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THE ROLE OF DELAY IN DIGESTION OF PLANKTON BY
FISH POPULATION: A FISHERY MODEL

JOYDIP DHAR1∗, ANUJ KUMAR SHARMA2 AND SANDEEP TEGAR3

Abstract. In this Paper we have developed a model in which the revenue is
generated from fishing and the growth of fish depends upon the plankton which
in turn grows logistically. The conditions for the persistence of system around
non zero equilibrium have been found out using average Liapnouv function after
establishing existence and boundedness of the solution. Then we formulated a
model with delay in digestion of plankton by fish. Further the the threshold
value of conversional parameter has been found out for hopf-bifurcation. The
phenomena of hopf-bifurcation is demonstrated using graphs.

1. Introduction

Many researchers have studied the fishery dynamics with or without considering
plankton growth [1, 2, 6, 7, 8, 9, 10, 12]. Again, the delay induced bifurcation in
population dynamics shown by many researchers, for example [3, 4, 5, 11, 13, 14].
The first model in the economic theory of open access fishery is as follows [5]:

dx

dt
= rx

(
1− x

K

)
− qEx (1.1)

TR− TC = pqEx− cE (1.2)

Where x(t) is the population of fish at time t and they are growing logistcally
with constant rate ’r’ and ’K’ is the carrying capacity.’q’ is the rate of fishing
when effort ’E’ is applied for fishing. Total sustainable revenue(TR) is equal
to pqEx Where ’p’ is the per unit cost of harvested biomass. cE is the total
cost(TC) Where c is the cost per unit effort. Sustainable economic rent is the
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difference of TR and TC, i.e., sustainable economic rent is TR − TC. 4 From
the above model he found out the bio economic equilibrium and concluded that
equilibrium level varies around the MSY (maximum sustainable yield). As a
function of cost prise ratio.But the knowledge of bio economic equilibrium is
insufficient as it does not gives the answers to the question (1) and what is the
optimum effort level; (2) what the optimum sustainable yield and how these can
be achieved. However,in order to maximize the sustainable economic rent(TR−
TC)to achieve the optimum level of fishing effort, he has studied away with
the essential ingredient namely the dynamic of economic, which this is a crucial
omission. After some time Scheffer [12] gave the autonomous temporal model as:

dx

dt
= rx

(
1− x

K

)
− qEx (1.3)

dE

dt
= kE(pqx− c) (1.4)

Though the above model contains the dynamics of economy and biological
process. But it does not contain the dynamic of plankton species which provide
the necessary nutrients for the growth of fish, as well as the above model is
not having the equation of economic rent. The above mentioned omission in
the model have forced us to formulate a model which include the dynamics of
plankton which grow logistically. Moreover we shall be using the dynamic of
economic rent in term of effort.

2. The Mathematical Model

Model is assumed to be closed in which plankton species are growing logistically
with a growth rate a and has the carrying capacity k. Again, α is the rate of
harvesting of plankton spices by the fish population and the interaction between
the plankton and fish is assumed to follow law of mass action. Conversion rate
from plankton to fish is denoted by α1, takeing β = αα1 is the conversion rate of
the fish population. The self decay of fish population is denoted by c1. The rate
of catchabliety of fish when effort E is applied is denoted by q1 . The cost per
unit fish b1 and c is the cost per unit effort All the parameters are assumed to be
positive. The rate of change of economic rent (ER) is equal to the difference of
total revenue from fish sale and total cost of fishing. now P (t), F (T ) and E(T )
represent plankton population, fish population and effort respectively at any time
t. Hence, we can write the mathematical model for the above system as follows:

dP

dt
= aP

(
1− P

K

)
− αPF (2.1)

dF

dt
= βPF − c1F − q1EF (2.2)

dER

dt
= q1b1EF − cE (2.3)
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Taking ER = ρE and non-dimensionalized the above system and choosing the
following new variables:

x ≡ P

K
, y ≡ F

F0

, z ≡ E

E0

at ≡ τ.

The above system reduces to

dx

dt
= x (1− x)− bxy (2.4)

dy

dt
= β1xy − c0y − yz (2.5)

dz

dt
= θyz − dz (2.6)

Where

b =
αF0

a
; β1 =

βk

a
; c0 =

c1
a

; θ =
bF0

ρE0

; d =
c

ρa
.

3. Existence of Equilibrium Points and Boundedness

There are four feasible equilibria of the system (2.4)-(2.6), namely,

(1) E0 = (0, 0, 0) is the trivial steady state,
(2) E1 = (1, 0, 0), here only plankton population exists,

(3) E2 = ( c0
β1
, 1

b

(
1− c0

β1

)
, 0), here no fishing take place only plankton and fish

are living together and
(4) (iv) E∗ = (x∗, y∗, z∗), all three population co-exists, where x∗ = 1 − bd

θ
;

y∗ = d
θ
; z∗ = β1 − c0 − β1bd

θ
.

Again, E2 is feasible if β1 > c0 and E∗ is feasible if

θ > max

{
bd,

β1bd

β1 − c0

}
and β1 > c0.

Now we will show that all the solutions of the system (2.4)-(2.6) are bounded
in a region B ⊂ R3

+. We consider the following function

w(τ) = x(τ) + y(τ) + z(τ).

Then the time derivative of the above function after substituting the values from
(2.4)-(2.6), we get

dw

dτ
= x(1− x)− (d− β1)xy − (1− θ)yz − dz − c0y.

dw

dτ
≤ x(1− x)− dz − c0y.

dw

dτ
+ ηw(τ) ≤ (1 + η)x− x2 = f(x).

where

η = min{d, c0} and f(x) = (1 + η)x− x2.
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Hence
dw

dτ
+ ηw(τ) ≤ 1 + η2

4
= M(say).

Now, using comparison theorem, as τ →∞, then

sup w(τ) ≤ M

η
.

4. Dynamical Behavior

The dynamical behavior of the equilibrium can be studied by computing the
variational matrix at various equilibrium points and Using the Routh-Hurwitz
criterion. We can note the following points:

(1) The equilibrium point E0 is a saddle point with locally stable manifold in
Y-Z plane and with unstable manifold in x direction.

(2) If β1 < c0,then the equilibrium point E1(1, 0, 0) is locally asymptotically
stable in X-Y-Z space,as E2 and E3 does not exit for β1 < c0, but if β1 > c0,
then E1 is saddle point with local stable manifold in X-Z direction and
with unstable manifold in Y-direction.

(3) E2 is saddle point but with stable manifold in X-Y plane when β1 > c0.

Lemma 4.1. If β1 > c0, then E2 is globally asymptotically stable in the interior
of positive quadrant of X-Y plane.

Proof. Taking H = 1
xy

, where is H > 0 in the interior of positive quadrant and

f1(xy) = x (1− x)− bxy,

f2(xy) = β1xy − c0y.

Clearly
df1H

dx
+
df2H

dy
< 0

and it does not changes sign in positive quadrant. Therefore, using Bendixon-
Dulec criterion there does not exist any limit cycle in X-Y plane. �

Now we will study the uniform persistence of the system using average Lya-
punove function [15].

Theorem 4.2. The system (2.4)-(2.6) is uniformly persistent if l1 > c0l2 + dl3,
l2 >

dl3
β1−c0

and β1 > c0, where l1, l2, l3 are all positive.

Proof. Take average Lyapunove function for the system as ρ(X) = xl
1y

l
2z

l
3. Clearly

ρ(x) is non negative function defined in R3
+ and X is a function of x, y, z. After

differentiating we have

ψ(X) = ρ̇(X)
ρ(X)

= l1
ẋ
x

+ l2
ẏ
y

+ l3
ż
z

= l1(1− x− by) + l2(β1x− c0 − z) + l3(θy − d)

Further from above theorem, the system has no periodic orbit in the interior of
X-Y plane. Thus, the uniform persistent exists, if there exists l1, l2 and l3, such
that ψ(X) is positive at E0, E1 and E2. Now
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(1) ψ(E0) > 0 if l1 > c0l2 + dl3
(2) ψ(E1) > 0 if l2 >

dl3
β1−c0

(3) ψ(E2) > 0 if θ
(
1− c0

β1

)
> d ⇒ β1 > c0

(
1− d

θ

)
, which is always true for

any set of positive values of l1, l2, l3, since in the existence of E2, β1 > c0
and all the parameter of the systems are positive.

(4) ψ(E3) > 0, always true for any set of positive values of l1, l2, l3.

Hence, the system is persistent if

l1 > c0l2 + dl3, l2 >
dl3

β1 − c0
and β1 > c0 (4.1)

are satisfied. �

Example 4.3. Let us choose suitable values of the parameters: b = 0.5, c0 = 0.01,
θ = 0.5, d = 0.1, l1 = 0.5, l2 = 0.3 and l3 = 0.5, which will clearly satisfy
the conditions (4.1). Hence the system always stable around E∗. The numerical
solution of the system (2.4)-(2.6), taking the same set of values for the parameters
as mentioned above, with β1 = 0.02, 0.03 and 0.2 respectively.

5. The Model with Delay

Here we assume that fishes takes time to digest the plankton and grow propor-
tionally.

dx

dt
= x (1− x)− bxy (5.1)

dy

dt
= β1y

∫ t

−∞
β exp(−β(t− s)f(s)− c0y − yz (5.2)

Where f(s) = f(x) = x
dz

dt
= θyz − dz (5.3)

Put

R(t) =

∫ t

−∞
β exp(−β(t− s)f(s)ds

Therefore
dR/dt = β(x−R)

dx

dt
= x (1− x)− bxy (5.4)

dy

dt
= β1yR− c0y − yz (5.5)

dz

dt
= θyz − dz (5.6)

There are three steady state of the system with delay, namely,

(1) E0(0, 0, 0, 0) is trivial equilibrium,
(2) E1(1, 0, 0, 0) here only plankton population exists
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(3) E∗(x∗, y∗, z∗, R∗) is the non-trivial equilibrium, wherex∗ = (1 − bd/θ),
y∗ = b/d, z∗ = (β1 − c0 − bβ1d/θ) and R∗ = (1− bd/θ).

The non-trivial equilibrium is non negative if (1 − bd/θ)β1 > c0 and θ) > bd
the characteristic equation of the delayed system at E −∗ (x∗, y∗, z∗, R∗) is given
by

λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 = 0 (5.7)

Where A1 = β + x∗, A2 = θy∗z∗ + βx∗, A3 = (β + x∗)θy∗z∗ + ββ1bx
∗y∗ and

A4 = θβx∗y∗z∗ on substitution the values of x∗, y∗, z∗ and R∗, it can be easily
verified that Ai > 0, for i = 1, 2, 3, 4. Now, from Routh-Hurwitz criterion a set
of necessary conditions for all the roots of the equation (5.7) having negative real
part are Ai > 0, i = 1, 2, 3, 4. Now we shell diagnose the hopf bifurcation of the
given system for β1 variable which represent the conversional rate from plankton
to fish population.

We know that the necessary and sufficient conditions for Hopf-Bifurcation,
that there exist β1 = β0 such that (i) Ai(β0) > 0 for i = 1, 2, 3, 4, (ii) H2(β0) =
A1A2 − A3 6= 0, (iii) H3(β0) = A1A2A3 − A2

1A2 − A2
3 = 0 and (iv) dH3

dβ1
(β0) 6= 0.

The condition (i) is true for all values of β1 established earlier. Now, assume
there exist β0 > 0 such that H3(β0) = 0, which implies

a1 + a2β0 + a3β
2
0 = 0 (5.8)

where a1 = (β + x∗)L1L3 − (β + x∗)2L5 − L− 32, a2 = (β + x∗)(L1L4 − L2L3)−
L6(β+x∗)2−2L3L4, a3 = (β+x∗)L2L4−L2

4, L1 = βx∗− θy∗c0, L2 = θx∗y∗ L3 =
−(β+x∗)θy∗c0, L4 = βbx∗y∗+(β+x∗)θx∗y∗ L5 = −θc0βbx∗y∗, L6 = θβb(x∗)2y∗.
By taking c0 = 0.01, b = 0.5, θ = 0.5, d = 0.1 from (5.8), we get β0 = 0.0216.
Further, H2(β0) = βx∗(β + 1 − bd/θ) − β1b

2d) 6= 0 and dH3

dβ1
(β0) 6= 0. Hence the

system start bifurcating at β0. The results are shown graphically, taking b = 0.5,
c0 = 0.01, θ = 0.5, d = 0.1, β = 0.01 with same set of values of β1 as in the
previous section. When β1 = 0.02 < β0 = 0.0216, the solution is converging to
E∗ and as β1 crosses the value β0, the system converges in a limit cycle, which is
shown in Figure 2(b) and 2(c). On comparing the figures 1(a)-(c) with 2(a)-(c)
respectively, it can be established that the delay induces Hopf-bifurcation in the
system.

Remark 5.1. In this model we have established using average Liapounove function
that the model without delay in conversion rate of fish persist uniformly under
some conditions. Again, with the introduction of delay in conversion rate of fish,
the system starts oscillating when β1 crosses a threshold value as shown in figures.
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