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VISCOSITY APPROXIMATION METHOD FOR
NONEXPANSIVE NONSELF-MAPPING AND VARIATIONAL

INEQUALITY

ZHENHUA HE1∗, CAN CHEN1, AND FENG GU2

Abstract. Let E be a real reflexive Banach space which has uniformly Gâteaux
differentiable norm. Let K be aclosed convex subset of E which is also a sunny
nonexpansive retract of E, and T : K → E be nonexpansive mapping satis-
fying the weakly inward condition and F (T ) = {x ∈ K, Tx = x} 6= ∅, and
f : K → K be a contractive mapping. Suppose that x0 ∈ K, {xn} is defined
by {

xn+1 = αnf(xn) + (1− αn)((1− δ)xn + δyn),
yn = P (βnxn + (1− βn)Txn), n ≥ 0,

where δ ∈ (0, 1), αn, βn ∈ [0, 1], P is sunny nonexpansive retractive from E into
K. Under appropriate conditions, it is shown that {xn} converges strongly to
a fixed point T and the fixed point solutes some variational inequalities. The
results in this paper extend and improve the corresponding results of [2] and
some others.

1. Introduction and preliminaries

Let E be a real Banach space and E∗ its dual space. Let J denote the normalized
duality mapping from E into 2E∗ defined by J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 =
‖f‖2}, where 〈·, ·〉 denote the generalized duality pairing between E and E∗. It
is well-known that if E∗ is strictly convex then J is sing-valued. In the sequel,
we shall denote the single-valued normalized duality mapping by j.
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We first recall some definitions and conclusions:

Definition 1.1. T is a mapping with domain D(T ) and R(T ) in E. T is said to
be a L−Lipschitz mapping, if ∀ x, y ∈ D(T ), ‖Tx−Ty‖ ≤ L‖x− y‖. Especially,
if L = 1, i.e. ‖Tx−Ty‖ ≤ ‖x−y‖, then T is said to non-expansive; if 0 < L < 1,
then T is said to contraction mapping.

Definition 1.2. Let K be a nonempty closed convex subsets of a Banach E. A
mapping P : E → K is called a retraction from E into K if P is continuous with
F (P ) = {x ∈ E : Px = x} = K. A mapping P : E → K is called sunny if

P (Px + t(x− Px)) = Px, ∀x ∈ E

whenever Px + t(x − Px) ∈ E and ∀ ∈ t > 0. A subset K of E is said to be a
sunny nonexpansive retract of E if there exists a sunny nonexpansive retraction
from E into K. For more details, see [4].

Let S = {x ∈ E : ‖x‖ = 1} denote the unit sphere of the real Banach space E.
E is said to have a Gâteaux differentiable norm if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S; and E is said to have a uniformly Gâteaux differentiable
norm if for each y ∈ S, the limit is attained uniformly for x ∈ S. Furthermore, if
E has a uniformly Gâteaux differentiable norm, then the duality map j is norm-
to-weak∗ uniformly continuous on bounded subsets of E(see, p.111 of [4]). Let
E be a normed space with dim E ≥ 2, the modulus of smoothness of E is the
function ρE : [0,∞) → [0,∞) defined by

ρE(τ) := sup{‖x + y‖+ ‖x− y‖
2

− 1 : ‖x‖ = 1; ‖y‖ = τ}.
The space E is called uniformly smooth if and only if limτ→0+ ρEτ/τ = 0.

Let F (T ) denote a fixed point set of mapping T .
Let K be a nonempty convex subset of a Banach space E. Then for x ∈ K,

set IK(x) is called inward set [2,7], where

IK(x) = {y ∈ E : y = x + λ(z − x), z ∈ K and λ ≥ 0}.
A mapping T : K → E is said to be satisfying the inward condition if Tx ∈ IK(x)
for all x ∈ K. T is also said to be satisfying the weakly inward condition if for
each x ∈ K, Tx ∈ IK(x) (IK(x) is the closure of IK(x)). Clearly K ⊂ IK(x) and
it is not hard to show that IK(x) is a convex set as K does.

Let K be a close convex subset of a uniformly smooth Banach space E, f :
K → K a contraction, T : K → K a nonexpansive mapping with F (T ) 6= ∅.
Then for any t ∈ (0, 1), the mapping

T f
t : x 7→ tf(x) + (1− t)Tx

is also contraction. Let xt denote the unique fixed point of T f
t . In [6], H.K.Xu

proved that as t ↓ 0, {xt} converges to a fixed point u of T that is the unique
solution of the variational inequality

〈(I − f)u, j(u− p)〉 ≤ 0 for all p ∈ F (T ).
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H.K. Xu also proved the following explicit iterative process {xn} given by

xn+1 = αnf(xn) + (1− αn)Txn

converges strongly to a fixed point p of T .
Let K be a close convex subset of a real Banach space E which is also a sunny

nonexpansive retract of E. f : K → K is a contraction. T : K → E is a
nonexpansive nonself-mapping. Inspired by Xu [6], in 2006, Y.Song and R.Chen
[2] considered the following algorithm,

xn+1 = P (αnf(xn) + (1− αn)Txn), n ≥ 0, (1.1)

where x0 ∈ K, P is a sunny nonexpansive retractive from E into K, αn ∈ (0, 1).
Then Y.Song and R. Chen [2] obtained the following results:

Theorem 1.3. (Theorem 2.4 of [2]). Let E be a reflexive Banach space which ad-
mits a weakly sequentially continuous J from E to E∗. Suppose K is a nonempty
closed convex subset of E which is also a sunny nonexpansive retract of E, and
T : K → E is a nonexpansive mapping satisfying the weakly inward condition
and F (T ) 6= ∅. Let {xn} be defined by (1.1), where P is a sunny nonexpansive
retract from E into K, and αn ∈ (0, 1) satisy the following conditions:

(i) αn → 0, as n →∞, and
∑∞

n=1 αn = ∞
(ii) either

∑∞
n=0 |αn+1 − αn| < ∞ or limn→∞ αn

αn+1
= 1.

Then {xn} converges strongly to a fixed point p of T such that p is the unique
solution in F (T ) to the following variational inequality:

〈(I − f)p, j(p− u)〉 ≤ 0, ∀ u ∈ F (T ).

Motivated by Song and Chen’s work, in this paper, we introduce a new
composite iterative scheme as follows:{

xn+1 = αnf(xn) + (1− αn)((1− δ)xn + δyn),
yn = P (βnxn + (1− βn)Txn), n ≥ 0,

(1.2)

where αn, βn ∈ (0, 1), σ ∈ (0, 1) is arbitrary (but fixed). Under appropriate
conditions, the {xn} defined by (1.2) converges strongly to a fixed point q of T
such that q is a solution of some variational inequalities. The results obtained
in this paper extend and improve the corresponding that of [2] and some others.
At the same time, this paper provides a new approach for the construction of a
fixed point of nonexpansive mapping.

In what follows, we shall make use of the following Lemmas.

Lemma 1.4. ([1]).Let E be a real normed linear space and J the normalized
duality mapping on E, then for each x, y ∈ E and j(x + y) ∈ J(x + y), we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.
Lemma 1.5. (Suzuki, [3]).Let {xn} and {yn} be bounded sequences in a Ba-
nach space E and let {βn} be a sequence in [0,1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose xn+1 = βnyn + (1− βn)xn for all integers n ≥ 0 and
lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0, then, limn→∞ ‖yn − xn‖ = 0.
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Lemma 1.6. ([8]). Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

if (i) αn ∈ [0, 1],
∑

αn =∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0,
∑

γn<∞, then
an→0, as n→∞.

Let µ be a continuous linear functional on l∞ satisfying ‖µ‖ = 1 = µ(1). Then
we know that µ is a mean on N if and only if

inf{an; n ∈ N} ≤ µ(a) ≤ sup{an; n ∈ N}
for every a = (a1, a2, ...) ∈ l∞ . According to time and circumstances, we use
µn(an) instead of µ(a). A mean µ on N is called a Banach limit if µn(an) =
µn(an+1) for every a = (a1, a2, ...) ∈ l∞ . Furthermore, we know the following
result [5, Lemma 1] and[4, Lemma4.5.4].

Lemma 1.7. ([5], Lemma 1). Let K be a nonempty closed convex subset of a
Banach space E with a uniformly Gâteaux differentiable norm. Let {xn} be a
bounded sequence of E and let µ be a mean on N .Let z ∈ K. Then

µn‖xn − z‖ = min
y∈K

µn‖xn − y‖

if and only if
µn〈y − z, j(xn − z)〉 ≤ 0, ∀ y ∈ K,

where j is the duality mapping of E.

Lemma 1.8. (Lemma 1.2 of [2]). Let E be a smooth Banach space, and K be a
nonempty closed convex subset of E which is also a sunny nonexpansive retract
of E, and T : K → E be mapping satisfying the weakly inward condition, and P
be a sunny nonexpansive retraction from E into K. Then F (T ) = F (PT ).

2. Main results

Throughout this paper, suppose that
(a) E is a real reflexive Banach space E which has a uniformly Gâteaux differen-
tiable norms;
(b) K is a nonempty closed convex subset of E;
(c) every nonempty closed bounded convex subset of E has the fixed point prop-
erty for nonexpansive mappings.

Lemma 2.1. Let T : K → K be a nonexpansive mapping with F (T ) = {x ∈ K :
Tx = x} 6= ∅. Let f : K → K be a contraction with contraction constantα ∈
(0, 1), then there exists xt ∈ K such that

xt = tf(xt) + (1− t)Txt, (2.1)

where t ∈ (0, 1). Further, as t → 0+, xt converges strongly a fixed point q ∈ F (T )
which solutes the following variational inequality:

〈q − f(q), j(q − p)〉 ≤ 0, ∀ p ∈ F (T ). (2.2)
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Proof. Firstly, let Hf
t denote a mapping defined by

Hf
t x = tf(x) + (1− t)Tx, ∀ t ∈ (0, 1), ∀x ∈ E.

Obviously, Hf
t is contraction, then by Banach contraction mapping principle there

exists xt ∈ K such that

xt = tf(xt) + (1− t)Txt.

Now, let q ∈ F (T ), then
‖xt − q‖ = ‖t(f(xt)− q) + (1− t)(Txt − q)‖ ≤ (1− t + tα)‖xt − q‖+ t‖f(q)− q‖,
i.e.,

‖xt − q‖ ≤ ‖f(q)− q‖
1− α

.

Hence {xt} is bounded. Assume that tn → 0+ as n →∞. Set xn := xtn , define a
function g on K by

g(x) = µn‖xn − x‖2.

Let
C = {x ∈ K; g(x) = min

y∈E
µn‖xn − y‖2}.

It is easy to see that C is a closed convex bounded subset of K. Since ‖xn −
Txn‖ → 0(n →∞), hence

g(Tx) = µn‖xn − Tx‖2 = µn‖Txn − Tx‖2 ≤ µn‖xn − x‖2 = g(x),

it follows that T (C) ⊂ C, that is C is invariant under T . By assumption (c),
non-expansive mapping T has fixed point q ∈ C. Using Lemma 1.7 we obtain

µn〈x− q, j(xn − q)〉 ≤ 0.

Taking x = f(q), then
µn〈f(q)− q, j(xn − q)〉 ≤ 0. (2.3)

Since
xt − q = t(f(xt)− q) + (1− t)(Txt − q),

then
‖xt−q‖2 = t〈f(xt)−q, j(xt−q)〉+(1−t)〈Txt−q, j(xt−q)〉

≤ t〈f(xt)−q, j(xt−q)〉+(1−t)‖xt−q‖2

Further,
‖xt − q‖2 ≤ 〈f(xt)− q, j(xt − q)〉

= 〈f(xt)− f(q), j(xt − q)〉+ 〈f(q)− q, j(xt − q)〉.
Thus,

µn‖xn − q‖2 ≤ µnα‖xn − q‖2 + µn〈f(q)− q, j(xn − q)〉.
it follows from (2.3) that

µn‖xn − q‖2 = 0.

Hence there exists a subsequence of {xn} which is still denoted by {xn} such that
lim

n→∞
‖xn− q‖ = 0. Now assume that another subsequence {xm} of {xn} converge

strongly to q̄ ∈ F (T ). Since j is norm-to-weak∗ uniformly continuous on bounded
subsets of E, then for any p ∈ F (T ),we have
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|〈xm − f(xm), j(xm − p)〉 − 〈q̄ − f(q̄), j(q̄ − p)〉|
= |〈xm− f(xm)− (q̄ −f(q̄)), j(xm − p)〉

+〈(q̄ − f(q̄)), j(xm − p)〉 − 〈q̄ − f(q̄), j(q̄ − q)〉|
≤ ‖(I − f)xm− (I− f)q̄‖‖xm − p‖

+|〈q̄ −f(q̄), j(xm − p)−j(q̄ − p)〉| → 0 (m →∞), (2.4)

i.e.,
〈q̄ − f(q̄), j(q̄ − p)〉 = lim

n→∞
〈xm − f(xm), j(xm − p)〉. (2.5)

Since xm = tf(xm) + (1− t)Txm, we have

(I − f)xm = −1− t

t
(I − T )xm,

hence for any p ∈ F (T ),

〈(I − f)xm, j(xm − p)〉 = −1− t

t
〈(I − T )xm − (I − T )p, j(xm − p)〉 ≤ 0, (2.6)

it follows from (2.5) and (2.6) that
〈q̄ − f(q̄), j(q̄ − p)〉 ≤ 0. (2.7)

Interchange p and q to obtain
〈q̄ − f(q̄), j(q̄ − q)〉 ≤ 0, (2.8)

i.e.,
〈q̄ − q + q − f(q̄), j(q̄ − q)〉 ≤ 0, (2.9)

hence
‖q̄ − q‖2 ≤ 〈f(q̄)− q, j(q̄ − q)〉. (2.10)

Interchange q and q̄ to obtain
‖q̄ − q‖2 ≤ 〈f(q)− q̄, j(q − q̄)〉. (2.11)

Adding up (2.10) and (2.11) yields that
2‖q̄ − q‖2 ≤ (1 + α)‖q̄ − q‖, (2.12)

this implies that q = q̄. Hence xt → q as t → 0+ and q is a solution of the
following variational inequality

〈q − f(q), j(q − p)〉 ≤ 0, ∀ p ∈ F(T).

This completes the proof of Lemma 2.1. ¤
Theorem 2.2. Let K be a sunny nonexpansive retract of E. T : K → E is
a nonexpansive mapping satisfying the weakly inward condition and F (T ) 6= ∅.
f : K → K is contractive with constant α ∈ (0, 1). Let P be a sunny nonexpansive
retraction from E into K. For given x0 ∈ K, let {xn} be generated by the
algorithm{

xn+1 = αnf(xn) + (1− αn)((1− δ)xn + δyn),
yn = P (βnxn + (1− βn)Txn), n ≥ 0,

(2.13)

where {αn}, {βn} ⊂ [0, 1]. δ ∈ (0, 1) is arbitrary (but fixed). Suppose that
{αn}, {βn} satisfy the following conditions:

(i) αn → 0 as n →∞, Σ∞
n=0αn = ∞,
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(ii) 0 ≤ βn < a, |βn+1 − βn| → 0 as n →∞, where a ∈ (0, 1).
Then {xn} converges strongly to a fixed point q ∈ F (T ), where q = limt→0+ xt is
a solution of variational inequality (2.2).

Proof. We splits four steps to prove it.

Step 1. {xn} is bounded. In deed, by (2.13), it is easy to see that

‖yn − x∗‖ = ‖P (βnxn + (1− βn)Txn)− x∗‖ = ‖P (βnxn + (1− βn)Txn)− Px∗‖
≤ ‖βn(xn − x∗) + (1− βn)(Txn − x∗)‖ ≤ ‖xn − x∗‖ (2.14)

and

‖xn+1 − x∗‖ = ‖αn(f(xn)− x∗) + (1− αn)((1− δ)(xn − x∗) + δ(yn − x∗))‖
≤ (1− αn)(1− δ)‖xn − x∗‖+ αnα‖xn − x∗‖

+αn‖f(x∗)− x∗‖+ (1− αn)δ‖yn − x∗‖, (2.15)

where x∗ ∈ F (T ). It follows from (2.14) and (2.15) that

‖xn+1 − x∗‖ ≤ (1− (1− α)αn)(‖xn − x∗‖+ αn‖f(x∗)− x∗‖. (2.16)

By simplicity deducing, from (2.16) we have

‖xn − x∗‖ ≤ max{‖x0 − x∗‖, ‖f(x∗)− x∗‖
1− α

}, n ≥ 0.

Hence, {xn} is bounded and so is {yn}.
Step 2. ‖xn+1 − xn‖ → 0 as n →∞. In deed, let M > 0 be a constant such that

max{‖xn+1‖, ‖xn‖, ‖yn+1‖, ‖Txn+1‖, ‖Txn‖, ‖f(xn+1)‖, ‖f(xn)‖} ≤ M.

It follows from (2.13) that

‖yn+1 − yn‖ = ‖P (βn+1xn+1 + (1− βn+1)Txn+1)− P (βnxn + (1− βn)Txn)‖
≤ ‖βn+1xn+1 − βnxn‖+ ‖(1− βn+1)Txn+1 − (1− βn)Txn‖
≤ 2|βn+1 − βn|M + ‖xn+1 − xn‖. (2.17)

Now, let γn = δ + αn(1− δ), ȳn = xn+1−xn+γnxn

γn
= αnf(xn)+(1−αn)δyn

γn
, then

yn+1−yn

=
αn+1

γn+1

f(xn+1)−αn

γn

f(xn)+
(1−αn+1)δyn+1

γn+1

− (1−αn)δyn

γn

=
αn+1

γn+1

f(xn+1)− αn

γn

f(xn) +
(1−αn)δ

γn

(yn+1− yn) +

(
1−αn+1

γn+1

− 1−αn

γn

)
δyn+1,

which yields that

‖yn+1−yn‖≤ 2
αn+1 + αn

γn+1γn

M+
(1−αn)δ

γn

‖yn+1 − yn‖. (2.18)

It follows from (2.17) and (2.18) that

‖yn+1−yn‖≤ 2
αn+1 + αn

γn+1γn

M+
2|βn+1 − βn|M

γn

+
(1−αn)δ

γn

‖xn+1 − xn‖. (2.19)

Using the conditions (i-ii), from (2.19) we get that
lim sup

n→∞
{‖yn+1−yn‖ − ‖xn+1−xn‖} ≤ 0. (2.20)
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Based on Lemma 1.5 and (2.20), we obtain limn→∞ ‖yn− xn‖ = 0, which implies
lim

n→∞
‖xn+1 − xn‖ = 0.

Step3. ‖xn − PTxn‖ → 0 as n →∞. Since

‖xn+1 − ((1− δ)xn + δyn)‖ = αn‖f(xn)− ((1− δ)xn + δyn)‖ → 0(n →∞)

and

δ‖xn−yn‖−‖xn+1−xn‖ ≤ ‖xn+1−xn−δ(yn−xn)‖ = ‖xn+1−((1−δ)xn +δyn)‖,
hence,

‖xn − yn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − ((1− δ)xn + δyn)‖
δ

→ 0(n →∞).

Further,

‖xn −PTxn‖ ≤ ‖xn − yn‖+ ‖yn − PTxn‖ ≤ ‖xn − yn‖+ a‖xn − PTxn‖,
which yields that

‖xn − PTxn‖ → 0(n →∞). (2.21)

Step 4. ‖xn−x∗‖ → 0 as n →∞, where x∗ ∈ F (T ) and x∗ satisfies the variational
inequality (2.2).

Since PT is nonexpansive mapping, then by Lemma 2.1 there exists xt such
that

xt = tf(xt) + (1− t)PTxt, ∀ t ∈ (0, 1),

Then, using Lemma 1.4, we have
‖xt − xn‖2 = ‖t(f(xt)− xn) + (1− t)(PTxt − xn)‖2

≤ (1− t)2‖PTxt − xn‖2 + 2t〈f(xt)− xn, j(xt − xn)〉
≤ (1−t)2(‖PTxt− PTxn‖+‖PTxn− xn‖)2+2t〈f(xt)− xt+ xt− xn, j(xt −xn)〉
≤ (1 + t2)‖xt −xn‖2+ ‖PTxn− xn‖(2‖xt − xn‖+ ‖PTxn −xn‖)

+2t〈f(xt)− xt, j(xt − xn)〉,
hence,

〈f(xt)−xt, j(xn−xt)〉 ≤ t

2
‖xt−xn‖2+

‖PTxn−xn‖
2t

(2‖xt−xn‖+‖PTxn−xn‖),
let n →∞ in the last inequality, then we obtain

lim sup
n→∞

〈f(xt)− xt, j(xn − xt)〉 ≤ t

2
M ′,

where M ′ ≥ 0 is a constant such that‖xt−xn‖2 ≤ M ′ for all t ∈ (0, 1) and n ≥ 0.
Now letting t → 0+, then we have that

lim sup
t→0+

lim sup
n→∞

〈f(xt)− xt, j(xn − xt)〉 ≤ 0.

Thus , for ∀ ε > 0, there exists a positive number δ′ such that for any t ∈ (0, δ′),
lim sup

n→∞
〈f(xt)− xt, j(xn − xt)〉 ≤ ε

2
.

On the other hand, By Lemma 1.8 and Lemma 2.1 we have xt → x∗ ∈ F (PT ) =
F (T ) as t → 0+. In addition, j is norm-to-weak∗ uniformly continuous on
bounded subsets of E, so there exists δ′′ > 0 such that, for any t ∈ (0, δ′′),
we have
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|〈(f(x∗)− x∗, j(xn − x∗)〉 − 〈f(xt)− xt, j(xn − xt)〉|
≤|〈f(x∗)−x∗, j(xn−x∗)−j(xn−xt)〉+|〈f(x∗)−x∗, j(xn−xt)〉−〈f(xt)−xt, j(xn−xt)〉|
≤‖f(x∗)− x∗‖‖j(xn − x∗)− j(xn − xt)‖+ (1 + α)‖ xt − x∗‖‖xn − xt‖
<

ε

2
.

Taking δ = min{δ′, δ′′}, for t ∈ (0, δ), we have that

〈f(x∗)− x∗, j(xn − x∗)〉 ≤ 〈f(xt)− xt, j(xn − xt)〉+
ε

2
.

Hence,

lim sup
n→∞

〈f(x∗)− x∗, j(xn − x∗)〉 ≤ ε, where ε > 0 is arbitrary,

which yields that
lim sup

n→∞
〈f(x∗)− x∗, j(xn − x∗)〉 ≤ 0. (2.22)

Now we prove that {xn} converges strongly to x∗. It follows from Lemma 1.4 and
(2.13) that
‖xn+1−x∗‖2 = ‖αn(f(xn)− x∗) + (1− αn)((1− δ)(xn − x∗) + δ(yn − x∗))‖2

≤ (1− αn)2‖(1− δ)(xn − x∗) + δ(yn − x∗)‖2 + 2αn〈f(xn)− x∗, j(xn+1 − x∗)〉
= (1− αn)2‖xn − x∗‖2 + 2αn〈f(xn)− f(x∗) + f(x∗)− x∗, j(xn+1 − x∗)〉
≤ (1−αn)2‖xn−x∗‖2+2αnα‖xn−x∗‖‖xn+1−x∗‖+2αn〈f(x∗)−x∗, j(xn+1−x∗)〉
≤ (1−αn)2‖xn−x∗‖2+αnα(‖xn−x∗‖2+‖xn+1−x∗‖2)

+2αn〈f(x∗)−x∗, j(xn+1−x∗)〉, (2.23)

which yields that

‖xn+1−x∗‖2 ≤ 1−(2−α)αn

1− ααn

‖xn−x∗‖2+
α2

n

1−ααn

‖xn−x∗‖2

+
2αn

1− ααn

〈f(x∗)−x∗, j(xn+1−x∗)〉

= (1−ᾱn)‖xn−x∗‖2+
α2

n

1−ααn

‖xn−x∗‖2

+
2αn

1−ααn

〈f(x∗)−x∗, j(xn+1−x∗)〉, (2.24)

where ᾱn = 2(1−α)αn

1−ααn
. By boundness of {xn} and condition (i) and Lemma 1.6,

{xn} converges strongly to x∗. This completes the proof of Theorem 2.2. ¤
Remark 2.3. Theorem 2.2 is obtained under the coefficient αn satisfying lim αn =
0 and Σ∞

n=0αn = ∞. In addition, this paper omits the request that space E
admits a weakly sequentially continuous duality mapping from E into E∗. Hence
it is an improvement of Theorem 2.4 of [2].

Remark 2.4. If E is uniformly smooth then E is reflexive and has a uniformly
Gâteaux differentiable norm with the property that every nonempty closed and
bounded subset of E has the fixed point property for nonexpansive mappings(see,
remark 3.5 of [9]). Thus, if E is a real uniformly smooth Banach space, then the
results in this paper are true, too.
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