice that

Jϕ(x) =
ϕ(||x||)

||x||
J(x), x 6= 0.

Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to be smooth if lim
t→0+

‖x+ty‖−‖x‖
t exists

for each x,y ∈ S (see, e.g., [11] for more details on duality maps).

Remark 2.1. Note also that a duality mapping exists in each Banach space. We recall from [2] some of the
examples of this mapping in lp,Lp,Wm,p-spaces, 1 < p <∞.

(i) lp : Jx = ‖x‖2−p
lp

y ∈ lq, x = (x1, x2, . . . , xn, . . .); y = (x1|x1|
p−2, x2|x2|

p−2, . . . , xn|xn|p−2, . . .);

(ii) Lp : Ju = ‖u‖2−p
Lp

|u|p−2u ∈ Lq;

(iii) Wm,p : Ju = ‖u‖2−p
Wm,p

∑
|α6m|(−1)|α|Dα

(
|Dαu|p−2Dαu

)
∈W−m,q,

where 1 < q <∞ is such that 1/p+ 1/q = 1.

Recall that a real Banach space E that has a weakly continuous duality map satisfies Opial’s property,
(see, e.g., [12]). Let C ⊆ E be a nonempty set. An operator A : C→ E is said to be accretive if there exists
jq(x− y) ∈ Jq(x− y) such that

〈Ax−Ay, jq(x− y)〉 > 0, ∀x,y ∈ C.

An operator A : C→ E is said to be α-inverse strongly accretive if, for some α > 0,

〈Ax−Ay, jq(x− y)〉 > α‖Ax−Ay‖q, ∀x,y ∈ C.

In [10], Chidume extended the condition (1.1) to arbitrary real Banach space X. If X is q-uniformly smooth,
then the condition (1.1) becomes

〈x− Tx, jq(x− p)〉 >
(1 − k)q−1

2q−1 ‖x− Tx‖q, x ∈ X, p ∈ Fix(T). (2.1)

Let C be a nonempty subset of real Banach space E. A mapping QC : E→ C is said to be sunny if

QC(QCx+ t(x−QCx)) = QCx

for each x ∈ E and t > 0. A mapping QC : E→ C is said to be a retraction if QCx = x for each x ∈ C.

Lemma 2.2 ([14]). Let C and D be nonempty subsets of a real Banach space E with D ⊂ C and QD : C → D a
retraction from C into D. Then QD is sunny and nonexpansive if and only if

〈z−QDz, j(y−QDz)〉 6 0

for all z ∈ C and y ∈ D.

It is noted that Lemma 2.2 still holds if the normalized duality map is replaced by the general duality
map Jϕ, where ϕ is gauge function.

Remark 2.3. If K is a nonempty closed convex subset of a Hilbert space H, then the nearest point projection
PK from H to K is the sunny nonexpansive retraction.

Lemma 2.4 (Demiclosedness principle, Browder [6]). Let E be a Banach space satisfying Opial’s property, K
be a closed convex subset of E, and T : K → K be a nonexpansive mapping such that F(T) 6= ∅. Then I− T is
demiclosed; that is,

{xn} ⊂ K, xn ⇀ x ∈ K, and (I− T)xn → y implies that (I− T)x = y.
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Lemma 2.5 ([16]). Assume that a Banach space E has a weakly continous duality mapping Jϕ with jauge ϕ.

Φ(‖x+ y‖) 6 Φ(‖x‖) + 〈y, Jϕ(x+ y)〉 (2.2)

for all x,y ∈ E, where Φ(t) =
∫t

0 ϕ(σ)dσt > 0. In particular, for the normilized duality mapping, we have the
important special version of (2.2):

‖x+ y‖2 6 ‖x‖2 + 2〈y, J(x+ y)〉.

Theorem 2.6 ([11]). Let q > 1 be a fixed real number and E be a smooth Banach space. Then the following
statements are equivalent:

(i) E is q-uniformly smooth;
(ii) there is a constant dq > 0 such that for all x,y ∈ E,

‖x+ y‖q 6 ‖x‖q + q〈y , Jq(x)〉+ dq‖y‖q;

(iii) there is a constant c1 > 0 such that

〈x− y , Jq(x) − Jq(y)〉 6 c1‖x− y‖q, ∀ x,y ∈ E.

Lemma 2.7 (Xu, [22]). Assume that {an} is a sequence of nonnegative real numbers such that an+1 6 (1 −
αn)an + σn for all n > 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)
∑∞
n=0 αn =∞,

(b) lim supn→∞ σnαn 6 0 or
∑∞
n=0 |σn| <∞.

Then limn→∞ an = 0.

Lemma 2.8 ([17]). Let tn be a sequence of real numbers that does not decrease at infinity in a sense that there
exists a subsequence tni of tn such that tni 6 tni+1 for all i > 0. For sufficiently large numbers n ∈N, an integer
sequence {τ(n)} is defined as follows:

τ(n) = max{k 6 n : tk 6 tk+1}.

Then, τ(n)→∞ as n→∞ and
max{tτ(n), tn} 6 tτ(n)+1.

Lemma 2.9 (Chang et al., [8]). Let E be a uniformly convex real Banach space. For arbitrary r > 0, let B(0)r :=
{x ∈ E : ||x|| 6 r}, a closed ball with center 0 and radius r > 0. For any given sequence {u1,u2, . . . ,un, . . .} ⊂ B(0)r
and any positive real numbers {λ1, λ2, . . . , λn, . . .} with

∑∞
k=1 λk = 1, then there exists a continuous, strictly

increasing, and convex function
g : [0, 2r]→ R+, g(0) = 0,

such that for any integer i, j with i < j,

∥∥∥ ∞∑
k=1

λkuk

∥∥∥2
6
∞∑
k=1

λk‖uk‖2 − λiλjg(‖ui − uj‖).

Lemma 2.10 ([5]). For any r > 0,

(i) A is accretive if and only if the resolvent JAr of A is single-valued and firmly nonexpansive;
(ii) A is m-accretive if and only if JAr of A is single-valued and firmly nonexpansive and its domain is the entire

E;
(iii) 0 ∈ A(x∗) if and only if x∗ ∈ Fix(JAr ), where Fix(JAr ) denotes the fixed-point set of JAr .
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Lemma 2.11 ([15]). Let C be a nonempty closed convex subset of q-uniformly smooth Banach space E. Let QC be a
sunny nonexpansive retraction from E onto C and letA : C→ E be a mapping. Then VI(C,A) = Fix(QC(I−λA)),
for all λ > 0.

Lemma 2.12. Let C be a nonempty closed convex subset of a q-uniformly smooth Banach space E. Let λ > 0 and

let A be an α-inverse strongly accretive operator of C into E. If 0 < λ <
(qα
dq

) 1
q−1

, where dq is the q-uniformly

smooth constant of E, then QC(I− λA) is a nonexpansive mapping.

Proof. Let x,y ∈ C, we have

‖QC(I− λA)x−QC(I− λA)y‖q = ‖(I− λA)x− (I− λA)y‖q

6 ‖x− y‖q − qλ〈Ax−Ay, Jq(x− y)〉+ dqλq‖Ax−Ay‖q

6 ‖x− y‖q − qλα‖Ax−Ay‖q + dqλq‖Ax−Ay‖q

6 ‖x− y‖q − λ(qα− dqλ
q−1)‖Ax−Ay‖q 6 ‖x− y‖q.

Then QC(I− λA) is a nonexpansive mapping.

3. Main results

We now prove our main results.

Theorem 3.1. For q > 1, let E be a q-uniformly smooth and uniformly convex real Banach space having a weakly
continuous duality map Jϕ. Let C be a nonempty, closed convex cone of E, and QC be a sunny nonexpansive

retraction from E onto C. Let Aj : C→ E be αj-inverse strongly accretive and ηj ∈
[
a,
(qαj
dq

) 1
q−1
]

for some a > 0.

Let Ti : C → C be a ki-demicontractive mapping such that Γ :=
∞⋂
j=1
VI(C,Aj)

⋂ m⋂
i=1

Fix(Ti) 6= ∅ and I− Ti is

demiclosed at 0. Let {xn} be a sequence defined as follows:
x0 ∈ C, chosen arbitrarily,
zn = θ0xn +

∑m
i=1 θiTixn,

yn = β0zn +
∑∞
j=1 βjQC(I− ηjAj)zn,

xn+1 = αn(λnxn) + (1 −αn)yn,

(3.1)

where θi ∈ (0,γ),

γ := min
16i6m

{
1,
( qµ

q−1
i

2(m−1)qdq

) 1
q−1
}

, with µi =
1 − ki

2
,∑m

i=0 θi = 1,
∑∞
j=0 βi = 1, {αn} ⊂ (0, 1), and {λn} ⊂ (0, 1). Assume that the above control sequences satisfy

the following conditions:

(i) limn→∞ αn = 0;
(ii) limn→∞ λn = 1 and

∑∞
n=0(1 − λn)αn =∞.

Then, the sequence {xn} generated by (3.1) converges strongly to x∗ ∈ Γ , where x∗ = QΓ (0).

Proof. Let p ∈ Γ . Using (3.1), inequality (ii) of Theorem 2.6, and inequality (2.1), we have

‖zn − p‖q =
∥∥∥θ0(xn − p) +

m∑
i=1

θi(Tixn − p)
∥∥∥q
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=
∥∥∥θ0(xn − p) +

m∑
i=1

θi(Tixn − xn) +

m∑
i=1

θi(xn − p)
∥∥∥q

=
∥∥∥xn − p+

m∑
i=1

θi(Tixn − xn)
∥∥∥q

6 ‖xn − p‖q − q
m∑
i=1

θi〈xn − Tixn, Jq(xn − p)〉+ dq
∥∥∥ m∑
i=1

θi(xn − Tixn)
∥∥∥q.

Hence,

‖zn − p‖q 6 ‖xn − p‖q − q
m∑
i=1

λiµ
q−1
i ‖xn − Tixn‖q + dq

∥∥∥ m∑
i=1

θi(Tixn − xn)
∥∥∥q. (3.2)

We have, ∥∥∥ m∑
i=1

θi(Tixn − xn)
∥∥∥q 6 2(m−1)q

m∑
i=1

θ
q
i

∥∥∥Tixn − xn

∥∥∥q. (3.3)

Combining inequalities (3.2) and (3.3), it then follows that∥∥∥zn − p
∥∥∥q 6

∥∥∥xn − p
∥∥∥q − q m∑

i=1

θiµ
q−1
i

∥∥∥xn − Tixn

∥∥∥q + dq2(m−1)q
m∑
i=1

θ
q
i

∥∥∥Tixn − xn

∥∥∥q.

=
∥∥∥xn − p

∥∥∥q − m∑
i=1

θi

[
qµ
q−1
i − 2(m−1)qdqθ

q−1
i

]∥∥∥xn − Tixn

∥∥∥q.

(3.4)

Since qµq−1
i − 2(m−1)qdqθ

q−1
i > 0, ∀ i = 1, . . . ,m, we obtain,

‖zn − p
∥∥∥ 6 ‖xn − p

∥∥∥.

From (3.1) and Lemmas 2.11 and 2.12, it follows that

‖yn − p‖ = ‖β0zn +

∞∑
j=1

βjQC(I− ηjAj)zn − p‖

6 β0‖zn − p‖+
∞∑
j=1

βi‖QC(I− ηjAj)zn − p‖ 6 ‖zn − p‖.

Therefore, we have
‖yn − p‖ 6 ‖zn − p‖ 6 ‖xn − p‖. (3.5)

Hence,

‖xn+1 − p‖ = ‖αn(λnxn) + (1 −αn)yn − p‖
6 αnλn‖xn − p‖+ (1 −αn)‖yn − p‖+ (1 − λn)αn‖p‖
6 αnλn‖xn − p‖+ (1 −αn)‖xn − p‖+ (1 − λn)αn‖p‖
6 [1 − (1 − λn)αn]‖xn − p‖+ (1 − λn)αn‖p‖ 6 max {‖xn − p‖, ‖p‖}.

By induction, it is easy to see that

‖xn − p‖ 6 max {‖x0 − p‖, ‖p‖}, n > 1.

Consequently, using inequality (3.4) and the fact that ‖yn − p‖ 6 ‖xn − p‖, we obtain,

‖xn+1 − p‖q = ‖αn(λnxn) + (1 −αn)yn − p‖q
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= ‖yn − p+αn((λnxn) − yn)‖q

6 ‖yn − p‖q + qαn〈(λnxn) − yn, Jq(yn − p)〉+ dq
∥∥∥αn((λnxn) − yn)∥∥∥q

6 ‖yn − p‖q + qαn‖(λnxn) − yn‖‖yn − p‖q−1 + dqα
q
n

∥∥∥(λnxn) − yn∥∥∥q
6
∥∥∥xn − p

∥∥∥q − m∑
i=1

θi

[
qµ
q−1
i − 2(m−1)qdqθ

q−1
i

]∥∥∥xn − Tixn

∥∥∥q
+ qαn‖(λnxn) − yn‖‖yn − p‖q−1 + dqα

q
n

∥∥∥(λnxn) − yn∥∥∥q.

Thus, we get

m∑
i=1

θi

[
qµ
q−1
i − 2(m−1)qdqθ

q−1
i

]∥∥∥xn − Tixn

∥∥∥q
6
∥∥∥xn − p

∥∥∥q − ∥∥∥xn+1 − p
∥∥∥q + qαn‖(λnxn) − yn‖‖yn − p‖q−1 + dqα

q
n‖(λnxn) − yn‖q.

Since {yn} and {(λnxn)} are bounded, then there exists a constant K > 0 such that for every i, 1 6 i 6 m,

m∑
i=1

θi

[
qµ
q−1
i − 2(m−1)qdqθ

q−1
i

]
‖xn − Tixn‖q 6 ‖xn − p‖q − ‖xn+1 − p‖q +αnK. (3.6)

Now we prove that {xn} converges strongly to x∗. We divide the proof into two cases.

Case 1. Assume that the sequence {‖xn− p‖} is monotonically decreasing. Then {‖xn− p‖} is convergent.
Clearly, we have

‖xn − p‖q − ‖xn+1 − p‖q → 0.

It then implies from (3.6) that

lim
n→∞

m∑
i=1

θi

[
qµ
q−1
i − 2(m−1)qdqθ

q−1
i

]∥∥∥xn − Tixn

∥∥∥q = 0.

Since qµq−1
i − 2(m−1)qdqθ

q−1
i > 0, ∀ i = 1, . . . ,m, we have

lim
n→∞

∥∥∥xn − Tixn

∥∥∥ = 0. (3.7)

Now, using the fact that
∑m
i=0 θi = 1, we have,

‖zn − xn‖ = ‖θ0xn +

m∑
i=1

θiTixn − xn‖ 6 ‖Tixn − xn‖.

Therefore, from (3.7) we have
lim
n→∞ ‖zn − xn‖ = 0.

Next, we prove that lim supn→+∞〈x∗, Jϕ(x∗ − xn)〉 6 0. Since E is reflexive and {xn}n>0 is bounded there
exists a subsequence {xnj} of {xn} such that xnj converges weakly to a in C and

lim sup
n→+∞ 〈x∗, Jϕ(x∗ − xn)〉 = lim

j→+∞〈x∗, Jϕ(x∗ − xnj)〉.
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From (3.7) and I− Ti being demiclosed, we obtain a ∈
m⋂
i=1

Fix(Ti). Let j > 0, by using Lemma 2.9, the fact

that QC(I− ηjAj) is nonexpansive, and (3.5), we have

‖yn − p‖2 = ‖β0zn +

∞∑
j=1

βiQC(I− ηjAj)zn − p‖2

6 β0‖zn − p‖2 +

∞∑
j=1

βj‖QC(I− ηjAj)zn − p‖2 −β0βjg1(‖QC(I− ηjAj)zn − zn‖)

6 ‖xn − p‖2 −β0βjg1(‖QC(I− ηjAj)zn − zn‖).

Hence,

‖xn+1 − p‖2 = ‖αn(λnxn) + (1 −αn)yn − p‖2

= ‖αnλn
(
xn − p

)
+ (1 −αn)

(
yn − p

)
− (1 − λn)αnp‖2

6 ‖αn
(
λnxn − λnp

)
+ (1 −αn)

(
yn − p

)
‖2 + 2(1 − λn)αn〈p, J(p− xn+1)〉

6 αnλ
2
n‖xn − p‖2 + (1 −αn)‖yn − p‖2 + 2(1 − λn)αn〈p, J(p− xn+1)〉

6 αnλn‖xn − p‖2 + (1 −αn)
[
‖xn − p‖2 −β0βjg1(‖QC(I− ηjAj)zn − zn‖)]

+ 2(1 − λn)αn〈p, J(p− xn+1)〉
6 [1 − (1 − λn)αn]‖xn − p‖2 − (1 −αn)β0βjg1(‖QC(I− ηjAj)zn − zn‖)
+ 2(1 − λn)αn〈p, J(p− xn+1)〉.

Since {xn} is bounded, then there exists a constant D > 0 sucht that

(1 −αn)β0βjg1(‖QC(I− ηjAj)zn − zn‖) 6 ‖xn − p‖2 − ‖xn+1 − p‖2 +αnD.

Thus we have
lim
n→∞g1(‖QC(I− ηjAj)zn − zn‖) = 0.

Using property of g1, we have
lim
n→∞ ‖QC(I− ηjAj)zn − zn‖ = 0. (3.8)

From (3.8) and Lemma 2.4, we obtain a ∈
∞⋂
i=1

Fix(QC(I − ηjAj)). Using Lemma 2.11, we have a ∈
∞⋂
i=1
VI(C,Aj). Therefore, a ∈ Γ . On the other hand, using x∗ = QΓ (0) and the assumption that the duality

mapping Jϕ is weakly continuous, we have,

lim sup
n→+∞ 〈x∗, Jϕ(x∗ − xn)〉 = lim

j→+∞〈x∗, Jϕ(x∗ − xnj)〉 = 〈x∗, Jϕ(x∗ − a)〉 6 0.

Finally, we show that xn → x∗. In fact, since Φ(t) =
∫t

0 ϕ(σ)dσ, ∀t > 0, and ϕ is a gauge function, then
for 1 > k > 0, Φ(kt) 6 kΦ(t). From (3.1) and Lemma 2.5, we get that

Φ(‖xn+1 − x
∗‖) = Φ(‖αn(λnxn) + (1 −αn)yn − x∗‖)

6 Φ(‖αnλn(xn − x∗) + (1 −αn)(yn − x∗)‖) + (1 − λn)αn〈x∗, Jϕ(x∗ − xn+1)〉
6 Φ(αnλn‖xn − x∗‖+ ‖(1 −αn)(yn − x∗)‖) + (1 − λn)αn〈x∗, Jϕ(x∗ − xn+1)〉
6 Φ(αnλn‖xn − x∗‖+ (1 −αn)‖xn − x∗‖) + (1 − λn)αn〈x∗, Jϕ(x∗ − xn+1)〉
6 Φ((1 − (1 − λn)αn)‖xn − x∗‖) + (1 − λn)αn〈x∗, Jϕ(x∗ − xn+1)〉
6 [1 − (1 − λn)αn]Φ(‖xn − x∗‖) + (1 − λn)αn〈x∗, Jϕ(x∗ − xn+1)〉.

From Lemma 2.7, its follows that xn → x∗.
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Case 2. Suppose that Case 1 fails. Set Bn = ‖xn − x∗‖ and τ : N → N be a mapping for all n > n0
(for some n0 large enough) by τ(n) = max{k ∈ N : k 6 n, Bk 6 Bk+1}. We have τ is a non-decreasing
sequence such that τ(n)→∞ as n→∞ and Bτ(n) 6 Bτ(n)+1 for n > n0. Let i ∈N∗, from (3.6), we have

m∑
i=1

θi

[
qµ
q−1
i − 2(m−1)qdqθ

q−1
i

]∥∥∥xτ(n) − Tixτ(n)∥∥∥q 6 ατ(n)K.

The last inequality implies

lim
n→∞

m∑
i=1

λi

[
qµ
q−1
i − 2(m−1)qdqλ

q−1
i

]∥∥∥xτ(n) − Tiτ(n)∥∥∥q = 0.

Since qµq−1
i − 2(m−1)qdqλ

q−1
i > 0, ∀ i = 1, . . . ,m, we have

lim
n→∞

∥∥∥xτ(n) − Tiτ(n)∥∥∥q = 0.

By same argument as in Case 1, we can show that lim supτ(n)→+∞〈x∗, Jϕ(x∗ − xτ(n))〉 6 0. We have for
all n > n0,

0 6 Φ(‖xτ(n)+1 − x
∗‖) −Φ(‖xτ(n) − x∗‖) 6

(
1 − λτ(n)

)
ατ(n)[−Φ(‖xτ(n) − x∗‖) + 〈x∗, Jϕ(x∗ − xτ(n)+1)〉],

which implies that
Φ(‖xτ(n) − x∗‖) 6 〈x∗, Jϕ(x∗ − xτ(n)+1)〉.

Then, we have
lim
n→∞Φ(‖xτ(n) − x∗‖) = 0. (3.9)

Using properties of Φ, (3.9), and the fact that Bτ(n) = ‖xτ(n) − x∗‖, we have

lim
n→∞Bτ(n) = lim

n→∞Bτ(n)+1 = 0.

We have for all n > n0,
0 6 Bn 6 max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, limn→∞ Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.

We now apply Theorem 3.1 and Lemma 2.10 for solving system of variational inequalities coupled
with inclusion problems involving a finite family of accretive operators.

Theorem 3.2. For q > 1, let E be a q-uniformly smooth and uniformly convex real Banach space having a weakly
continuous duality map Jϕ. Let C be a nonempty, closed convex cone of E and QC be a sunny nonexpansive

retraction from E onto C. Let Aj : C → E being αj-inverse strongly accretive and ηj ∈
[
a,
(qαj
dq

) 1
q−1
]

for some

a > 0. Let Bi : D(Bi) ⊂ C → 2E be an accretive operator such that D(Bi) ⊂ C ⊂
⋂
r>0 R(I+ rBi) such that

Γ :=
∞⋂
j=1
VI(C,Aj)

⋂ m⋂
i=1
Bi

−10 6= ∅. Let {xn} be a sequence defined as follows:


x0 ∈ C, chosen arbitrarily,
zn = θ0xn +

∑m
i=1 θiJ

Bi
r xn,

yn = β0zn +
∑∞
j=1 βjQC(I− ηjAj)zn,

xn+1 = αn(λnxn) + (1 −αn)yn,

(3.10)

∑m
i=0 θi = 1,

∑∞
j=0 βi = 1, {αn} ⊂ (0, 1), and {λn} ⊂ (0, 1). Assume that the above control sequences satisfy

the following conditions:
(i) limn→∞ αn = 0;

(ii) limn→∞ λn = 1 and
∑∞
n=0(1 − λn)αn =∞.

Then, the sequence {xn} generated by (3.10) converges strongly to x∗ ∈ Γ , where x∗ = QΓ (0).
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4. Application to systems of constrained convex minimization problems

In this section, we study the problem of finding a common solution of an infinite family of con-
vex minimization problems coupled with fixed point problem involving finite family of demicontractive
mappings in real Hilbert spaces. Precisely, find an x∗ with the property:

x∗ ∈
( ∞⋂
j=1

argminx∈C gj(x)
)⋂ m⋂

i=1

Fix(Ti). (4.1)

Lemma 4.1 (Baillon and Haddad, [4]). Let H be a real Hilbert space, g a continuously Fréchet differentiable
convex functional on H, and ∇g the gradient of g. If ∇g is 1

α -Lipschitz continuous, then ∇g is α-inverse strongly
monotone.

Remark 4.2. A necessary condition of optimality for a point x∗ ∈ C to be a solution of the minimization

problem (4.1) is that x∗ ∈
( ∞⋂
j=1
VI(∇gj,C)

)⋂ m⋂
i=1

Fix(Ti).

Hence, one has the following result.

Theorem 4.3. Let H be a real Hilbert space. Let C be a nonempty closed convex cone of H. Let gj : C → R be a

continuously Fréchet differentiable convex functional on C with a
1
αj

-Lipschitz continuous ∇gj. Let Ti : C → C

be a ki-demicontractive and I− Ti is demiclosed at 0. Assume that the Problem (4.1) is consistent. Let {xn} be a
sequence defined as follows: 

x0 ∈ C, choosen arbitrarily,
zn = θ0xn +

∑m
i=1 θiTixn,

yn = β0zn +
∑∞
j=1 βjPC(I− ηj∇gj)zn,

xn+1 = αn(λnxn) + (1 −αn)yn.

(4.2)

Assume that the above control sequences satisfy the following conditions:

(i)
∑m
i=0 θi = 1,

∑∞
j=0 βi = 1, ηj ∈]0, 2αj];

(ii) θi ∈ [a,b] ⊂ (0, ki), limn→∞ αn = 0;
(iii) limn→∞ λn = 1 and

∑∞
n=0(1 − λn)αn =∞.

Then, the sequence {xn} generated by (4.2) converges strongly to a solution of Problem (4.1).

Proof. We set H = E, PC = QC, and ∇gj = Aj, into Theorem 3.1. Then, the proof follows from Theorem
3.1 and Remark 4.2.
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