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Abstract

In this article, we investigate the duality theorems for a class of non-smooth semidefinite multiobjective programming
problems with equilibrium constraints (in short, NSMPEC) via convexificators. Utilizing the properties of convexificators, we
present Wolfe-type (in short, WMPEC) and Mond-Weir-type (in short, MWMPEC) dual models for the problem NSMPEC.
Furthermore, we establish various duality theorems, such as weak, strong, and strict converse duality theorems relating to the
primal problem NSMPEC and the corresponding dual models, in terms of convexificators. Numerous illustrative examples are
furnished to demonstrate the importance of the established results. Furthermore, we discuss an application of semidefinite
multiobjective programming problems in approximating K-means-type clustering problems. To the best of our knowledge,
duality results presented in this paper for NSMPEC using convexificators have not been explored before.
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1. Introduction

Multiobjective programming problems (in short, MOP) hold significant importance in practical opti-
mization scenarios, such as business, economics, and various scientific and engineering fields (see, for
instance, [6, 36] and the references mentioned therein). It plays a crucial role in making optimal de-
cisions when multiple conflicting objectives must be simultaneously optimized. Several authors have
established various results for MOP in various settings (see, for instance, [19, 38, 58, 63, 64] and the refer-
ences mentioned therein). Nonlinear semidefinite programming problems are essentially a generalization
of nonlinear programming problems. In this case, vector variables are substituted with symmetric pos-
itive semidefinite matrices. In the past few years, the study of semidefinite programming problems has
emerged as a very significant area of modern research, for instance, see [1, 5, 8, 20, 21, 30, 47, 65, 66] and
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numerous authors have been studied comprehensively this problem, for instance, see [16, 50, 52, 53, 68]
and the references mentioned therein.

In mathematical programming problems, convexity plays a crucial role as it ensures that a stationary
point is a global minimum and first-order necessary optimality conditions are also sufficient for a point
to be a global minimum. To deal with the nonconvex nature of many real-world optimization problems,
several generalizations of convex functions have been introduced (see, for instance, [2, 34, 57], and the
references mentioned therein).

In numerous real-world optimization problems in the field of science, engineering, and various other
fields of modern research, non-smooth phenomena occur naturally. To deal with the non-smooth nature
of mathematical programming problems, concepts of generalized derivatives and subdifferentials have
been developed and studied extensively, for instance, see [9, 11, 35]. Convexificators are a weaker version
of the various well-known subdifferentials, such as Clarke [9], Michel-Penot [35], Ioffe-Mordukhovich
[25, 40], and Treiman [55]. In general, many of the familiar subdifferentials, such as [9, 25, 35, 40, 55] for
a locally Lipschitz function can be considered as convexificators, and these established subdifferentials
may include the convex hull of a convexificator, for instance, see [10, 12, 13, 26, 35]. Convexificators have
been used to extend various results in non-smooth analysis, for instance, see [28, 32, 33, 46, 48, 59, 70].
In non-smooth semidefinite programming problems (in short, NSDP), Golestani and Nobakhtian [22]
introduced constraint qualifications for NSDP and derived necessary and sufficient optimality conditions.
Mishra et al. [37] presented optimality and duality results for multiobjective NSDP. Lai et al. [29] used
convexificators to establish optimality conditions for multiobjective NSDP incorporated with vanishing
constraints. Upadhyay and Singh [61] established optimality and duality for non-smooth semidefinite
multiobjective fractional programming problems using convexificators.

In optimization theory, a mathematical programming problem incorporated with some complemen-
tarity constraints or variational inequality constraints is commonly referred to as a mathematical pro-
gramming problem with equilibrium constraints (in short, MPEC). Such problems frequently arise in
certain equilibrium applications in engineering and economics that are modelled by variational inequal-
ities, such as chemical engineering [44], telecommunication [45], hydro-economic river basin model
[7], etc. In the past few years, numerous authors have studied MPEC extensively, for instance, see
[14, 15, 17, 24, 31, 41, 49, 69] and the references cited therein. Using convexificators, Ardali et al. [3]
established necessary and sufficient optimality conditions for non-smooth single-objective MPEC. Later,
Ardali et al. [4] established optimality criteria for non-smooth multiobjective MPEC with equilibrium
constraints.

Duality is the principle through which the same optimization problem can be viewed differently. Du-
ality plays a crucial role in mathematical programming problems as sometimes it is easier to solve the
dual problem rather than the primal problem; for instance, see [34, 39, 67]. Wolfe [67] introduced Wolfe
duality while Mond and Weir [39] introduced Mond-Weir type duality for differentiable scalar functions,
two very popular dual models. Under various assumptions of generalized convexity and subdifferentials,
these models were further extended for non-smooth functions in both scalar and multiobjective math-
ematical programming problems. Guo et al. [23] discussed the Wolfe-type dual model for MPEC and
established various duality results for MPEC. Singh et al. [51] established various duality results for
multiobjective MPEC. Utilizing convexificators, Pandey and Mishra [42] established several duality re-
sults in the context of non-smooth MPEC. Later, Joshi et al. [27] derived sufficient optimality criteria and
duality theorems for non-smooth MPEC using generalized convexity. In the past few years, numerous
authors have established various results with equilibrium constraints in various settings; for instance, see
[18, 54, 56, 60] and the references mentioned therein.

It is worth mentioning that the duality for MPEC using convexificators in Euclidean space has been
studied by numerous researchers, for instance, see [27, 42] and the references mentioned therein. However,
the duality theorems for NSMPEC have not been explored yet. The main objective of the present article
is to address this research gap by formulating WMPEC and MWMPEC dual models and deriving weak,
strong, and strict converse duality theorems that relate the corresponding dual models with the primal
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problem NSMPEC.
Motivated by the works of [4, 27, 42, 51], a class of NSMPEC using convexificators is investigated

in the present article. We formulate WMPEC and MWMPEC dual models and derive weak, strong,
and strict converse duality theorems that relate the corresponding dual models to the primal problem
NSMPEC. Several illustrative non-trivial examples are furnished to demonstrate the significance of the
various results established throughout the article.

The primary contributions and novel aspects of the current article are twofold. In the first fold, we
extend and generalize the duality theorems derived in [27, 42] from Euclidean space to a more general
space, namely, the space of symmetric positive semidefinite matrices. In the second fold, we generalize
the duality theorems established in [37] for a more general programming problem NSMPEC. To the best
of our knowledge, this is for the first time that the weak, strong, and strict converse duality theorems for
NSMPEC are explored using convexificators.

The present article is structured as follows. In Section 2, we revisit some basic definitions and prelim-
inary concepts related to semidefinite matrices and convexificators that will be utilized in the subsequent
sections of the article. In Section 3, we recall the optimality criteria developed for NSMPEC. In Section
4, we formulate WMPEC for NSMPEC and derive various duality results. In Section 5, we formulate
MWMPEC for NSMPEC and derive the duality results for NSMPEC. In Section 6, an application of
semidefinite programming problems with equilibrium in approximating K-Means-type clustering prob-
lem is discussed. In Section 7, conclusions are drawn and some future research directions are discussed.

2. Mathematical preliminaries and definitions

In this article, the symbols Rn and N are used to denote the n-dimensional Euclidean space and
the set consisting of all natural numbers, respectively. Let R = R ∪ {∞}. The space of n× n symmetric
matrices, symmetric positive semidefinite matrices, and symmetric positive definite matrices are denoted
by Sn, Sn+, and Sn++, respectively. Let p,q ∈ Rn. Then the following notation is used in the article:

p ≺ q⇐⇒ pj < qj, ∀j ∈ {1, . . . ,m}, p � q⇐⇒

{
pj 6 qj, ∀j ∈ {1, . . . ,m},
pr < qr, for at least one r ∈ {1, . . . ,m}.

For A , Z ∈ Sn, we define the inner product between A and Z as 〈A , Z 〉 = trace(A Z ). The norm
related to the inner product is referred to as the Frobenius norm, denoted by

‖ A ‖F= tr(A A )1/2 =

 n∑
i,j=1

|aij|
2

1/2

.

Let B be a nonempty subset of Sn. We use the symbols clB, coB, and coneB, to denote the closure of B,
convex hull of B, and the convex cone (including the origin) generated by B, respectively. Now, we define
the following sets that will be utilized in the subsequent sections:

B− := {A ∈ Sn : 〈A , Z 〉 6 0, ∀Z ∈ B} , Bs := {A ∈ Sn : 〈A , Z 〉 < 0, ∀Z ∈ B} .

We recall the following definitions from [22, 37].

Definition 2.1. Let B be a nonempty subset of Sn and A ∈ clB. Then, the contingent cone T(B, A ) at A
is defined as

T(B, A ) := {V ∈ Sn : ∃δn ↓ 0 & Vn → V such that A + δnVn ∈ B, ∀n ∈N} .

Definition 2.2. LetΦ : Sn → R be a function and A ∈ dom(Φ), where dom(Φ) := {A ∈ Sn : Φ(A ) 6=∞}.
Then we define the lower and upper Dini derivatives of Φ at A in the direction V ∈ Sn as:

Φ−(A ; V) := lim inf
λ↓0

Φ(A + λV) −Φ(A )

λ
, Φ+(A ; V) := lim sup

λ↓0

Φ(A + λV) −Φ(A )

λ
.
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Definition 2.3. Consider a function Φ : Sn → R. We say that Φ has a upper semi-regular convexificator
(USRC), ∂∗Φ(A ) ⊂ Sn at A ∈ dom(Φ) if ∂∗Φ(A ) is a closed set and for every V ∈ Sn we have

Φ+(A ; V) 6 sup
ζ∈∂∗Φ(A )

〈ζ, V〉.

Definition 2.4. Consider a function Φ : Sn → R. We say that Φ has a lower semi-regular convexificator
(LSRC), ∂∗Φ(A ) ⊂ Sn at A ∈ dom(Φ) if the set ∂∗Φ(A ) is a closed set and for every V ∈ Sn we have

Φ−(A ; V) > inf
ζ∈∂∗Φ(A )

〈ζ, V〉.

Definition 2.5. Consider a function Φ : Sn → R. Let A ∈ Sn such that Φ(A ) is finite and Φ admits a
convexificator ∂∗Φ(A ) at A . Then,

• Φ is ∂∗-convex at A if and only if ∀V ∈ Sn, Φ(V ) −Φ(A ) > 〈ξ, V −A 〉, ∀ξ ∈ ∂∗Φ(A );

• Φ is strictly ∂∗-convex at A if and only if ∀V ∈ Sn, Φ(V ) −Φ(A ) > 〈ξ, V −A 〉, ∀ξ ∈ ∂∗Φ(A );

• Φ is ∂∗-pseudoconvex at A if and only if ∀V ∈ Sn, Φ(V ) < Φ(A ) =⇒ 〈ξ, V − A 〉 < 0, ∀ξ ∈
∂∗Φ(A );

• Φ is strictly ∂∗-pseudoconvex at A if and only if ∀V ( 6= A ) ∈ Sn, Φ(V ) 6 Φ(A ) =⇒ 〈ξ, V −A 〉 <
0, ∀ ξ ∈ ∂∗Φ(A );

• Φ is ∂∗-quasiconvex at A if and only if ∀V ∈ Sn, Φ(V ) 6 Φ(A ) =⇒ 〈ξ, V − A 〉 6 0, ∀ξ ∈
∂∗Φ(A ).

The subsequent Lemma from [22] will be utilized in the sequel.

Lemma 2.6. Let A ∈ Sn such that 〈A , Z 〉 > 0, ∀Z ∈ Sn+. Then A ∈ Sn+.

3. Optimality conditions

In this section, we recall the NSMPEC-tailored ACQ, GS-stationary point and necessary as well as suf-
ficient optimality conditions established for non-smooth semidefinite multiobjective programming prob-
lems with equilibrium constraints (NSMPEC) by Upadhyay et al. [62].

Consider the following non-smooth semidefinite multiobjective programming problem with equilib-
rium constraints:

NSMPEC Minimize Φ(A ) = (Φ1(A ), . . . ,Φr(A )),
subject to Ψ(A ) = (Ψ1(A ), . . . ,Ψp(A )) 6 0,

Θ(A ) = (Θ1(A ), . . . ,Θq(A )) = 0,
K(A ) = (K1(A ), . . . , Km(A )) > 0,
L(A ) = (L1(A ), . . . , Lm(A )) > 0,

where Φi : Sn → R, i ∈ I = {1, . . . , r}, and Ψi : Sn → R, i ∈ I∗ = {1, . . . ,p}, Θi : Sn → R, i ∈ J = {1, . . . ,q},
Ki : Sn → R, i ∈M = {1, . . . ,m}, and Li : Sn → R, i ∈M = {1, . . . ,m} are extended real valued functions.
We assume that each function admits USRC. Let IΨ := {i|Ψi(A ) = 0}. We define the set of all feasible
solutions F of NSMPEC as

F := {A ∈ Sn+|Ψ(A ) 6 0, Θ(A ) = 0, K(A ) > 0, L(A ) > 0, Ki(A )Li(A ) = 0, i ∈M}.

We recall the following definitions of Pareto efficient solutions, local Pareto efficient solutions, and weak
Pareto efficient solutions for NSMPEC from [62].
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Definition 3.1. Let A ∈ F . Then A is referred to as a Pareto efficient solution of NSMPEC if there does
not exist any other A ∈ F such that Φ(A ) � Φ(A ).

Definition 3.2. Let A ∈ F . Then A is referred to as a local Pareto efficient solution of NSMPEC if for
any neighbourhood N of A there does not exist any other A ∈ N ∩F such that Φ(A ) � Φ(A ).

Definition 3.3. Let A ∈ F . Then A is referred to as a weak Pareto efficient solution of NSMPEC if there
does not exist any other A ∈ F such that Φ(A ) ≺ Φ(A ).

For convenience, we define the subsequent index sets which will be utilized in the upcoming sections
of the article:

δ := δ(A ) := {i|Ki(A ) = 0, Li(A ) > 0},

ω := ω(A ) := {i|Ki(A ) = 0, Li(A ) = 0},

γ := γ(A ) := {i|Ki(A ) > 0, Li(A ) = 0}.

The set ω is known as the degenerate set. We say that the feasible point A satisfies the strict complemen-
tarity condition if ω is empty. Throughout the article, we are considering the case where ω is nonempty.
For convenience, we introduce the following notation which will be utilized in the upcoming sections of
the article:

F :=
⋃
i∈I

co∂∗Φi(A ),

Fi :=
⋃

j∈I\{i}

co∂∗Φj(A ),

G :=
⋃
i∈IΨ

co∂∗Ψi(A ),

H :=
⋃
i∈J

co∂∗Θi(A )∪ co∂∗(−Θi)(A ),

Gδ :=
⋃
i∈δ

co∂∗Ki(A )∪ co∂∗(−Ki)(A ),

Hγ :=
⋃
i∈γ

co∂∗Li(A )∪ co∂∗(−Li)(A ),

Gω :=
⋃
i∈ω

co∂∗Ki(A ),

Hω :=
⋃
i∈ω

co∂∗Li(A ),

(GH)ω :=
⋃
i∈ω

co∂∗(−Ki)(A )∪ co∂∗(−Li)(A ),

Γ(A ) := (Fi0)− ∩ G− ∩H− ∩ G−
δ ∩H

−
γ ∩ G−

ω ∩H−
ω ∩ Sn+,

T (A ) := (Fi0)− ∩ G− ∩H− ∩ G−
δ ∩H

−
γ ∩ G−

ω ∩H−
ω ∩ (GH)−ω ∩ Sn+,

Λ(A ) := (Fi0)s ∩ Gs ∩Hs ∩ Gsδ ∩Hsγ ∩ Gsω ∩Hsω ∩ (GH)sω,

S := {A ∈ Sn+|Ψ(A ) 6 0, Θ(A ) := 0, K(A ) > 0, L(A ) > 0, Ki(A )Li(A ) = 0, i ∈M},

Si := {A ∈ Sn+|Φj(A ) 6 Φj(A ), ∀j ∈ I\{i}, Ψ(A ) 6 0, Θ(A ) = 0,
K(A ) > 0, L(A ) > 0, Ki(A )Li(A ) = 0, i ∈M}.

We recall the following definition of NSMPEC-tailored ACQ, introduced by Upadhyay et al. [62].
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Definition 3.4 (NSMPEC-tailored ACQ). The NSMPEC-tailored ACQ is satisfied at A ∈ S if for every
i0 ∈ I,

Di0 := cone co Fi0 + cone co G+ cone co H+ cone co Gδ + cone co Hγ

+ cone co Gω + cone co Hω + cone co (GH)ω − S+
n

is closed and T (A ) ⊂ T(Si0 , A ).

We recall the following definition of GS-stationary point of NSMPEC from [62].

Definition 3.5 (GS-stationary). We say that A ∈ F is a generalized strong stationary (GS-stationary)
point if there exist vectors ν = (νΦ,νΨ,νΘ,νK,νL) ∈ Rr+p+q+2m, τ = (τΘ, τK, τL) ∈ Rq+2m, and U ∈ Sn+,
such that

0 ∈
∑
i∈I

νΦi co∂∗Φ(A ) +
∑
i∈IΨ

νΨi co∂∗Ψi(A ) +
∑
i∈J

[νΘi co∂∗Θi(A ) + τΘi co∂∗(−Θi)(A )]

+
∑
i∈M

[νK
i co∂∗(−Ki)(A ) + νL

i co∂∗(−Li)(A )] +
∑
i∈M

[τK
i co∂∗Ki(A ) + τL

i co∂∗Li(A )] − U,

〈U, A 〉 = 0, νΦi > 0, i ∈ I, νΨi > 0, i ∈ IΨ, νΘi , τΘi > 0, i ∈ J, νK
i , ν

L
i , τ

K
i , τ

L
i ,> 0, i ∈M,

νK
γ = νL

δ = τ
K
γ = τL

δ = 0, ∀i ∈ ω, τK
i = 0, τL

i = 0.

In the following theorem Upadhyay et al. [62] established that the GS-stationary condition for NSM-
PEC is the necessary first-order optimality condition for a locally Pareto efficient solution of NSMPEC.

Theorem 3.6. Suppose that A is a locally Pareto efficient solution of NSMPEC. Suppose that at A , Φi, i ∈ I,
Ψi, i ∈ IΨ ±Θi, i ∈ J, ±Ki, i ∈ M, and ±Li, i ∈ M admit bounded USRC. Assume that NSMPEC-tailored
ACQ holds at A . Then A is a GS-stationary point.

Under the assumptions of generalized convexity, Upadhyay et al. [62] established sufficient optimality
conditions for weak Pareto efficient and Pareto efficient solutions of NSMPEC.

Theorem 3.7. Let us assume that A ∈ F is a GS-stationary point of NSMPEC. Consider the index sets:

δ+τ := {i ∈ δ : τK
i > 0}, γ+τ := {i ∈ γ : τL

i > 0}.

Assume that Φi, i ∈ I are ∂∗-pseudoconvex and Ψi, i ∈ IΨ, ±Θi, i ∈ J, (−Ki), i ∈ (δ ∪ω), and (−Li),
i ∈ (γ∪ω), are ∂∗-quasiconvex at A . Then,

1. if δ+τ ∪ γ+τ = ∅, then A is a weak Pareto efficient solution of NSMPEC;
2. if Φi, i ∈ I, are strictly ∂∗-pseudoconvex at A , then A is a Pareto efficient solution of NSMPEC.

4. Wolfe duality

Within the section, we present the WMPEC dual model for the primal problem NSMPEC. Furthermore,
we establish the duality theorems that relate WMPEC with NSMPEC. We introduce the index sets that
are utilized in the sequel:

ωK
τ := {i ∈ ω : τK

i > 0, τL
i = 0}, ωL

τ := {i ∈ ω : τK
i = 0, τL

i > 0}.

Now, we formulate the WMPEC problem related to the NSMPEC as

Maximize
(Z ,ν)

{
Φ(Z ) +

∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

[νΘi Θi(Z ) + τΘi (−Θi)(Z )]

+
∑
i∈M

[νK
i(−Ki)(Z ) + νL

i(−Li)(Z )] − 〈U, Z 〉
}

,
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subject to
(
Z ,νΦ,νΨ,νΘ, τΘ,νK,νL, U

)
∈ FW , where Φ(Z ) = (Φ1(Z ), . . . ,Φr(Z )) and FW denotes the

set of all feasible solutions of WMPEC and is defined as:

FW :=

{
ν = (νΦ,νΨ,νΘ, τΘ,νK,νL, U) ∈ Rr ×Rp ×Rq ×Rq ×Rm ×Rm × Sn+,

Z ∈ Sn+ : 0 ∈
∑
i∈I

νΦi co∂
∗Φi(Z ) +

∑
i∈IΨ

νΨi co∂
∗Ψi(Z ) +

∑
i∈J

[νΘi co∂
∗Θi(Z )

+ τΘi co∂
∗(−Θi)(Z )] +

∑
i∈M

[νK
ico∂

∗(−Ki)(Z ) + νL
ico∂

∗(−Li)(Z )] − U,

νΦi > 0, i ∈ I, νΨi > 0, i ∈ IΨ, νΘi , τΘi > 0, i ∈ J, νK
i , ν

L
i , τ

K
i , τ

L
i > 0, i ∈M,

νK
γ = νL

δ = τ
K
γ = τL

δ = 0, τK
i = τ

L
i = 0,∀i ∈ ω

}
.

In the subsequent theorems, we derive various duality theorems, such as weak, strong, and strict converse
duality theorems that relate WMPEC and NSMPEC.

Theorem 4.1 (Weak duality). Let A ∈ F and let (Z ,ν) ∈ FW . Suppose that Φi, i ∈ I, Ψi, i ∈ IΨ, ±Θi,
i ∈ J, (−Ki), i ∈ (δ ∪ω), (−Li), i ∈ (γ ∪ω) admit bounded USRC and are ∂∗-convex functions at Z . Assume
that ωK

τ ∪ωL
τ ∪ δ+τ ∪ γ+τ = ∅. Then, we have

Φ(A ) > Φ(Z ) +
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

[νΘi Θi(Z ) + τΘi (−Θi)(Z )]

+
∑
i∈M

[νK
i(−Ki)(Z ) + νL

i(−Li)(Z )] − 〈U, Z 〉.

Proof. Let A be any feasible solution of NSMPEC. Since Φi, i ∈ I is ∂∗-convex at Z , then we have

Φi(A ) −Φi(Z ) > 〈ξ1
i, A −Z 〉, ∀ξ1

i ∈ ∂∗Φi(Z ), ∀i ∈ I. (4.1)

Similarly, by the ∂∗-convexity of Ψi, i ∈ IΨ, ±Θi, i ∈ J, (−Ki), i ∈ (δ ∪ω), (−Li), i ∈ (γ ∪ω) at Z , we
have

Ψi(A ) −Ψi(Z ) > 〈ξ2
i, A −Z 〉, ∀ξ2

i ∈ ∂∗Ψi(Z ), ∀i ∈ IΨ, (4.2)

Θi(A ) −Θi(Z ) > 〈ξ3
i, A −Z 〉, ∀ ξ3

i ∈ ∂∗Θi(Z ), ∀i ∈ J, (4.3)

(−Θi)(A ) − (−Θi)(Z ) > 〈ξ4
i, A −Z 〉, ∀ξ4

i ∈ ∂∗(−Θi)(Z ), ∀i ∈ J, (4.4)

(−Ki)(A ) − (−Ki)(Z ) > 〈ξ5
i, A −Z 〉, ∀ξ5

i ∈ ∂∗(−Ki)(Z ), ∀i ∈ (δ∪ω), (4.5)

(−Li)(A ) − (−Li)(Z ) > 〈ξ6
i, A −Z 〉, ∀ξ5

i ∈ ∂∗(−Li)(Z ), ∀i ∈ (γ∪ω). (4.6)

If ωK
τ ∪ωL

τ ∪ δ+τ ∪ γ+τ = ∅, then multiplying (4.1)-(4.6) by νΦi > 0, i ∈ I, νΨi > 0, i ∈ IΨ, νΘi > 0, i ∈ J,
τΘi > 0, i ∈ J, νK

i > 0, i ∈ (δ ∪ω), νL
i > 0, i ∈ (γ ∪ω), respectively and then adding them subsequently,

we get∑
i∈I

νΦi Φi(A ) −
∑
i∈I

νΦi Φi(Z ) +
∑
i∈IΨ

νΨi Ψi(A ) −
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

νΘi Θi(A )

−
∑
i∈J

νΘi Θi(Z ) +
∑
i∈J

τΘi (−Θi)(A ) −
∑
i∈J

τΘi (−Θi)(Z ) +
∑
i∈M

νK
i(−Ki)(A )

−
∑
i∈M

νK
i(−Ki)(Z ) +

∑
i∈M

νL
i(−Li)(A ) −

∑
i∈M

νL
i(−Li)(Z )

>

〈∑
i∈I

νΦi ξ
1
i +
∑
i∈IΨ

νΨi ξ
2
i +
∑
i∈J

[νΘi ξ
3
i + τ

Θ
i ξ

4] +
∑
i∈M

[νK
iξ

5
i + ν

L
iξ

6
i] − U, A −Z

〉
+ 〈U, A −Z 〉.
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Since Z ∈ FW , there exist ξ1
i ∈ co∂∗Φi(Z ), i ∈ I, ξ2

i ∈ co∂∗Ψi(Z ), i ∈ IΨ, ξ3
i ∈ co∂∗Θi(Z ), i ∈ J,

ξ
4
i ∈ co∂∗(−Θi)(Z ), i ∈ J, ξ5

i ∈ co∂∗(−Ki)(Z ), i ∈M, ξ6
i ∈ co∂∗(−Li)(Z ), i ∈M, and U ∈ Sn+, such that∑

i∈I

νΦi ξ
1
i +
∑
i∈IΨ

νΨi ξ
2
i +
∑
i∈J

[νΘi ξ
3
i + τ

Θ
i ξ

4
i] +
∑
i∈M

[νK
iξ

5
i + ν

L
iξ

6
i] − U = 0.

Moreover, 〈U, A 〉 > 0, ∀U, A ∈ Sn+. Therefore,∑
i∈I

νΦi Φi(A ) −
∑
i∈I

νΦi Φi(Z ) +
∑
i∈IΨ

νΨi Ψi(A ) −
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

νΘi Θi(A )

−
∑
i∈J

νΘi Θi(Z ) +
∑
i∈J

τΘi (−Θi)(A ) −
∑
i∈J

τΘi (−Θi)(Z ) +
∑
i∈M

νK
i(−Ki)(A )

−
∑
i∈M

νK
i(−Ki)(Z ) +

∑
i∈M

νL
i(−Li)(A ) −

∑
i∈M

νL
i(−Li)(Z ) > −〈U, Z 〉.

Since A ∈ F , we have Ψi(A ) 6 0, i ∈ IΨ, Θi(A ) = 0, i ∈ J, Ki(A ) > 0, i ∈ M, Li(A ) > 0, i ∈ M.
Therefore, ∑

i∈I

νΦi Φi(A ) >
∑
i∈I

νΦi Φi(Z ) +
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

[νΘi Θi(Z ) + τΘi (−Θi)(Z )]

+
∑
i∈M

νK
i(−Ki)(Z ) +

∑
i∈M

νL
i(−Li)(Z ) − 〈U, Z 〉.

Hence,
Φ(A ) > Φ(Z ) +

∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

[νΘi Θi(Z ) + τΘi (−Θi)(Z )]

+
∑
i∈M

[νK
i(−Ki)(Z ) + νL

i(−Li)(Z )] − 〈U, Z 〉.

Now we establish the strong duality theorem for WMPEC assuming the objective and the constraint
functions are ∂∗-convex functions that admit bounded USRC and NSMPEC-tailored ACQ holds at an
optimal solution of NSMPEC.

Theorem 4.2 (Strong duality). Let A ∈ F be an optimal solution of NSMPEC and Φi, i ∈ I, Ψi, i ∈ IΨ ±Θi,
i ∈ J, −Ki, i ∈ (δ ∪ω), and −Li, i ∈ (γ∪ω) admit bounded USRC and are ∂∗-convex functions at A . Suppose
that at A , NSMPEC-tailored ACQ holds. Then there exists

ν = (νΦ,νΨ,νΘ, τΘ,νK,νL, U) ∈ Rr ×Rp ×Rq ×Rq ×Rm ×Rm × Sn+,

such that (A ,ν) becomes an optimal solution of the WMPEC. Moreover, the corresponding objective values are
equal.

Proof. Since A is an optimal solution of NSMPEC and NSMPEC-tailored ACQ holds at A , then from
Theorem 3.6 there exists

ν = (νΦ,νΨ,νΘ, τΘ,νK,νL, U) ∈ Rr ×Rp ×Rq ×Rq ×Rm ×Rm × Sn+,

such that A is a GS-stationary point of NSMPEC. Thus, there exists ξ1
i ∈ co∂∗Φi(A ), i ∈ I, ξ2

i ∈
co∂∗Ψi(A ), i ∈ Iψ, ξ3

i ∈ co∂∗Θi(A ), i ∈ J, ξ4
i ∈ co∂∗(−Θi)(A ), i ∈ J, ξ5

i ∈ co∂∗(−Ki)(A ), i ∈ M,
ξ

6
i ∈ co∂∗(−Li)(A ), i ∈M, and U ∈ Sn+, such that∑

i∈I

νΦi ξ
1
i +
∑
i∈IΨ

νΨi ξ
2
i +
∑
i∈J

[νΘi ξ
3
i + τ

Θ
i ξ

4
i] +
∑
i∈M

[νK
iξ

5
i + ν

L
iξ

6
i] − U = 0,
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〈U, A 〉 = 0, νΦi > 0, i ∈ I, νΨi > 0, i ∈ IΨ, νΘi > 0, τΘi > 0, i ∈ J, νK
i > 0, νL

i > 0, i ∈ M. Therefore,
(A ,ν) ∈ FW . By Theorem 4.1, for any (Z ,ν) ∈ FW we have

Φ(A ) > Φ(Z ) +
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

[νΘi Θi(Z ) + τΘi (−Θi)(Z )]

+
∑
i∈M

[νK
i(−Ki)(Z ) + νL

i(−Li)(Z )] − 〈U, Z 〉.
(4.7)

Now, from the feasibility conditions of NSMPEC and of the dual WMPEC we have

Ψi(A ) = 0, i ∈ IΨ, Θi(A ) = 0, i ∈ J, Ki(A ) = 0, ∀i ∈ (δ∪ω), Li(A ) = 0, ∀i ∈ (γ∪ω).

Therefore, we have

Φ(A ) = Φ(A ) +
∑
i∈IΨ

νΨi Ψi(A ) +
∑
i∈J

[νΘi Θi(A ) + τΘi (−Θi)(A )]

+
∑
i∈M

[νK
i(−Ki)(A ) + νL

i(−Li)(A )] − 〈U, A 〉.
(4.8)

From equations (4.7) and (4.8) we have

Φ(A ) +
∑
i∈IΨ

νΨi Ψi(A ) +
∑
i∈J

[νΘi Θi(A ) + τΘi (−Θi)(A )] +
∑
i∈M

[νK
i(−Ki)(A ) + νL

i(−Li)(A )] − 〈U, A 〉

> Φ(Z ) +
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

[νΘi Θi(Z ) + τΘi (−Θi)(Z )] +
∑
i∈M

[νK
i(−Ki)(Z ) + νL

i(−Li)(Z )] − 〈U, Z 〉.

Hence, (A ,ν) is an optimal solution of WMPEC. Moreover, the corresponding objective values are equal.

Remark 4.3. It is evident that Theorems 4.1 and 4.2 generalize and extend Theorems 3.1 and 3.2, respec-
tively, established in Pandey and Mishra [42] from Euclidean space Rn to Sn+.

Now we derive the strict converse duality theorem for the WMPEC, where we assume the objective
function to be ∂∗-convex and the hypothesis of the strong duality theorem holds.

Theorem 4.4 (Strict converse duality). Suppose that A is a local weak Pareto efficient solution of NSMPEC.
Let (Ẑ , ν̂) be the global weak Pareto efficient solution of WMPEC. Suppose that the assumptions of strong duality
theorem hold and Φ is strictly ∂∗-convex at Ẑ . Assume that ωK

τ ∪ωL
τ ∪ δ+τ ∪ γ+τ = ∅. Then, we have A = Ẑ .

Proof. Let us assume that A 6= Ẑ . By the Theorem 4.2 we have

Φ(A ) = Φ(A ) +
∑
i∈IΨ

νΨi Ψi(A ) +
∑
i∈J

[νΘi Θi(A ) + τΘi (−Θi)(A )]

+
∑
i∈M

[νK
i(−Ki)(A ) + νL

i(−Li)(A )] − 〈U, A 〉.

= Φ(Ẑ ) +
∑
i∈IΨ

ν̂Ψi Ψi(Ẑ ) +
∑
i∈J

[ν̂Θi Θi(Ẑ ) + τ̂Θi (−Θi)(Ẑ )]

+
∑
i∈M

[ν̂K
i(−Ki)(Ẑ ) + ν̂L

i(−Li)(Ẑ )] − 〈Û, Ẑ 〉.

(4.9)

Since Φ is strictly ∂∗-convex at Ẑ , therefore

Φi(A ) −Φi(Ẑ ) > 〈ξ1
i, A − Ẑ 〉, ∀ξ1

i ∈ ∂∗Φ(Ẑ ). (4.10)
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Similarly, by the ∂∗-convexity of Ψi, i ∈ IΨ, ±Θi, i ∈ J, (−Ki), i ∈ (δ∪ω), (−Li), i ∈ (γ∪ω) at Ẑ we have

Ψi(A ) −Ψi(Ẑ ) > 〈ξ2
i, A − Ẑ 〉, ∀ξ2

i ∈ ∂∗Ψi(Ẑ ), ∀i ∈ IΨ, (4.11)

Θi(A ) −Θi(Ẑ ) > 〈ξ3
i, A − Ẑ 〉, ∀ξ3

i ∈ ∂∗Θi(Ẑ ), ∀i ∈ J, (4.12)

(−Θi)(A ) − (−Θi)(Ẑ ) > 〈ξ4
i, A − Ẑ 〉, ∀ξ4

i ∈ ∂∗(−Θi)(Ẑ ), ∀i ∈ J, (4.13)

(−Ki)(A ) − (−Ki)(Ẑ ) > 〈ξ5
i, A − Ẑ 〉, ∀ξ5

i ∈ ∂∗(−Ki)(Ẑ ), ∀i ∈ (δ∪ω), (4.14)

(−Li)(A ) − (−Li)(Ẑ ) > 〈ξ6
i, A − Ẑ 〉, ∀ξ6

i ∈ ∂∗(−Li)(Ẑ ), ∀i ∈ (γ∪ω). (4.15)

If ωK
τ ∪ωL

τ ∪ δ+τ ∪ γ+τ = ∅, then multiplying (4.10)-(4.15) by ν̂Φi > 0, i ∈ I, ν̂Ψi > 0, i ∈ IΨ, ν̂Θi > 0, i ∈ J,
τ̂Θi > 0, i ∈ J, ν̂K

i > 0, i ∈ (δ∪ω), ν̂L
i > 0, i ∈ (γ∪ω), respectively and then adding them subsequently we

get ∑
i∈I

ν̂Φi Φi(A ) −
∑
i∈I

ν̂Φi Φi(Ẑ ) +
∑
i∈IΨ

ν̂Ψi Ψi(A ) −
∑
i∈IΨ

ν̂Ψi Ψi(Ẑ ) +
∑
i∈J

ν̂Θi Θi(A )

−
∑
i∈J

ν̂Θi Θi(Ẑ ) +
∑
i∈J

τ̂Θi (−Θi)(A ) −
∑
i∈J

τ̂Θi (−Θi)(Ẑ )

+
∑
i∈M

ν̂K
i(−Ki)(A ) −

∑
i∈M

ν̂K
i(−Ki)(Ẑ ) +

∑
i∈M

ν̂L
i(−Li)(A ) −

∑
i∈M

ν̂L
i(−Li)(Ẑ )

>

〈∑
i∈I

ν̂Φi ξ
1
i +
∑
i∈IΨ

ν̂Ψi ξ
2
i +
∑
i∈J

[ν̂Θi ξ
3
i + τ̂

Θ
i ξ

4] +
∑
i∈M

[ν̂K
iξ

5
i + ν̂

L
iξ

6
i] − Û, A − Ẑ

〉
+
〈
Û, A − Ẑ

〉
.

Since Ẑ ∈ FW , there exist ξ̂1
i ∈ co∂∗Φi(Ẑ ), i ∈ I, ξ̂2

i ∈ co∂∗Ψi(Ẑ ), i ∈ IΨ, ξ̂3
i ∈ co∂∗Θi(Ẑ ), i ∈ J,

ξ̂4
i ∈ co∂∗(−Θi)(Ẑ ), i ∈ J, ξ̂5

i ∈ co∂∗(−Ki)(Ẑ ), i ∈M, ξ̂6
i ∈ co∂∗(−Li)(Ẑ ), i ∈M, and U∗ ∈ Sn+ such that∑

i∈I

ν̂Φi ξ̂
1
i +
∑
i∈IΨ

ν̂Ψi ξ̂
2
i +
∑
i∈J

[ν̂Θi ξ̂
3
i + τ̂

Θ
i ξ̂

4
i] +
∑
i∈M

[ν̂K
i ξ̂

5
i + ν̂

L
i ξ̂

6
i] − U∗ = 0.

Moreover, 〈Û, A 〉 > 0, ∀Û, A ∈ Sn+. Therefore,∑
i∈I

ν̂Φi Φi(A ) −
∑
i∈I

ν̂Φi Φi(Ẑ ) +
∑
i∈IΨ

ν̂Ψi Ψi(A ) −
∑
i∈IΨ

ν̂Ψi Ψi(Ẑ ) +
∑
i∈J

ν̂Θi Θi(A )

−
∑
i∈J

ν̂Θi Θi(Ẑ ) +
∑
i∈J

τ̂Θi (−Θi)(A ) −
∑
i∈J

τ̂Θi (−Θi)(Ẑ ) +
∑
i∈M

ν̂K
i(−Ki)(A )

−
∑
i∈M

ν̂K
i(−Ki)(Ẑ ) +

∑
i∈M

ν̂L
i(−Li)(A ) −

∑
i∈M

ν̂L
i(−Li)(Ẑ ) > −〈Û, Ẑ 〉.

Since A ∈ F we have

Ψi(A ) 6 0, i ∈ IΨ, Θi(A ) = 0, i ∈ J, Ki(A ) > 0, i ∈M, Li(A ) > 0, i ∈M.

Therefore, ∑
i∈I

ν̂Φi Φi(A ) >
∑
i∈I

ν̂Φi Φi(Ẑ ) +
∑
i∈IΨ

ν̂Ψi Ψi(Ẑ ) +
∑
i∈J

[ν̂Θi Θi(Ẑ ) + τ̂Θi (−Θi)(Ẑ )]

+
∑
i∈M

ν̂K
i(−Ki)(Ẑ ) +

∑
i∈M

ν̂L
i(−Li)(Ẑ ) − 〈Û, Ẑ 〉.

Hence,
Φ(A ) > Φ(Ẑ ) +

∑
i∈IΨ

ν̂Ψi Ψi(Ẑ ) +
∑
i∈J

[ν̂Θi Θi(Ẑ ) + τ̂Θi (−Θi)(Ẑ )]

+
∑
i∈M

[ν̂K
i(−Ki)(Ẑ ) + ν̂L

i(−Li)(Ẑ )] − 〈Û, Ẑ 〉,

which contradicts (4.9). Therefore, A = Ẑ . This completes the proof.
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Remark 4.5. Theorem 4.4 generalizes Theorem 4.5 established in Mishra et al. [37] for a more general
programming problem NSMPEC. For J = ∅ and M = ∅, Theorem 4.4 reduces to Theorem 4.5 established
in [37].

The subsequent example illustrates the significance of the weak duality theorem of WMPEC for the
problem NSMPEC.

Example 4.6. Consider the following multiobjective programming problem with equilibrium constraints

Minimize Φ(A ) = (Φ1(A ),Φ2(A )) := (a2,a1),
subject to Ψ(A ) : = −a3 6 0, K(A ) := 2a2 > 0, L(A ) := a1 > 0,

(P1)

where Φi : Sn+ → R (i = 1, 2), K : Sn+ → R, L : Sn+ → R, and A =

[
a1 a2
a2 a3

]
∈ S2

+. The set of all feasible

solutions of (P1) is defined as

F(P1) :=

{[
a1 a2
a2 a3

]
∈ Sn+ : a1 > 0 a2 > 0, a3 > 0, a1a3 − a

2
2 > 0

}
.

Let Z =

[
0 0
0 0

]
. Then for νΦ1 = 2, νΦ2 = 2, νΨ = 0, νK = 1, and νL = 1, Z is a feasible solution of

the Wolfe dual (D1) of the problem (P1). Moreover, Φi, i ∈ {1, 2}, Ψ, −K, and −L are ∂∗-convex at Z and
ωK
τ ∪ωL

τ ∪ δ+τ ∪ γ+τ = ∅, such that

Φ(A ) > Φ(Z ) +
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

[νΘi Θi(Z ) + τΘi (−Θi)(Z )]

+
∑
i∈M

[νK
i(−Ki)(Z ) + νL

i(−Li)(Z )] − 〈U, Z 〉.

Hence, Theorem 4.1 holds at the feasible point Z =

[
0 0
0 0

]
of (D1).

5. Mond-Weir duality

Now, corresponding to the primal problem NSMPEC, we formulate the Mond-Weir-type MWMPEC
dual model as

Maximize
(Z ,ν)

Φ(Z ) = (Φ1(Z ), . . . ,Φr(Z )),

subject to (Z ,ν) ∈ FMW ,

where FMW denotes the set of all feasible solutions of MWMPEC and is defined as

FMW =

{
ν = (νΦ,νΨ,νΘ, τΘ,νK,νL, U) ∈ Rr ×Rp ×Rq ×Rq ×Rm ×Rm × Sn+,

Z ∈ Sn+ : 0 ∈
∑
i∈I

νΦi co∂
∗Φi(Z ) +

∑
i∈IΨ

νΨi co∂
∗Ψi(Z ) +

∑
i∈J

[νΘi co∂
∗Θi(Z )

+ τΘi co∂
∗(−Θi)(Z )] +

∑
i∈M

[νK
ico∂

∗(−Ki)(Z ) + νL
ico∂

∗(−Li)(Z )] − U,

〈U, Z 〉 = 0, Ψi(Z ) > 0, i ∈ IΨ, Θi(Z ) = 0, i ∈ J, Ki(Z ) 6 0, i ∈ (δ∪ω), Li(Z ) 6 0,

i ∈ (γ∪ω), νΦi > 0, i ∈ I, νΨi > 0, i ∈ IΨ, νΘi , τΘi > 0, i ∈ J, νK
i , ν

L
i , τ

K
i , τ

L
i > 0, i ∈M,

νK
γ = νL

δ = τ
K
γ = τL

δ = 0; τK
i = τ

L
i = 0,∀i ∈ ω

}
.

In the subsequent theorems, we present weak, strong, and strict converse duality theorems that relate
MWMPEC and NSMPEC.
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Theorem 5.1 (Weak duality). Let A be a feasible solution of NSMPEC. Let (Z ,ν) be a feasible solution of the
dual MWMPEC of NSMPEC. Suppose that Φi, i ∈ I, Ψi, i ∈ IΨ, ±Θi i ∈ J, −Ki, i ∈ (δ∪ω), −Li, i ∈ (γ∪ω)
admit bounded USRC and are ∂∗-convex at Z . Assume that ωK

τ ∪ωL
τ ∪ δ+τ ∪ γ+τ = ∅. Then Φ(A ) > Φ(Z ).

Proof. Since Φ is ∂∗-convex at Z , then

Φi(A ) −Φi(Z ) > 〈ξ1
i, A −Z 〉, ∀ξ1

i ∈ ∂∗Φi(Z ). (5.1)

Similarly, by the ∂∗-convexity of Ψi, i ∈ IΨ, ±Θi, i ∈ J, (−Ki), i ∈ (δ∪ω), (−Li), i ∈ (γ∪ω) at Z we have

Ψi(A ) −Ψi(Z ) > 〈ξ2
i, A −Z 〉, ∀ξ2

i ∈ ∂∗Ψi(Z ), ∀i ∈ IΨ, (5.2)

Θi(A ) −Θi(Z ) > 〈ξ3
i, A −Z 〉, ∀ξ3

i ∈ ∂∗Θi(Z ), ∀i ∈ J, (5.3)

(−Θi)(A ) − (−Θi)(Z ) > 〈ξ4
i, A −Z 〉, ∀ξ4

i ∈ ∂∗(−Θi)(Z ), ∀i ∈ J, (5.4)

(−Ki)(A ) − (−Ki)(Z ) > 〈ξ5
i, A −Z 〉, ∀ξ5

i ∈ ∂∗(−Ki)(Z ), ∀i ∈ (δ∪ω), (5.5)

(−Li)(A ) − (−Li)(Z ) > 〈ξ6
i, A −Z 〉, ∀ξ6

i ∈ ∂∗(−Li)(Z ), ∀i ∈ (γ∪ω). (5.6)

If ωK
τ ∪ωL

τ ∪ δ+τ ∪ γ+τ = ∅, then multiplying (5.1)-(5.6) by νΦi > 0, i ∈ I, νΨi > 0, i ∈ IΨ, νΘi > 0, i ∈ J,
τΘi > 0, i ∈ J, νK

i > 0, i ∈ (δ∪ω), νL
i > 0, i ∈ (γ∪ω), respectively and then adding them subsequently we

get ∑
i∈I

νΦi Φi(A ) −
∑
i∈I

νΦi Φi(Z ) +
∑
i∈IΨ

νΨi Ψi(A ) −
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

νΘi Θi(A )

−
∑
i∈J

νΘi Θi(Z ) +
∑
i∈J

τΘi (−Θi)(A ) −
∑
i∈J

τΘi (−Θi)(Z ) +
∑
i∈M

νK
i(−Ki)(A )

−
∑
i∈M

νK
i(−Ki)(Z ) +

∑
i∈M

νL
i(−Li)(A ) −

∑
i∈M

νL
i(−Li)(Z )

>

〈∑
i∈I

νΦi ξ
1
i +
∑
i∈IΨ

νΨi ξ
2
i +
∑
i∈J

[νΘi ξ
3
i + τ

Θ
i ξ

4] +
∑
i∈M

[νK
iξ

5
i + ν

L
iξ

6
i] − U, A −Z

〉
+ 〈U, A −Z 〉.

Since Z is feasible solution of the dual problem MWMPEC, then there exist ξ1
i ∈ co∂∗Φi(Z ), i ∈ I,

ξ
2
i ∈ co∂∗Ψi(Z ), i ∈ IΨ, ξ3

i ∈ co∂∗Θi(Z ), i ∈ J, ξ4
i ∈ co∂∗(−Θi)(Z ), i ∈ J, ξ5

i ∈ co∂∗(−Ki)(Z ), i ∈ M,
ξ

6
i ∈ co∂∗(−Li)(Z ), i ∈M, and U ∈ Sn+ such that∑

i∈I

νΦi ξ
1
i +
∑
i∈IΨ

νΨi ξ
2
i +
∑
i∈J

[νΘi ξ
3
i + τ

Θ
i ξ

4
i] +
∑
i∈M

[νK
iξ

5
i + ν

L
iξ

6
i] − U = 0.

Moreover, 〈U, A 〉 > 0, ∀U, A ∈ Sn+, and 〈U, Z 〉 = 0, ∀U ∈ Sn+, ∀Z ∈ FMW . Therefore,∑
i∈I

νΦi Φi(A ) −
∑
i∈I

νΦi Φi(Z ) +
∑
i∈IΨ

νΨi Ψi(A ) −
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

νΘi Θi(A )

−
∑
i∈J

νΘi Θi(Z ) +
∑
i∈J

τΘi (−Θi)(A ) −
∑
i∈J

τΘi (−Θi)(Z )

+
∑
i∈M

νK
i(−Ki)(A ) −

∑
i∈M

νK
i(−Ki)(Z ) +

∑
i∈M

νL
i(−Li)(A ) −

∑
i∈M

νL
i(−Li)(Z ) > 0.

Since A ∈ F we have

Ψi(A ) 6 0, i ∈ IΨ, Θi(A ) = 0, i ∈ J, Ki(A ) > 0, i ∈M, Li(A ) > 0, i ∈M.
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Therefore, ∑
i∈I

νΦi Φi(A ) >
∑
i∈I

νΦi Φi(Z ) +
∑
i∈IΨ

νΨi Ψi(Z ) +
∑
i∈J

νΘi Θi(Z )

+
∑
i∈J

τΘi (−Θi)(Z ) +
∑
i∈M

νK
i(−Ki)(Z ) +

∑
i∈M

νL
i(−Li)(Z ).

Since Z ∈ FMW we have

Ψi(Z ) > 0, i ∈ IΨ, Θi(Z ) = 0, i ∈ J, Ki(Z ) 6 0, i ∈M, Li(Z ) 6 0, i ∈M.

Hence, Φ(A ) > Φ(Z ).

Now we establish the strong duality theorem for MWMPEC assuming the objective and the constraint
functions are ∂∗-convex functions that admit bounded USRC and NSMPEC-tailored ACQ holds at a
locally Pareto efficient solution of NSMPEC.

Theorem 5.2 (Strong duality). Let A be a locally Pareto efficient solution NSMPEC. Let at A , Φi, i ∈ I, Ψi,
i ∈ IΨ ±Θi, i ∈ J, −Ki, i ∈ (δ∪ω), and −Li, i ∈ (γ∪ω) admit bounded USRC and are ∂∗-convex functions at
A . Suppose that at A , NSMPEC-tailored ACQ holds. Then there exists

ν = (νΦ,νΨ,νΘ, τΘ,νK,νL, U) ∈ Rr ×Rp ×Rq ×Rq ×Rm ×Rm × Sn+,

such that (A ,ν) is an optimal solution of MWMPEC. Moreover, the corresponding objective values are equal.

Proof. From the assumptions of the theorem, A is a locally Pareto efficient solution of NSMPEC and
NSMPEC-tailored ACQ holds at A . Then from Theorem 3.6 there exists

ν = (νΦ,νΨ,νΘ, τΘ,νK,νL, U) ∈ Rr ×Rp ×Rq ×Rq ×Rm ×Rm × Sn+,

such that A is a GS-stationary point of NSMPEC. Thus, there exists ξ1
i ∈ co∂∗Φi(A ), ξ2

i ∈ co∂∗Ψi(A ),
ξ

3
i ∈ co∂∗Θi(A ), ξ4

i ∈ co∂∗(−Θi)(A ), ξ5
i ∈ co∂∗(−Ki)(A ), ξ6

i ∈ co∂∗(−Li)(A ), and U ∈ Sn+ such that∑
i∈I

νΦi ξ
1
i +
∑
i∈IΨ

νΨi ξ
2
i +
∑
i∈J

[νΘi ξ
3
i + τ

Θ
i ξ

4
i] +
∑
i∈M

[νK
iξ

5
i + ν

L
iξ

6
i] − U = 0,

〈U, A 〉 = 0, νΦi > 0, i ∈ I, νΨi > 0, i ∈ IΨ, νΘi , τΘi > 0, i ∈ J, νK
i , ν

L
i , i ∈ M. Therefore, (A ,ν) ∈ FMW .

Using Theorem 5.1, for any feasible solution (Z ,ν) of MWMPEC we have Φ(A ) > Φ(Z ). Hence, (A ,ν)
is an optimal solution of MWMPEC. Moreover, the respective objective values are equal. This completes
the proof.

Remark 5.3. It is evident that Theorems 5.1 and 5.2 generalize and extend Theorems 3.3 and 3.4, respec-
tively, established in Pandey and Mishra [42] from Euclidean space Rn to Sn+.

Now we establish the strict converse duality theorem for the MWMPEC, where we assume the objec-
tive function to be ∂∗-convex and the hypothesis of the strong duality theorem holds.

Theorem 5.4 (Strict converse duality). Suppose that A is a local weak Pareto efficient solution of NSMPEC and
(Ẑ , ν̂) is a global weak Pareto efficient solution of MWMPEC. If the assumptions of the strong duality theorem hold
and Φ is strictly ∂∗-convex at Ẑ , then we have A = Ẑ .

Proof. Let us assume that A 6= Ẑ . By Theorem 5.2 there exists

ν = (νΦ,νΨ,νΘ, τΘ,νK,νL, U) ∈ Rr ×Rp ×Rq ×Rq ×Rm ×Rm × Sn+,

such that (A ,ν) ∈ FMW and
Φ(A ) = Φ(Ẑ ). (5.7)
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Since Φ is strictly ∂∗-convex at Ẑ , therefore

Φi(A ) −Φi(Ẑ ) > 〈ξ1
i, A − Ẑ 〉, ∀ξ1

i ∈ ∂∗Φ(Ẑ ). (5.8)

Similarly, by the ∂∗-convexity of Ψi, i ∈ IΨ, ±Θi, i ∈ J, (−Ki), i ∈ (δ∪ω), (−Li), i ∈ (γ∪ω) at Ẑ , we have

Ψi(A ) −Ψi(Ẑ ) > 〈ξ2
i, A − Ẑ 〉, ∀ξ2

i ∈ ∂∗Ψi(Ẑ ), ∀i ∈ IΨ, (5.9)

Θi(A ) −Θi(Ẑ ) > 〈ξ3
i, A − Ẑ 〉, ∀ξ3

i ∈ ∂∗Θi(Ẑ ), ∀i ∈ J, (5.10)

(−Θi)(A ) − (−Θi)(Ẑ ) > 〈ξ4
i, A − Ẑ 〉, ∀ξ4

i ∈ ∂∗(−Θi)(Ẑ ), ∀i ∈ J, (5.11)

(−Ki)(A ) − (−Ki)(Ẑ ) > 〈ξ5
i, A − Ẑ 〉, ∀ξ5

i ∈ ∂∗(−Ki)(Ẑ ), ∀i ∈ (δ∪ω), (5.12)

(−Li)(A ) − (−Li)(Ẑ ) > 〈ξ6
i, A − Ẑ 〉, ∀ξ6

i ∈ ∂∗(−Li)(Ẑ ), ∀i ∈ (γ∪ω). (5.13)

If ωK
τ ∪ωL

τ ∪ δ+τ ∪ γ+τ = ∅, then multiplying (5.8)-(5.13) by ν̂Φi > 0, i ∈ I, ν̂Ψi > 0, i ∈ IΨ, ν̂Θi > 0, i ∈ J,
τ̂Θi > 0, i ∈ J, ν̂K

i > 0, i ∈ (δ∪ω), ν̂L
i > 0, i ∈ (γ∪ω), respectively and then adding them subsequently we

get ∑
i∈I

ν̂Φi Φi(A ) −
∑
i∈I

ν̂Φi Φi(Ẑ ) +
∑
i∈IΨ

ν̂Ψi Ψi(A ) −
∑
i∈IΨ

ν̂Ψi Ψi(Ẑ ) +
∑
i∈J

ν̂Θi Θi(A )

−
∑
i∈J

ν̂Θi Θi(Ẑ ) +
∑
i∈J

τ̂Θi (−Θi)(A ) −
∑
i∈J

τ̂Θi (−Θi)(Ẑ )

+
∑
i∈M

ν̂K
i(−Ki)(A ) −

∑
i∈M

ν̂K
i(−Ki)(Ẑ ) +

∑
i∈M

ν̂L
i(−Li)(A ) −

∑
i∈M

ν̂L
i(−Li)(Ẑ )

>

〈∑
i∈I

ν̂Φi ξ
1
i +
∑
i∈IΨ

ν̂Ψi ξ
2
i +
∑
i∈J

[ν̂Θi ξ
3
i + τ̂

Θ
i ξ

4] +
∑
i∈M

[ν̂K
iξ

5
i + ν̂

L
iξ

6
i] − Û, A − Ẑ

〉
+ 〈Û, A − Ẑ 〉.

Since Ẑ ∈ FMW , there exist ξ̂1
i ∈ co∂∗Φi(Z ), ξ̂2

i ∈ co∂∗Ψi(Z ), ξ̂3
i ∈ co∂∗Θi(Z ), ξ̂4

i ∈ co∂∗(−Θi)(Z ),
ξ̂5
i ∈ co∂∗(−Ki)(Z ), ξ̂6

i ∈ co∂∗(−Li)(Z ), and U∗ ∈ Sn+ such that∑
i∈I

ν̂Φi ξ̂
1
i +
∑
i∈IΨ

ν̂Ψi ξ̂
2
i +
∑
i∈J

[ν̂Θi ξ̂
3
i + τ̂

Θ
i ξ̂

4
i] +
∑
i∈M

[ν̂K
i ξ̂

5
i + ν̂

L
i ξ̂

6
i] − U∗ = 0, 〈U∗, Ẑ 〉 = 0.

Moreover, 〈Û, A 〉 > 0, ∀A , Û ∈ Sn+. Therefore,∑
i∈I

ν̂Φi Φi(A ) −
∑
i∈I

ν̂Φi Φi(Ẑ ) +
∑
i∈IΨ

ν̂Ψi Ψi(A ) −
∑
i∈IΨ

ν̂Ψi Ψi(Ẑ ) +
∑
i∈J

ν̂Θi Θi(A )

−
∑
i∈J

ν̂Θi Θi(Ẑ ) +
∑
i∈J

τ̂Θi (−Θi)(A ) −
∑
i∈J

τ̂Θi (−Θi)(Ẑ )

+
∑
i∈M

ν̂K
i(−Ki)(A ) −

∑
i∈M

ν̂K
i(−Ki)(Ẑ ) +

∑
i∈M

ν̂L
i(−Li)(A ) −

∑
i∈M

ν̂L
i(−Li)(Ẑ ) > 0.

Since A ∈ F , we have

Ψi(A ) 6 0, i ∈ IΨ, Θi(A ) = 0, i ∈ J, Ki(A ) > 0, i ∈M, Li(A ) > 0, i ∈M,

and Ẑ is a feasible solution MWMPEC, then we have

Ψi(Ẑ ) > 0, i ∈ IΨ, Θi(Ẑ ) = 0, i ∈ J, Ki(Ẑ ) 6 0, i ∈M, Li(Ẑ ) 6 0, i ∈M.

Therefore, ∑
i∈I

ν̂Φi Φi(A ) >
∑
i∈I

ν̂Φi Φi(Ẑ ).

Hence,
Φ(A ) > Φ(Ẑ ),

which contradicts (5.7). Therefore, A = Ẑ . This completes the proof.
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Remark 5.5. Theorem 5.4 extends the scope of Theorem 4.10 established in Mishra et al. [37] for a more
general programming problem NSMPEC. For J = ∅ and M = ∅, Theorem 5.4 reduces to Theorem 4.10
derived in [37].

The subsequent example illustrates the importance of the weak duality theorem of MWMPEC for the
considered problem NSMPEC.

Example 5.6. Consider the following multiobjective programming problem with equilibrium constraints

Minimize Φ(A ) = (Φ1(A ),Φ2(A )) := (a2,a1),
subject to Ψ(A ) : = −a3 6 0, K(A ) := 2a2 > 0, L(A ) := a1 > 0,

(P2)

where Φi : Sn+ → R (i = 1, 2), K : Sn+ → R, L : Sn+ → R, and A =

[
a1 a2
a2 a3

]
∈ S2

+. The set of all feasible

solutions of (P2) is defined as

F(P2) =

{[
a1 a2
a2 a3

]
∈ Sn+ : a1 > 0 a2 > 0, a3 > 0, a1a3 − a

2
2 > 0

}
.

The Mond-Weir type dual of the problem (P2) is given by

Maximize Φ(Z ) = (Φ1(Z ),Φ2(Z )) := (z2, z1),
subject to Ψ(Z ) = −z3 > 0, K(Z ) = 2z2 6 0, L(Z ) = z1 6 0,

(D2)

where Φi : Sn+ → R (i = 1, 2), K : Sn+ → R, L : Sn+ → R, and Z =

[
z1 z2
z2 z3

]
∈ S2

+. The set of all feasible

solutions of (D2) is defined as

F(D2) =

{[
z1 z2
z2 z3

]
∈ S2

+ : z1 6 0, z2 6 0, z3 6 0, z1z3 − z
2
2 > 0

}
.

There exist νΦ1 = 2, νΦ2 = 2, νΨ = 0, νK = 1, νL = 1, U =

[
1 0
0 0

]
such that Z =

[
0 0
0 0

]
∈ F(D2).

Moreover, Φi, i ∈ {1, 2}, Ψ, −K, −L, are ∂∗-convex at Z and ωK
τ ∪ωL

τ ∪ δ+τ ∪ γ+τ = ∅. Hence, by Theorem
5.1 we have Φ(A ) > Φ(Z ).

In the following section, we shall discuss an application of semidefinite multiobjective programming
problems with equilibrium constraints in approximating K-Means-type clustering problems. Moreover,
we have considered a particular case of three data points to show the significance of weak and strong
duality theorems in approximating K-Means-type clustering problems.

6. Applicaton in approximating K-means-type clustering problems

One of the fundamental clustering problems is to assign n points into K clusters based on minimal
sum-of-squared distances (in short, MSSC) (see, for instance, [43]). Let S be a set of n points in a d-
dimensional Euclidean space, denoted by S = {si = (si1, . . . , sid)T ∈ Rd, i = 1, . . . ,n}. The task of MSSC
is to find an assignment of the n points into K disjoint clusters S = (S1, . . . ,SK) centred at cluster centres
cj(j = 1, . . . ,K) such that the total sum-of-squared Euclidean distances from each point si to its assigned
cluster centroid cj and

f(S,S) =
K∑
j=1

|Sj|∑
i=1

‖ s(j)i − cj ‖2
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is minimized. Here |Sj| is the number of points in Sj and s(j)i is the ith point in Sj. Note that if the cluster
centres are known, then the function f(S,S) achieves its minimum when each point is assigned to its
closest cluster centre. Therefore, MSSC can be described by the following bilevel programming problem

Minimize
c1,...,ck

n∑
i=1

min
{
‖si − c1‖2 , . . . , ‖si − ck‖2

}
. (6.1)

On the other hand, if the points in cluster Sj are fixed, then the function

f
(
Sj,Sj

)
=

|Sj|∑
i=1

∥∥∥s(j)i − cj
∥∥∥2

is minimized when

cj =
1∣∣Sj∣∣

|Sj|∑
i=1

s(j)i .

Let X = [xij] ∈ Rn×K be the assignment matrix defined by

xij =

{
1, if si is assigned to Sj,
0, otherwise.

As a consequence, the cluster center of the cluster Sj, as the mean of all the points in the cluster, is defined
by

cj =
∑n
l=1 xljsl∑n
l=1 xlj

.

Using this fact, we can represent (6.1) as

Minimize
xij

k∑
j=1

n∑
i=1

xij

∥∥∥∥ si −
∑n
l=1 xlj sl∑n
l=1 xlj

∥∥∥∥2

,

subject to
k∑
j=1

xij = 1, ∀i ∈ {1, . . . ,n}, (6.2)

n∑
i=1

xij > 1, ∀j ∈ {1, . . . ,k}, xij ∈ {0, 1}, ∀i, j ∈ {1, . . . ,n}}. (6.3)

The constraint (6.2) ensures that each point si is assigned to one and only one cluster, and constraint (6.3)
ensures that there are exactly K clusters. Let Z := [zij] = X(XTX)−1XT . Following Peng and Wei [43] the
above problem can be modelled as a semidefinite programming problem as

Minimize trace(WsWT
s (I−Z)),

subject to Ze = e, trace(Z) = K, Z > 0, Z = Z2, Z ∈ Sn+,

where Ws ∈ Rn×d denotes the matrix whose ith row is sTi , I is the n×n identity matrix, e is n× 1 vector
with all entries equal to 1, and Z > 0 means the componentwise inequality.

The constraint Z = Z2 implies that zij = z2
ij, which can be written as zij(1− zij) = 0. Since zij > 0 and

1 − zij > 0, the above problem can be reformulated as

Minimize Φ(Z) : = trace(WsWT
s (I−Z)),
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subject to Θ(1)(Z) : = ((z11 + · · ·+ z1n − 1), . . . , (zn1 + · · ·+ znn − 1)) = 0,

Θ(2)(Z) : = z11 + z22 + · · ·+ znn −K = 0,
Kij(Z) : = zij > 0, ∀ i, j ∈ {1, . . . ,n},
Lij(Z) = (1 − zij) > 0, ∀ i, j ∈ {1, . . . ,n},

Kij(Z)Lij(Z) = 0, ∀ i, j ∈ {1, . . . ,n},

which is in the form of semidefinite mathematical programming problems with equilibrium constraints.
In particular, we take S = {(0, 0)T , (1, 0)T , (2, 0) ∈ R2}, and K = 2 in the following example to demonstrate
the significance of the established results.

Example 6.1. Let us consider the following set of points given by S = {(0, 0)T , (1, 0)T , (2, 0)T ∈ R2} and let
K = 2 be the number of clusters. Then we have

Ws =

0 0 0
0 1 0
0 0 4

 and Φ(Z) := trace(WsWT
s (I−Z)) = 5 − z22 − 4z33.

Thus the K-Means-type clustering problem can be formulated as a semidefinite programming problem
with equilibrium constraints as

Minimize Φ(Z) : = 5 − z22 − 4z33,
subject to Θ1(Z) : = z11 + z12 + z13 − 1 = 0,

Θ2(Z) : = z21 + z22 + z23 − 1 = 0,
Θ3(Z) : = z31 + z32 + z33 − 1 = 0,
Θ4(Z) : = z11 + z22 + z33 − 2 = 0,
Kij(Z) : = zij > 0, ∀ i, j ∈ {1, 2, 3},
Lij(Z) = (1 − zij) > 0, ∀ i, j ∈ {1, 2, 3},

Kij(Z)Lij(Z) = 0, ∀ i, j ∈ {1, 2, 3},

(P)

whereΦ : Sn+ → R, Θt : Sn+ → R, t ∈ {1, 2, 3, 4}, Kij, Lij : Sn+ → R, ∀i, j ∈ {1, 2, 3}, and Z =

z11 z12 z13
z21 z21 z23
z31 z32 z33

 ∈
S3
+. It is evident that Z =

0 0 0
0 1 0
0 0 1

 satisfies all the constraints and hence is a feasible solution to the

considered problem. Moreover, we calculate the USRC of each function of the problem at Z, given by

∂∗Φ(Z) =


0 0 0

0 −1 0
0 0 −4

 , ∂∗Θ1(Z) =


1 1

2
1
2

1
2 0 0
1
2 0 0

 ,

∂∗Θ2(Z) =


0 1

2 0
1
2 1 1

2
0 1

2 0

 , ∂∗Θ3(Z) =


0 0 1

2
0 0 1

2
1
2

1
2 1

 ,

∂∗Θ4(Z) =


1 0 0

0 1 0
0 0 1

 , ∂∗(−Θ1)(Z) =


−1 −1

2 −1
2

−1
2 0 0

−1
2 0 0

 ,

∂∗(−Θ2)(Z) =


 0 −1

2 0
−1

2 −1 −1
2

0 −1
2 0

 , ∂∗(−Θ3)(Z) =


 0 0 −1

2
0 0 −1

2
−1

2 −1
2 −1

 ,
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∂∗(−Θ4)(Z) =


−1 0 0

0 −1 0
0 0 −1

 , ∂∗K11(Z) =


1 0 0

0 0 0
0 0 0

 ,

∂∗K12(Z) = ∂
∗K21(Z) =


0 1

2 0
1
2 0 0
0 0 0

 , ∂∗K13(Z) = ∂
∗K31(Z) =


0 0 1

2
0 0 0
1
2 0 0

 ,

∂∗K22(Z) =


0 0 0

0 1 0
0 0 0

 , ∂∗K33(Z) =


0 0 0

0 0 0
0 0 1

 ,

∂∗K23(Z) = ∂
∗K32(Z) =


0 0 1

2
0 0 0
1
2 0 0

 , ∂∗L11(Z) =


−1 0 0

0 0 0
0 0 0

 ,

∂∗L12(Z) = ∂
∗L21(Z) =


 0 −1

2 0
−1

2 0 0
0 0 0

 , ∂∗L13(Z) = ∂
∗L31(Z) =


 0 0 −1

2
0 0 0
−1

2 0 0

 ,

∂∗L22(Z) =


0 0 0

0 −1 0
0 0 0

 , ∂∗L33(Z) =


0 0 0

0 0 0
0 0 −1

 ,

∂∗L23(Z) = ∂
∗L32(Z) =


 0 0 −1

2
0 0 0
−1

2 0 0

 , ∂∗(−K11)(Z) =


−1 0 0

0 0 0
0 0 0

 ,

∂∗(−K12)(Z) = ∂
∗(−K21)(Z) =


 0 −1

2 0
−1

2 0 0
0 0 0

 , ∂∗(−K13)(Z) = ∂
∗(−K31)(Z) =


 0 0 −1

2
0 0 0
−1

2 0 0

 ,

∂∗(−K22)(Z) =


0 0 0

0 −1 0
0 0 0

 , ∂∗(−K33)(Z) =


0 0 0

0 0 0
0 0 −1

 ,

∂∗(−K23)(Z) = ∂
∗(−K32)(Z) =


 0 0 −1

2
0 0 0
−1

2 0 0

 , ∂∗(−L11)(Z) =


1 0 0

0 0 0
0 0 0

 ,

∂∗(−L12)(Z) = ∂
∗(−L21)(Z) =


0 1

2 0
1
2 0 0
0 0 0

 , ∂∗(−L13)(Z) = ∂
∗(−L31)(Z) =


0 0 1

2
0 0 0
1
2 0 0

 ,

∂∗(−L22)(Z) =


0 0 0

0 1 0
0 0 0

 , ∂∗(−L33)(Z) =


0 0 0

0 0 0
0 0 1

 ,

∂∗(−L23)(Z) = ∂
∗(−L32)(Z) =


0 0 1

2
0 0 0
1
2 0 0

 .

It can be verified that there exist ξΦ ∈ co∂∗Φ(Z), ξΘt ∈ co∂∗Θt(Z), t ∈ {1, 2, 3, 4}, ηΘt ∈ co∂∗(−Θt)(Z),
∀t ∈ {1, 2, 3, 4}, ξK

ij ∈ co∂∗Kij(Z), ηK
ij ∈ co∂∗(−Kij)(Z), ξL

ij ∈ co∂∗Lij(Z), ηL
ij ∈ co∂∗(−Lij)(Z), ∀i, j ∈

{1, 2, 3}, and U ∈ S3
+, such that Z is GS-stationary point. Moreover, related to the primal problem (P) the
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Wolfe-type dual model (DW) can be formulated as

Maximize
(Y,λ)

{
Φ(Y) +

∑
t∈J

[νΘt Θt(Y) + τ
Θ
t (−Θt)(Y)] +

∑
i,j∈T

[νK
ij(−Kij)(Y) + νL

ij(−Lij)(Y)] − 〈U, Y〉
}

,

subject to
(
Y, λ
)
∈ FW ,

(DW)

where Φ(Y) = trace(WsWT
s (I− Y)), J = {1, 2, 3, 4}, T = {1, 2, 3} and FW denotes the set of all feasible

solutions of the Wolfe-type dual problem (DW) related to the primal problem (P) and is defined as

FW :=

{
λ = (νΦ,νΘ, τΘ,νK,νL, U) ∈ R×R4 ×R4 ×R9 ×R9 × S3

+,

Y ∈ S3
+ : 0 ∈ νΦi co∂∗Φi(Y) +

∑
t∈J

[νΘt co∂
∗Θt(Y) + τ

Θ
t co∂

∗(−Θt)(Y)]

+
∑
i,j∈T

[νK
ijco∂

∗(−Kij)(Y) + νL
ijco∂

∗(−Lij)(Y)] − U,

νΦi > 0, i ∈ I, νΘt , τΘt > 0, t ∈ J, νK
ij, ν

L
ij, τ

K
ij, τ

L
ij > 0, i, j ∈ T, νK

γ = νL
δ = τ

K
γ = τL

δ = 0
}

.

Furthermore, related to the primal problem (P) the Mond-Weir-type dual model (DW) can be formulated
as

Maximize
(Z ,λ)

Φ(Y) = trace(WsWT
s (I− Y)),

subject to (Y, λ) ∈ FMW ,
(DM)

where J = {1, 2, 3, 4}, T = {1, 2, 3} and FMW denotes the set of all feasible solutions of the Mond-Weir-type
dual model (DM) related to the primal problem (P) and is defined as

FMW =

{
λ = (νΦ,νΘ, τΘ,νK,νL, U) ∈ R×R4 ×R4 ×R9 ×R9 × S3

+,

Y ∈ S3
+ : 0 ∈ νΦi co∂∗Φi(Y) +

∑
t∈J

[νΘt co∂
∗Θt(Y) + τ

Θ
t co∂

∗(−Θt)(Y)]

+
∑
i,j∈T

[νK
ijco∂

∗(−Kij)(Y) + νL
ijco∂

∗(−Lij)(Y)] − U,

〈U, Y〉 = 0, Θt(Y) = 0, t ∈ J, Kij(Y) 6 0, ij ∈ (δ∪ω), Lij(Y) 6 0, ij ∈ (γ∪ω),

νΦi > 0, i ∈ I, νΘi , τΘi > 0, i ∈ J, νK
ij, ν

L
ij, τ

K
ij, τ

L
ij > 0, ∀i, j ∈ T, νK

γ = νL
δ = τ

K
γ = τL

δ = 0
}

.

Since Z =

0 0 0
0 1 0
0 0 1

 is a GS-stationary point and ωK
τ ∪ωL

τ ∪ δ+τ ∪ γ+τ = ∅ of the primal problem (P).

Moreover, Φ, ±Θt, t ∈ J, −Kij, ij ∈ (δ ∪ω), and −Lij, ij ∈ (γ ∪ω) admit bounded USRC and are

∂∗-convex functions at Z. Since Y =

1 0 0
0 0 0
0 0 1

 is a feasible solution to the Wolfe-type dual (DW) such

that
Φ(Z) > Φ(Y) +

∑
t∈J

[νΘt Θt(Y) + τ
Θ
t (−Θt)(Y)] +

∑
i,j∈T

[νK
ij(−Kij)(Y) + νL

ij(−Lij)(Y)] − 〈U, Y〉.

Hence weak duality theorem, i.e., Theorem 4.1, holds for the considered problem (P). Furthermore,

NSMPEC-tailored ACQ is satisfied at Z =

0 0 0
0 1 0
0 0 1

 and there exists λ = (νΦ,νΘ, τΘ,νK,νL, U) ∈ R×
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R4 ×R4 ×R9 ×R9 × S3
+ such that (Z, λ) is a feasible solution of the dual problem. Hence, the strong

duality theorem, i.e., Theorem 4.2, holds for the considered problem (P). Similarly, for the Mond-Weir-

type dual (DM) related to the primal problem (P), Y =

0 0 0
0 1 0
0 0 1

 is a feasible solution of the dual (DM)

such that Φ(Z) > Φ(Y). Hence weak duality theorem, i.e., Theorem 5.1, holds for the the considered
problem (P). Moreover, there exists λ̃ = (ν̃Φ, ν̃Θ, τ̃Θ, ν̃K, ν̃L, Ũ) ∈ R×R4 ×R4 ×R9 ×R9 × S3

+ such that
(Z̃, λ̃) is a feasible solution of the dual problem (DM). Hence, the strong duality theorem, i.e., Theorem
5.2, holds for the considered problem (P).

7. Conclusions and future directions

In this article, we explored various duality results for a class of non-smooth semidefinite multiob-
jective programming problems with equilibrium constraints (NSMPEC). We have presented Wolfe-type
(WMPEC) and Mond-Weir-type (MWMPEC) dual models related to the primal problem NSMPEC and
established weak, strong and strict converse duality theorems for the corresponding dual models.

The various results established in this article extend many familiar results existing in the literature
from Euclidean space to the space of symmetric positive semidefinite matrices. Especially, the duality
theorems established in this article extend the duality theorems established in [27, 42] for Euclidean space
Rn to Sn+. Moreover, as an application of the results established in this article, we have considered the
problem of assigning n points into K clusters based on minimal sum-of-squared distances. In particular,
for a certain set of points, given by S = {(0, 0)T , (1, 0)T , (2, 0)T ∈ R2}, we have considered the problem
of assigning the points in S into two clusters. Moreover, we have formulated Wolfe-type and Mond-
Weir-type dual models and demonstrated the significance of weak and strong duality theorems for the
considered problem.

The various results introduced throughout the article leave various avenues for future research. For
example, given the work presented by Lai et al. [29], studying duality results for non-smooth semidefinite
multiobjective programming problems with vanishing constraints would be interesting.
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