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EQUATION WITH HIGH NONLINEARITY

LI YAO1∗ AND JIN-RONG CHANG2

This paper is dedicated to Professor Ji-Huan He

Abstract. It is well-known that the Schrödinger equation plays an impor-
tant role in physics and applied mathematics as well. Variational formulations
have been one of the hottest topics. This paper suggests a simple but effective
method called the semi-inverse method proposed by Ji-Huan He to construct
a variational principle for the nonlinear Schrödinger equation with high non-
linearity.

1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation with high
nonlinearity:

iΨt + αΨxx + β|Ψ|2Ψ + γ|Ψ|4Ψ = 0, (1)

where Ψ = Ψ(x, t) is a complex function of x and t.
This equation can be solved by the homotopy perturbation method[2,4,5,17],

the variational iteration method[3,6,12,13,15,18,19] and the exp-function method
[1,14,21,26,27]. In this paper we will establish a variational formulation using the
semi-inverse method[7].
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2. Variational formulation

On substituting Ψ(x, t) = u(x, t) + iv(x, t), where u(x, t) and v(x, t) are real
functions of x and t, in Eq.(1), we get:

[−vt+αuxx+βu(u2+v2)+γu(u2+v2)2]+i[ut+αvxx+βv(u2+v2)+γv(u2+v2)2] = 0,
(2)

which leads to a system of two second-order equations expressed as

−vt + αuxx + βu(u2 + v2) + γu(u2 + v2)2 = 0, (3)

ut + αvxx + βv(u2 + v2) + γv(u2 + v2)2 = 0. (4)

In order to search for a variational principle for system (3) and (4), according
to the semi-inverse method[7], we can construct a trial-functional in the form:

J(u, v) =

∫
[utv − α

2
v2

x +
β

4
(2u2v2 + v4)+

γ

6
(3u4v2 +3u2v4 + v6)+F (u)]dΩ, (5)

where dΩ = dxdt and F is an unknown function of u and/or their derivatives.
There exist various alternative approach to the construction of the trial func-

tional, illustrative examples can be found details in Refs.[8,20,24,25]. The ad-
vantage of the above trial-functional lies on the fact that stationary condition
with respect to v, noting that F is a absence of u and its derivatives, is Eq.(4).
Now calculating the variation of Eq.(5) with respect u results in the following
Euler-Lagrange equation:

−vt + βuv2 + 2γu3v2 + γuv4 +
δF

δu
= 0, (6)

where δF
δu

is called He’s variational differential with respect to u, defined as[7]

δF

δu
=

∂F

∂u
− ∂

∂t
(
∂F

∂ut

) − ∂

∂x
(
∂F

∂ux

) +
∂2

∂t2
(
∂F

∂utt

) +
∂2

∂x2
(

∂F

∂uxx

) + · · · . (7)

We search for such an F that Eq.(6) turns out to Eq.(3). We therefore, set

δF

δu
= vt − βuv2 − 2γu3v2 − γuv4 = αuxx + βu3 + γu5, (8)

from which we identify F in the form:

F = −α

2
u2

x +
β

4
u4 +

γ

6
u6. (9)

We, therefore, obtain the final variational principle for the discussed problem,
which reads

J(u, v) =

∫
[utv − α

2
(u2

x + v2
x) +

β

4
(u2 + v2)2 +

γ

6
(u2 + v2)3]dΩ. (10)

On substituting u = Ψ+Ψ∗

2
,v = iΨ∗−Ψ

2
, where Ψ∗ = u − iv, the following

variational principle can be obtained

J(Ψ) =

∫
{ i

4
[(Ψ∗ − Ψ)(

∂Ψ

∂t
+

∂Ψ∗

∂t
)] − α

2
|∂Ψ

∂x
|2 +

β

4
|Ψ|4 +

γ

6
|Ψ|6]}dΩ. (11)



VARIATIONAL PRINCIPLE FOR NONLINEAR SCHRÖDINGER EQUATION · · · 3

3. Discussion and Conclusion

We obtain a variational principle for the discussed problem by the semi-
inverse method[7] which is proven to be a promising method for the search for
variational principles directly from field equations without the use of Lagrange
multiplier. Ji-Huan He first suggested a variational approach to solitary solu-
tions[9,10] and periodic solutions[11], He’s variational method has been caught
much attention recently. Ozis and Yidirim[16] considered the following equation

iΨt + Ψxx + γ|Ψ|2Ψ = 0. (12)

Using the semi-inverse method, a variational principle is established, and the
following solitary solution is obtained via the Ritz method.Zhang established
a variational formulation of the generalized Zakharov equation using the semi-
inverse method, and find a solitary wave solution[23]. Xu established a vari-
ational formulation for coupled nonlinear Schrödinger equations[22]. Applying
Ritz method, we can easily obtain solitary solutions and periodic solutions, the
solution procedure is illustrated in detailed in Refs. [9,10].
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