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CARTESIAN PRODUCTS OF PQPM-SPACES
Y. J. CHO!, M. T. GRABIEC? AND A. A. TALESHIAN?*

ABSTRACT. In this paper we define the concept of finite and countable Carte-
sian products of PgpM-spaces and give a number of its properties. We also
study the properties of topologies of those products.

Introduction

Let (X, P) and (Y, P,) are PM-spaces under triangle function * and a pair
(X xY, P, x P,) is a finite product of PM-spaces (see Tardiff [11], Urazov [12]),
when the function P, x P, : (X x Y)? — AT is given by formula:

Py x P2(U,U) = Pl(ajlayl) * P2($2,y2)

for any u = (z1,41) and v = (za,92) in X x Y. Convolution of Wald space
[13], as well as several types of products of PM-spaces, where first defined by
Istratescu and Vadura [4]. If T is a t-norm and * = %7, then *-product is the 7-
product on defined independently by Egbert [1] and Xavier [14]. It is immediat
that x-product of PM spaces is PM-space (see (Sherwood, Taylor [9]), (Héle
[3]). In section 1 we extended this notion and results of T-product of PgpM-
spaces. In section 2 we give definition and some results on countable products of
PgpM-spaces of type {k,}.

0. Preliminary notes and results
Definition 0.1 ([8]). A distance distribution function is a nondecreasing func-
tion F' : (—o0, +00) — [0, 1] which is left-continuous on (—oo, +00) and F(0) =0
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and lim F'(z) = 1. We denote by A™ the set of all distribution functions and by

r—00

€, specific distribution function by

1, fort > a,
ga(t) =
0, fort<a, a € R.

The element of AT are partially ordered by
F < @G if and only if F(z) < G(z), for x € R.
For eny F,G € AT and h € (0,1], let (F, G, h) denote the condition
G(z)=F(x+h)+h forall z€(0,h)
and
dr(F,G) = inf{h : both (F,G;h) and (G, F;h) hold}.
As shown by Sibley [10] the function dj, is a metric in AT which is a modified

form on the well-known Levy metric for distribution functions and the metric
space (AT, dy) is compact and hence complete (see [8, pp. 45-49]).

Definition 0.2 ([8,15]). A binary operation * : AT x AT — A% is a triangle
Junction if (AT, x) is an Abelian monoid with identity £y in A" such that, for
any F, F' .G, G' € AT,

FxG<F %G whenever F<F' G<@.

Note that a triangle function * is continuous if it is continuous with respect to
the metric topology induced by d,.
Let T(A™) denote the family of all triangle functions * then the relation <
defined by
$1 <49 FaG< Fxy G, forall F,G e A" (0.2.1)

is a partial order in the family T'(A™T).
The second relation in the set T(AT) > is defined by

k13> %9 & ((E %2 G) #1 (F kg H)) > ((E %1 F) %o (G % H)), (0.2.2)

for all E,F,G,H € A*.
We can see the connection between the two relation: x; > %o implies *; > %o
and following conditions: min > % and min > *, for all *.

Definition 0.3 ([2]). A probabilistic-quasi-pseudo-metric-space (briefly, a Pgp-
metric space) is a triple (X, P, *), where X is a nonempty set, P is a function
from X x X into A™,x* is a triangle function and the following conditions are
satisfied (the value of P at (z,y) in X? will be denoted by P,,):

P, =y, forall z e X, (0.3.1)
P+ P, <P, forall z,y,z¢€ X. (0.3.2)

If P satisfies also the additional condition

Py, #eo it x#v, (0.3.3)

then (X, P, ) is called a probabilistic quasi-metric space.
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Moreover, if P satisfies the condition of symmetry:
Py = Py,
then (X, P, ) is called a probabilistic metric spac (PM-space).
If the function @ : X2 — AT be defined by
Qzy = Py, forall z,y e X, (0.3.4)

then a triple (X, @, *) is also a probabilistic-quasi-pseudo-metric space. We say
P and @) are conjugate each other.

Lemma 0.4. Let (X, P, Q, %) be a structure defined by Pqp-metric P and
k1> % (0.2.2). Then (X, F*' %) is a probabilistic pseudo-metric space whenever
the function F*' : X? — A% is given by:

Fro = Poy*1 Quy, for allr,y € Xo. (0.4.1)
If additionally, P satisfies the condition
Pmy 7A Ug oOT Qxy 7é Uo fO’I’ T 7é Y, (042)

then (X, F*', %) is a PM-space.

Lemma 0.5 ([2, Example 9]). If (X, p) is a quasi-pseudometric-space and the
function B, : X* — AT is defined by

P,(z,y) =¢ey(x,y), forall z,ye X
and x s a triangle function such that
Eq ¥ Ep > Equp for all a,b € R,

then (X, Py, %) is a proper Pgp-metric space.

Theorem 0.6 ([2, Theorem 6]). Let (X, P,*) be a Pgp-metric space under

a uniformly continuous t-function x and, for any x € X, and t > 0, the P-
neighborhood of x be a set

NP@#) ={y € X : di(Pyuy, uo) < t}.

Then the collection of all P-neighborhood form a base for the topology 7p
on X the Pgp-metric () which is a conjugate of P generate a topology 7¢ on
X. Thus natural structure associated with a Pgp-metric is a bitopological space
(X, 7p, 7).

It is worthy of note that in the spaces (X, B,, Qq, *), the 7p -topology is equiv-
alent to the g-quasi-pseudometric topology 7p, (see [2], [11]).

Lemma 0.7. Let (X, P,*) be a PqpM-space. Then the relation <p defined by

x <py if and only if P, =e, (0.7.1)
18 reflexive and transitive, i.e. it is a quasi-order on X.

Proof. Reflexivity follows immediately from (0.2.1) and transivites is a conse-
quence of (0.3.2).

Corollary 0.8. If Pqp-metric satisfies the assumption (0.4.2), then the rela-
tion <p 1s a partial ordering on X.
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Proof. Assume that © <p y and y <p z. This means that
P, =¢ and P, =u.
By (0.4.2), it follows that P,, = P, = ¢y if and only if z = y.

Corollary 0.9. If x # y imply Py, = ¢y and Py, # €y or Py, # ¢y and
P, = €0, then <p is a linear ordering on X.

Remark 0.10. If ) is a conjugate of a Pgp-metric P, then the relation <g
generated by (@) is also a quasi-ordering on X and is the inverse relation of <p.

1. Cartesian products of PgpM-spaces
In this section, we give some properties of Cartesian products of PgpM-spaces.

Definition 1.1. Let (X, P, *) and (Y, Py, x) be PgpM-spaces. The *-product
of (X, P,) and (Y, ) is the pair (X x Y, P X P), where P, x P, is the function
from (X x Y)? into AT given by

Py x Py(u,v) = Pi(x1,y1) * Pa(22,2) (1.1)
for any u = (z1,y1) and v = (22,92) in X X Y.

Theorem 1.2. Let (X, Py, *) and (X, Py, *) be PgpM -spaces. Let a mapping
Py X Py: (X xY)? — AT be given by

Py X Py(u,v) = (Py(x1, 22) %1 Pa(y1,y2)) with 1 > % (1.2)

for any u = (x1,91), v = (x2,92) € X X Y. Then (X XY, P, X Py,*) is a
PgpM -space.

Proof. If u = v, then x; = x5 and y; = y5. Thus, by (0.6.1), we have
Py x Py(u,v) = Py(x1,21) *1 Pa(y1, 1) = uo *1 up = Uo.
Now, let w = (x3,y3) X x Y. Then, by (0.3.2) and (0.2.2), we obtain
Py x Py(u,v) = Pi(x1,23) *1 Pa(y1,y2)
> (Pi(x1, 23) * Pi(xs,72)) *1 (P2(y1,y3) * Pa(ys,92))
> (Pi(21,23) *1 Pa(y1,y3)) * (PL(zs, 22) *1 Pa(ys, y2))
= P, X Py(u,v) x P; X Pa(w,v).
This completes the proof.

Definition 1.3. Let (X, P, ) and (X, P, %) be PgpM-spaces and let
k1 > x. Then (X XY, P; X P, %) is called a Cartesian %, -product of PqpM-spaces
provided that P; x P; is given by the formula (1.1).

By Definition 0.2 and (0.2.2), it follows that Min>> % holds true for any t+-
norm *. Thus it follows that the function given by

Py x Py(u,v) =Min (Py(z1,z2), Pa(y1,y2))
= Py(@1,22) X Pa(y1,y2)

satisfies the conditions of Theorem 1.2.
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Theorem 1.4. Let (X, Gp,,*n) and (Y, G,,, %) be a PgpM-space defined by

formula G,(x,y) = G <m>, where G € A1 be distinct from €9 and e, which

were generated by quasi-pseudo-metric p1 and ps, respectively. Let a function
p1 Ve (X xY)2— RT be defined by
p1V pa(u,v) =Max (pi (w1, T2), p2(¥1, ¥2)),
where u = (x1,22) and v = (y1,y2) belong to X x Y. Then the triple (X X
Y, Gpivp, ¥1) s a PgpM-space generated by a quasi-pseudo-metric p; V ps.
As a consequence of Theorem 1.2, we have the following:

Corollary 1.5. Let (X, P,*) be a PqpM-space. Let x; =Min. Then there are
four Pgp-metrics on X x X generated by the function P, that is, P X P, P x
Q,Q x P and Q x Q, where Q) is the Pgp-metric conjugate with P.

Remark 1.6. Note that, by Definition 1.1, for all u,v € X x X, the following
equalities hold:
Px P(o,u) = Q x Q(u,v), P x Q(v,u) = Q x Plu,v).

Therefore, the pairs P x P and Q) X Q) as well as P x Q) and () X P are the mutually
conjugate Pgp-metrics defined on X x X. The function M (X x Y)? — AT given
by

M(u,v) = P x Q(u,v) N@Q x P(u,v) = P X P(u,v) A @ x Q(u,v)
for all (u,v) € X x X is a probabilistic pseudo-metric on X x X.

Corollary 1.7. Let (X, P,*) be a PqpM -space. Let the tx+-norm  be contin-
uous at (€9,e9) and x; =Min. Then the topology Tpxp generated by the function
P x P is equivalent to the topology Tp x Tp. Also, the topologies Tp x T and
Tpxqg,Tg x Tg and Tpyqg, and Ty X Ty and Tk are equivalent.

Proof. For an illustration, we prove the first equivalence. Let 1,5 > 0 and
x,y € X. Then we have

NP (t1) x NJ (t2) € Tp x Tp.

Let t3 = max(t1, ) and v = (z,y) € X x X. Then a P x P-neighbourhood of a
point © € X x X is of the form:

NP*P(t3) = {v = (21, 29) P x P(u,v)(ts) > 1 — t3}
= {v = (v1,22) Puy,(t3) > 1 —t35 and Py, (t3) > 1 —t3},
N (t3) x NJ (ts) € NS (t1) x N} (t2).
On the other hand, for each ¢t > 0 and u = (z,y) € X x X, we have
Ny P(t) = NE(t) x NJ ().
The remaining cases can be verified similarly. This completes the proof.

Theorem 1.8. Let (X, P, %) be a PqpM-space. Assume that the ta+-norm
% s continuous and let <p be the quasi-order generated by P (in the sense of
Lemma 0.7). Then the set G(<p) = {(x,y) € X?*x <p y} is closed in the
topology Tpxq.



CARTESIAN PRODUCTS OF PQPM-SPACES 65

Proof. Assume that (x1, ;) belongs to the P x Q-closure of G(<p) and does
not belong to G(<p). Then, by Corollary 0.9, P,,,, # €o and there exists a
sequence {(zn,yn)} of G(<p) which is P x Q-convergent to (x, ;). This means
that

Pz, — €0, leyn — £0-
Thus, by (0.3.2), we have
€0 # Poyyy 2 Pryzy * Prpyy 2 Dayay * Prny, * Py
= Puia, * Prpy, * Quiy,
= Py, ¥ €0 * Qyy,
= Pz, * Quyy, — €0,
which is a contradiction. This completes the proof.

Lemma 1.9. Let (X, P,*) be a PqpM-space satisfying the condition (0.3.4),
and let the ta--norm *x be continuous. Then the set

(2] ={ye Xy<pua},
where <p is the order generated by P, is a subset of N2(t) for everyt > 0.
Proof. If y € («—, x|, then y <p x and so, by (0.3.4), we have
Pyz = Quy = €0.
Therefore, we have y € N2(t) for every ¢ > 0.
Corollary 1.10. The set («—,x] is Gs in the topology T,.

Proof. For t > 0, there is a natural number n such that % < t. Then we have

Q)2 Quyl ) > 1— > 11,

which means that )
N2 (=) € N2(1).
n
Therefore, we conclude that the family {N(1)},cn satisfies the assertion. This
completes the proof.
Lemma 1.11. The set («—,z] is P-closed.

Proof. Assume that y belongs to the P-closure of («—,z| and y ¢ («, x]. Then
P,, # ¢y and, for each n € N, there is z,, € («—, z] such that

Py, — €o.
Finally, we have
€0 # Pye 2 Pya, * Pry = Pye, €0 = Py, — €,
which is a contradiction. This completes the proof.

Corollary 1.12. The set [z,—) ={y € X © <p y} is a Q-closed and Gs in
the topology Tp.

The following result is an immediate consequence of Lemma 1.2:
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Theorem 1.13. Let (X, P, %) be a PgpM-space satisfying the condition of
Corollary 0.9 and let the ta+-norm * be continuous. Then the family { (<, z|}rex
forms a
P-closed subbase of a topology, which is denoted by T(«+|. Similarly, the family
{[z, =) }zex forms a Q-closed subbase of T'[—).

We note that these families form, respectively, a P-closed and ()-closed base
and that the function P generates such a partial order <p in X which is a lattice
order.

Lemma 1.14. Let (X, P, %) be a PqpM -space satisfying the condition of Corol-
lary 0.9 and let the ta+-norm * be continuous. Then the set («—,z) = {y € Xy <p
x} is Q-open and the set (z,—) ={y € X x <p y} is P-open.

Proof. By Corollary 0.9, it follows that <p orders X linearly. Hence we have
(«,z) C N&(t) for all t > 0. On the other hand, for each y € («,z), we have
Qzy 7 €0. This means that there exists ¢ > 0 such that

an: (t) >1-—t.
We thus have N2(t) C («,z). This completes the proof.
Corollary 1.15. Let (X, P,*) be a PqpM-space satisfying the condition of
Corollary 0.2 and let the ta+-norm * be continuous. The family {(«, x)}rex 18

a Q-open base for Tg. Similarly, the family {(x, —)}zex is a P-open base for the
topology Tp.

Theorem 1.16. Let (X, P, ) be a PgpM -space. Then the family
{(«, x| }sex is a complete neighbourhood system in the space X. It thus defines
some topology on X. Similarly, {[x,—)}sex forms a complete neighbourhood
system in X.

Proof. 1t suffices to observe that, for each x € X, z € («, z] and, if y € («—, z],
then we have

(=, y} - <<_’ x]

2. Cartesian product in PgpM-spaces of the type {k,}

The following result characterizes countable Cartesian products of PgpM-
spaces.

Definition 2.1. Let {(X,, P,)} be a sequence of PgpM-spaces and let the
sequence {k,} of nonnegative numbers satisfy the condition ) k., = 1. Then

the pair (X, P) is called a Cartesian product of PgpM-spaces of the type {k,} if
X =Tl,en Xn and P : X? — AT is given by

neN
where x = {z,,} and y = {y,. }.

Definition 2.2 ([5]). A function T': I? — I (I = {0,1)) is called a t-norm if
it satisfies the following conditions
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(T1) T(a,b) =T(b,a)

(T2) T(a,b) < T(c,d) whenever a < c and < d

(T3) T(a,1) =a

(T4) T(T(a,b),c) =T(a,T(b,c)), for all a,b,c,d € I.
)

—

TA) The t-norm T is said to be Archlmedean if for any z,y € (0,1), there
exists n € N such that

z" <y, that is 2" <y and 2" # y,

where 2° = 1,2! = z and 2" = T'(2", z), for all n > 1. We shall now
establish the notation related to a few most important ¢-norm:

M (z,y) =Min (z,y), (TM)
(z,y) =z -y, (TT)
W(z,y) =Max (x +y — 1,0). (TW)

The function W is continuous and Archimedean and we give the following rela-
tions among t-norms

M>T>W. (TR)

Definition 2.3. Let X be anonempty set, P : X? — D, and [ in T;-norm. The
triple (X, P,T') is called a quasi-pseudo-Menger space if it satisfies the axioms:

(M1) P,y =¢e9, x € X,

(M2) P,.(t1 +t2) > T(Pyy(t1), Py.(t2)), for all z,y,z € X and t;,t2 > 0.

If P satisfies also the additional condition:

(M3) P,, # ¢o if x # y, then (X, P,T) is quasi-Menger space.

Moreover, if P satisfies the condition of symmetry P,, = P,,, then (X, P,T) is
called a Menger-space (see [5]).

Definition 2.4. Let (X, P,T) be a probabilistic quasi-Menger space (PqM)
and the function ) : X? — D be defined by

Quy = Py, forall z,y € X.

Then the ordered triple (X, @, T) is also PgM-space. The function @ is called a
conjugate Pgp-metric of the P. By (X, P, @, T) we denote the structure generated
by the Pgp-metric P on X.

Lemma 2.5. Let (X,,, P,) be a sequence of proper PqpM -spaces (Lemma 0.5).
Then the Cartesian product (X, P) of the type {k,} is also a proper PqpM -space.
Also, if each (X,, P,) is a quasi-pseudo-Menger space with respect to the t;-
norm of type (T'A), then so is the Cartesian product of type {k,}. Moreover, the
topology T,, of a Cartesian product of the type {k,} generated by P is equivalent
to the product topology.

Proof. For proper PgpM-spaces, the condition F' > wu, is equivalent to the
statement that F'(a+) = 1. It thus suffices to observe that, if, for some a > 0,

Pﬂ?nyn (a+> - ]‘
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for all z,,,y, € X,, then, by (2.1), we obtain
Py (a+) = lltim(Ekannyn (1)) =3k, = 1.

To prove the second part of the theorem, let us observe that, by the definition
of the t;-norm W and the Menger condition (M2), the following holds:
W (P, (t), Psy(s)) =Max (Xk, P (20, 2)(t) + XknPr(2n, yn)(s) — 1,0)
=Max ((Xkn(Pn(xn, 20)(t) + Pu(2n,m )(s) — 1,0)
= Sk W (P, 20) (1), P20, Yn)(5)
Therefore, we have proved that the Cartesian product of the type {k,} is a quasi-
pseudo-Menger space.
In order to prove the third assertion, let us suppose that the sequence {z"} is

P-convergent to x = {zx} in (X, P). Then, for each ¢ > 0, there exists ny € N
such that

" € NI (t)
for all n > ng. Suppose, further, that, for some iy € N, the sequence {2} } is not

convergent to z;, € X;, which is the io-th coordinate of x. This means that, for
some tg > 0, there exists m,, > n for all n such that

Pi(l’io,l';gn)(to) >1—tg.
Let t = k;,to. Then, for all n > ng, we get

1—t=1-kto

< Pramy ()

= kiPi(ag, a7 (1)
€N

< kig + (1= to)
=10

=1- kio + kio — kiotO

— 1t

which is a contradiction. This means that, if {z"} is P-converegent, then each
sequence {x;} is P;-convergent to x; for all i € N. Thus the projections onto the
i-th coordinate are continuous. Therefore, the topology of the Cartesian product
of the type {k,} is stronger than the product topology.

Now, let U be a P-open set of Tp. Then, if x € U, there exists a P-
neighbourhood NP (ty) C U. Let F C N be a finite subset such that

> ki —(1—t) > 0.

jEF
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For every j € F, we selsct y; € Naﬁ? (to) and fix t = 1—(1—10)(>_ e
for each y = {y;} such that y; = y; for i = j. where j € F', we get
Pyy(to) = > kiPi(;, y5)(to)
i€N
> Y kPl ;) (to)
jEF
> k(1 —t)
jEF
- 1 — to.
Thus it follows that y € N (¢y). Let U; be Pi-open with U; = X; fori € N — F
and U; = N/ (t) for i € F. Then we have

reJuicu
ieN
which shows that U is open in the product topology. This completes the proof.

k;)~'. Then,

Corollary 2.6. Fach finite or countable Cartesian product of quasi-pseudo-
metrizable spaces is quasi-pseudo-metrizable.

Proof. By Lemma 2.5, it follows that each finite or countable cartesian product
of quasi-pseudo-Menger spaces is a quasi-pseudo-Menger space with uspect to
the t-norm W. Since that sup{W(z,z) : * < 1} = 1 the topology of it is
quasi-pseudo-metrizable (see [6], [7]). Indeed, let p be a quasi-pseudo-metric
that generates the topology. Then (X, G),) of Theorem 1.4 satisfies the required
condition.

Remark 2.7. We note that the Cartesian products of PM-space were studied
by Istratescu and Vadura [4], Egbert [1], Sherwood and Taylor [9] and Radu [6].
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