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CARTESIAN PRODUCTS OF PQPM-SPACES

Y. J. CHO1, M. T. GRABIEC2 AND A. A. TALESHIAN3,∗

Abstract. In this paper we define the concept of finite and countable Carte-
sian products of PqpM -spaces and give a number of its properties. We also
study the properties of topologies of those products.

Introduction

Let (X, P1) and (Y, P2) are PM -spaces under triangle function ∗ and a pair
(X × Y, P1 × P2) is a finite product of PM -spaces (see Tardiff [11], Urazov [12]),
when the function P1 × P2 : (X × Y )2 → ∆+ is given by formula:

P1 × P2(u, v) = P1(x1, y1) ∗ P2(x2, y2)

for any u = (x1, y1) and v = (x2, y2) in X × Y . Convolution of Wald space
[13], as well as several types of products of PM -spaces, where first defined by
Istrǎţescu and Vadura [4]. If T is a t-norm and ∗ = ∗T , then ∗-product is the T -
product on defined independently by Egbert [1] and Xavier [14]. It is immediat
that ∗-product of PM spaces is PM -space (see (Sherwood, Taylor [9]), (Höle
[3]). In section 1 we extended this notion and results of T -product of PqpM -
spaces. In section 2 we give definition and some results on countable products of
PqpM -spaces of type {kn}.

0. Preliminary notes and results
Definition 0.1 ([8]). A distance distribution function is a nondecreasing func-

tion F : (−∞, +∞)→ [0, 1] which is left-continuous on (−∞, +∞) and F (0) = 0
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and lim
x→∞

F (x) = 1. We denote by ∆+ the set of all distribution functions and by

εa specific distribution function by

εa(t) =

{
1, for t > a,

0, for t ≤ a, a ∈ R.

The element of ∆+ are partially ordered by

F ≤ G if and only if F (x) ≤ G(x), for x ∈ R.

For eny F, G ∈ ∆+ and h ∈ (0, 1], let (F, G, h) denote the condition

G(x) = F (x + h) + h for all x ∈ (0, h−1)

and

dL(F, G) = inf{h : both (F, G; h) and (G, F ; h) hold}.
As shown by Sibley [10] the function dL is a metric in ∆+ which is a modified

form on the well-known Levy metric for distribution functions and the metric
space (∆+, dL) is compact and hence complete (see [8, pp. 45-49]).

Definition 0.2 ([8,15]). A binary operation ∗ : ∆+ ×∆+ → ∆+ is a triangle
function if (∆+, ∗) is an Abelian monoid with identity ε0 in ∆+ such that, for
any F, F ′, G, G′ ∈ ∆+,

F ∗G ≤ F ′ ∗G′ whenever F ≤ F ′, G ≤ G′.

Note that a triangle function ∗ is continuous if it is continuous with respect to
the metric topology induced by dL.

Let T (∆+) denote the family of all triangle functions ∗ then the relation ≤
defined by

∗1 ≤ ∗2 ⇔ F ∗1 G ≤ F ∗2 G, for all F, G ∈ ∆+ (0.2.1)

is a partial order in the family T (∆+).
The second relation in the set T (∆+) � is defined by

∗1 � ∗2 ⇔ ((E ∗2 G) ∗1 (F ∗2 H)) ≥ ((E ∗1 F ) ∗2 (G ∗1 H)) , (0.2.2)

for all E, F, G, H ∈ ∆+.
We can see the connection between the two relation: ∗1 � ∗2 implies ∗1 ≥ ∗2

and following conditions: min ≥ ∗ and min� ∗, for all ∗.
Definition 0.3 ([2]). A probabilistic-quasi-pseudo-metric-space (briefly, a Pqp-

metric space) is a triple (X, P, ∗), where X is a nonempty set, P is a function
from X × X into ∆+, ∗ is a triangle function and the following conditions are
satisfied (the value of P at (x, y) in X2 will be denoted by Pxy):

Pxx = u0, for all x ∈ X, (0.3.1)

Pxy ∗ Pyz ≤ Pxz, for all x, y, z ∈ X. (0.3.2)

If P satisfies also the additional condition

Pxy 6= ε0 it x 6= y, (0.3.3)

then (X,P, ∗) is called a probabilistic quasi-metric space.
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Moreover, if P satisfies the condition of symmetry:

Pxy = Pyz,

then (X, P, ∗) is called a probabilistic metric spac (PM -space).
If the function Q : X2 → ∆+ be defined by

Qxy = Pyx, for all x, y ∈ X, (0.3.4)

then a triple (X, Q, ∗) is also a probabilistic-quasi-pseudo-metric space. We say
P and Q are conjugate each other.

Lemma 0.4. Let (X, P, Q, ∗) be a structure defined by Pqp-metric P and
∗1 � ∗ (0.2.2). Then (X, F ∗1 , ∗) is a probabilistic pseudo-metric space whenever
the function F ∗1 : X2 → ∆+ is given by:

F ∗1
xy = Pxy ∗1 Qxy, for allx, y ∈ X0. (0.4.1)

If additionally, P satisfies the condition

Pxy 6= u0 or Qxy 6= u0 for x 6= y, (0.4.2)

then (X, F ∗1 , ∗) is a PM-space.

Lemma 0.5 ([2, Example 9]). If (X, p) is a quasi-pseudometric-space and the
function Pp : X2 → ∆+ is defined by

Pp(x, y) = εp(x, y), for all x, y ∈ X

and ∗ is a triangle function such that

εa ∗ εb ≥ εa+b for all a, b ∈ R+,

then (X, Pp, ∗) is a proper Pqp-metric space.

Theorem 0.6 ([2, Theorem 6]). Let (X, P, ∗) be a Pqp-metric space under
a uniformly continuous t-function ∗ and, for any x ∈ X, and t > 0, the P -
neighborhood of x be a set

NP
x (t) = {y ∈ X : dL(Pxy, u0) < t}.

Then the collection of all P -neighborhood form a base for the topology τP

on X the Pqp-metric Q which is a conjugate of P generate a topology τQ on
X. Thus natural structure associated with a Pqp-metric is a bitopological space
(X, τP , τQ).

It is worthy of note that in the spaces (X, Pp, Qq, ∗), the τPp-topology is equiv-
alent to the q-quasi-pseudometric topology τPq (see [2], [11]).

Lemma 0.7. Let (X, P, ∗) be a PqpM-space. Then the relation ≤P defined by

x ≤P y if and only if Pxy = ετ (0.7.1)

is reflexive and transitive, i.e. it is a quasi-order on X.

Proof. Reflexivity follows immediately from (0.2.1) and transivites is a conse-
quence of (0.3.2).

Corollary 0.8. If Pqp-metric satisfies the assumption (0.4.2), then the rela-
tion ≤P is a partial ordering on X.
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Proof. Assume that x ≤P y and y ≤P x. This means that

Pxy = ε0 and Pyx = u.

By (0.4.2), it follows that Pxy = Pyx = ε0 if and only if x = y.

Corollary 0.9. If x 6= y imply Pxy = ε0 and Pyx 6= ε0 or Pxy 6= ε0 and
Pyx = ε0, then ≤P is a linear ordering on X.

Remark 0.10. If Q is a conjugate of a Pqp-metric P , then the relation ≤Q

generated by Q is also a quasi-ordering on X and is the inverse relation of ≤P .

1. Cartesian products of PqpM-spaces

In this section, we give some properties of Cartesian products of PqpM -spaces.

Definition 1.1. Let (X, P1, ∗) and (Y, P2, ∗) be PqpM -spaces. The ∗-product
of (X, P1) and (Y, P2) is the pair (X × Y, P1 × P2), where P1 × P2 is the function
from (X × Y )2 into ∆+ given by

P1 × P2(u, v) = P1(x1, y1) ∗ P2(x2, y2) (1.1)

for any u = (x1, y1) and v = (x2, y2) in X × Y .

Theorem 1.2. Let (X, P1, ∗) and (X, P2, ∗) be PqpM-spaces. Let a mapping
P1 × P2 : (X × Y )2 → ∆+ be given by

P1 × P2(u, v) = (P1(x1, x2) ∗1 P2(y1, y2)) with ∗1 � ∗ (1.2)

for any u = (x1, y1), v = (x2, y2) ∈ X × Y . Then (X × Y, P1 × P2, ∗) is a
PqpM-space.

Proof. If u = v, then x1 = x2 and y1 = y2. Thus, by (0.6.1), we have

P1 × P2(u, v) = P1(x1, x1) ∗1 P2(y1, y1) = u0 ∗1 u0 = u0.

Now, let w = (x3, y3) X × Y . Then, by (0.3.2) and (0.2.2), we obtain

P1 × P2(u, v) = P1(x1, x2) ∗1 P2(y1, y2)

≥ (P1(x1, x3) ∗ P1(x3, x2)) ∗1 (P2(y1, y3) ∗ P2(y3, y2))

≥ (P1(x1, x3) ∗1 P2(y1, y3)) ∗ ((P1(x3, x2) ∗1 P2(y3, y2))

= P1 × P2(u, v) ∗ P1 × P2(w, v).

This completes the proof.

Definition 1.3. Let (X, P1, ∗) and (X,P2, ∗) be PqpM -spaces and let
∗1 � ∗. Then (X×Y, P1×P2, ∗1) is called a Cartesian ∗1-product of PqpM -spaces
provided that P1 × P2 is given by the formula (1.1).

By Definition 0.2 and (0.2.2), it follows that Min� ∗ holds true for any t∆+-
norm ∗. Thus it follows that the function given by

P1 × P2(u, v) =Min (P1(x1, x2), P2(y1, y2))

= P1(x1, x2)× P2(y1, y2)

satisfies the conditions of Theorem 1.2.
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Theorem 1.4. Let (X, Gp1 , ∗M) and (Y,Gp2 , ∗M) be a PqpM-space defined by

formula Gp(x, y) = G
(

t
p(x,y)

)
, where G ∈ ∆+ be distinct from ε0 and ε∞, which

were generated by quasi-pseudo-metric p1 and p2, respectively. Let a function
p1 ∨ p2 (X × Y )2 → R+ be defined by

p1 ∨ p2(u, v) =Max (p1(x1, x2), p2(y1, y2)),

where u = (x1, x2) and v = (y1, y2) belong to X × Y . Then the triple (X ×
Y,Gp1∨p2 , ∗M) is a PqpM -space generated by a quasi-pseudo-metric p1 ∨ p2.

As a consequence of Theorem 1.2, we have the following:

Corollary 1.5. Let (X, P, ∗) be a PqpM-space. Let ∗1 =Min. Then there are
four Pqp-metrics on X × X generated by the function P , that is, P × P, P ×
Q,Q× P and Q×Q, where Q is the Pqp-metric conjugate with P .

Remark 1.6. Note that, by Definition 1.1, for all u, v ∈ X ×X, the following
equalities hold:

P × P (v, u) = Q×Q(u, v), P ×Q(v, u) = Q× P (u, v).

Therefore, the pairs P×P and Q×Q as well as P×Q and Q×P are the mutually
conjugate Pqp-metrics defined on X×X. The function M (X×Y )2 → ∆+ given
by

M(u, v) = P ×Q(u, v) ∧Q× P (u, v) = P × P (u, v) ∧Q×Q(u, v)

for all (u, v) ∈ X ×X is a probabilistic pseudo-metric on X ×X.

Corollary 1.7. Let (X, P, ∗) be a PqpM-space. Let the t∆+-norm ∗ be contin-
uous at (ε0, ε0) and ∗1 =Min. Then the topology TP×P generated by the function
P × P is equivalent to the topology TP × TP . Also, the topologies TP × TQ and
TP×Q, TQ × TQ and TP×Q, and TQ × TQ and TQ×Q are equivalent.

Proof. For an illustration, we prove the first equivalence. Let t1, t2 > 0 and
x, y ∈ X. Then we have

NP
x (t1)×NP

y (t2) ∈ TP × TP .

Let t3 = max(t1, t2) and u = (x, y) ∈ X ×X. Then a P × P -neighbourhood of a
point u ∈ X ×X is of the form:

NP×P
u (t3) = {v = (x1, x2) P × P (u, v)(t3) > 1− t3}

= {v = (x1, x2) Pxx1(t3) > 1− t3 and Pyy1(t3) > 1− t3},
NP

x (t3)×NP
y (t3) ⊂ NP

x (t1)×NP
y (t2).

On the other hand, for each t > 0 and u = (x, y) ∈ X ×X, we have

NP×P
u (t) = NP

x (t)×NP
y (t).

The remaining cases can be verified similarly. This completes the proof.

Theorem 1.8. Let (X, P, ∗) be a PqpM-space. Assume that the t∆+-norm
∗ is continuous and let ≤P be the quasi-order generated by P (in the sense of
Lemma 0.7). Then the set G(≤P ) = {(x, y) ∈ X2 x ≤P y} is closed in the
topology TP×Q.
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Proof. Assume that (x1, y1) belongs to the P × Q-closure of G(≤P ) and does
not belong to G(≤P ). Then, by Corollary 0.9, Px1y1 6= ε0 and there exists a
sequence {(xn, yn)} of G(≤P ) which is P ×Q-convergent to (x1, y1). This means
that

Px1xn → ε0, Qy1yn → ε0.

Thus, by (0.3.2), we have

ε0 6= Px1y1 ≥ Px1xn ∗ Pxny1 ≥ px1xn ∗ Pxnyn ∗ Pyny1

= Px1xn ∗ Pxnyn ∗Qy1yn

= Px1xn ∗ ε0 ∗Qy1yn

= Px1xn ∗Qy1yn → ε0,

which is a contradiction. This completes the proof.

Lemma 1.9. Let (X, P, ∗) be a PqpM-space satisfying the condition (0.3.4),
and let the t∆∗-norm ∗ be continuous. Then the set

(←, x] = {y ∈ X y ≤P x},
where ≤P is the order generated by P , is a subset of NQ

x (t) for every t > 0.

Proof. If y ∈ (←, x], then y ≤P x and so, by (0.3.4), we have

Pyx = Qxy = ε0.

Therefore, we have y ∈ NQ
x (t) for every t > 0.

Corollary 1.10. The set (←, x] is Gδ in the topology TQ.

Proof. For t > 0, there is a natural number n such that 1
n

< t. Then we have

Qxy(t) ≥ Qxy(
1

n
) > 1− 1

n
> 1− t,

which means that

NQ
x (

1

n
) ⊂ NQ

x (t).

Therefore, we conclude that the family {NQ
x ( 1

n
)}n∈N satisfies the assertion. This

completes the proof.

Lemma 1.11. The set (←, x] is P -closed.

Proof. Assume that y belongs to the P -closure of (←, x] and y 6∈ (←, x]. Then
Pyx 6= ε0 and, for each n ∈ N, there is xn ∈ (←, x] such that

Pyxn → ε0.

Finally, we have

ε0 6= Pyx ≥ Pyxn ∗ Pxny = Pyxn ∗ ε0 = Pyxn → ε0,

which is a contradiction. This completes the proof.

Corollary 1.12. The set [x,→) = {y ∈ X x ≤P y} is a Q-closed and Gδ in
the topology TP .

The following result is an immediate consequence of Lemma 1.2:
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Theorem 1.13. Let (X, P, ∗) be a PqpM-space satisfying the condition of
Corollary 0.9 and let the t∆+-norm ∗ be continuous. Then the family {(←, x]}x∈X

forms a
P -closed subbase of a topology, which is denoted by T (←]. Similarly, the family
{[x,→)}x∈X forms a Q-closed subbase of T [→).

We note that these families form, respectively, a P -closed and Q-closed base
and that the function P generates such a partial order ≤P in X which is a lattice
order.

Lemma 1.14. Let (X, P, ∗) be a PqpM-space satisfying the condition of Corol-
lary 0.9 and let the t∆+-norm ∗ be continuous. Then the set (←, x) = {y ∈ Xy <P

x} is Q-open and the set (x,→) = {y ∈ X x <P y} is P -open.

Proof. By Corollary 0.9, it follows that ≤P orders X linearly. Hence we have
(←, x) ⊂ NQ

x (t) for all t > 0. On the other hand, for each y ∈ (←, x), we have
Qxy 6= ε0. This means that there exists t > 0 such that

Qyx(t) > 1− t.

We thus have NQ
y (t) ⊂ (←, x). This completes the proof.

Corollary 1.15. Let (X, P, ∗) be a PqpM-space satisfying the condition of
Corollary 0.2 and let the t∆+-norm ∗ be continuous. The family {(←, x)}x∈X is
a Q-open base for TQ. Similarly, the family {(x,→)}x∈X is a P -open base for the
topology TP .

Theorem 1.16. Let (X, P, ∗) be a PqpM-space. Then the family
{(←, x]}x∈X is a complete neighbourhood system in the space X. It thus defines
some topology on X. Similarly, {[x,→)}x∈X forms a complete neighbourhood
system in X.

Proof. It suffices to observe that, for each x ∈ X, x ∈ (←, x] and, if y ∈ (←, x],
then we have

(←, y] ⊂ (←, x].

2. Cartesian product in PqpM-spaces of the type {kn}
The following result characterizes countable Cartesian products of PqpM -

spaces.

Definition 2.1. Let {(Xn, Pn)} be a sequence of PqpM -spaces and let the
sequence {kn} of nonnegative numbers satisfy the condition

∑
n∈N kn = 1. Then

the pair (X, P ) is called a Cartesian product of PqpM -spaces of the type {kn} if
X =

∏
n∈N Xn and P : X2 → ∆+ is given by

Pxy =
∑
n∈N

knPn(xn, yn), (2.1)

where x = {xn} and y = {yn}.
Definition 2.2 ([5]). A function T : I2 → I (I = 〈0, 1〉) is called a t-norm if

it satisfies the following conditions
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(T1) T (a, b) = T (b, a)
(T2) T (a, b) ≤ T (c, d) whenever a ≤ c and ≤ d
(T3) T (a, 1) = a
(T4) T (T (a, b), c) = T (a, T (b, c)), for all a, b, c, d ∈ I.
(TA) The t-norm T is said to be Archimedean if for any x, y ∈ (0, 1), there

exists n ∈ N such that

xn < y, that is xn ≤ y and xn 6= y,

where x0 = 1, x1 = x and xn+1 = T (xn, x), for all n ≥ 1. We shall now
establish the notation related to a few most important t-norm:

M(x, y) =Min (x, y), (TM)

Π(x, y) = x · y, (TΠ)

W (x, y) =Max (x + y − 1, 0). (TW)

The function W is continuous and Archimedean and we give the following rela-
tions among t-norms

M ≥ Π ≥ W. (TR)

Definition 2.3. Let X be a nonempty set, P : X2 → D, and I in TI-norm. The
triple (X,P, T ) is called a quasi-pseudo-Menger space if it satisfies the axioms:

(M1) Pxx = ε0, x ∈ X,
(M2) Pxz(t1 + t2) ≥ T (Pxy(t1), Pyz(t2)), for all x, y, z ∈ X and t1, t2 > 0.

If P satisfies also the additional condition:

(M3) Pxy 6= ε0 if x 6= y, then (X, P, T ) is quasi-Menger space.

Moreover, if P satisfies the condition of symmetry Pxy = Pyx, then (X, P, T ) is
called a Menger-space (see [5]).

Definition 2.4. Let (X, P, T ) be a probabilistic quasi-Menger space (PqM)
and the function Q : X2 → D be defined by

Qxy = Pyx, for all x, y ∈ X.

Then the ordered triple (X, Q, T ) is also PqM -space. The function Q is called a
conjugate Pqp-metric of the P . By (X, P, Q, T ) we denote the structure generated
by the Pqp-metric P on X.

Lemma 2.5. Let (Xn, Pn) be a sequence of proper PqpM-spaces (Lemma 0.5).
Then the Cartesian product (X,P ) of the type {kn} is also a proper PqpM-space.
Also, if each (Xn, Pn) is a quasi-pseudo-Menger space with respect to the tI-
norm of type (TA), then so is the Cartesian product of type {kn}. Moreover, the
topology Tp of a Cartesian product of the type {kn} generated by P is equivalent
to the product topology.

Proof. For proper PqpM -spaces, the condition F ≥ ua is equivalent to the
statement that F (a+) = 1. It thus suffices to observe that, if, for some a > 0,

Pxnyn(a+) = 1
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for all xn, yn ∈ Xn, then, by (2.1), we obtain

Pxy(a+) = lim
t→a

(ΣknPxnyn(t)) = Σkn = 1.

To prove the second part of the theorem, let us observe that, by the definition
of the tI-norm W and the Menger condition (M2), the following holds:

W (Pxz(t), Pzy(s)) =Max (ΣknPn(xn, zn)(t) + ΣknPn(zn, yn)(s)− 1, 0)

=Max ((Σkn(Pn(xn, zn)(t) + Pn(zn,n )(s)− 1, 0)

≤Max ((Σkn Max (Pn(xn, zn)(t) + Pn(zn, yn)(s)− 1, 0), 0)

= ΣknW (Pn(xn, zn)(t), Pn(zn, yn)(s)

≤ ΣknPn(xn, yn)(t + s) = Pxy(t + s).

Therefore, we have proved that the Cartesian product of the type {kn} is a quasi-
pseudo-Menger space.

In order to prove the third assertion, let us suppose that the sequence {xn} is
P -convergent to x = {xk} in (X, P ). Then, for each t > 0, there exists n0 ∈ N
such that

xn ∈ NP
x (t)

for all n > n0. Suppose, further, that, for some i0 ∈ N, the sequence {xn
i0
} is not

convergent to xi0 ∈ Xi0 which is the i0-th coordinate of x. This means that, for
some t0 > 0, there exists mn > n for all n such that

Pi(xi0 , x
mn
i0

)(t0) > 1− t0.

Let t = ki0t0. Then, for all n > n0, we get

1− t = 1− ki0t0

< Pxxmn(t)

=
∑
i∈N

kiPi(xi, x
mn
i )(t)

≤
∑
i=i0

ki0 + (1− t0)

= 1− ki0 + ki0 − ki0t0

= 1− t,

which is a contradiction. This means that, if {xn} is P -converegent, then each
sequence {xi} is Pi-convergent to xi for all i ∈ N. Thus the projections onto the
i-th coordinate are continuous. Therefore, the topology of the Cartesian product
of the type {kn} is stronger than the product topology.

Now, let U be a P -open set of TP . Then, if x ∈ U , there exists a P -
neighbourhood NP

x (t0) ⊂ U . Let F ⊂ N be a finite subset such that∑
j∈F

kj − (1− t0) > 0.
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For every j ∈ F , we selsct yj ∈ N
Pj
xj (t0) and fix t = 1−(1−t0)(

∑
j∈F kj)

−1. Then,

for each y = {yj} such that yi = yj for i = j. where j ∈ F , we get

Pxy(t0) =
∑
i∈N

kiPi(xj, yj)(t0)

>
∑
j∈F

kjPj(xj, yj)(t0)

>
∑
j∈F

kj(1− t)

= 1− t0.

Thus it follows that y ∈ NP
x (t0). Let Ui be Pi-open with Ui = Xi for i ∈ N − F

and Ui = NPi
xi

(t) for i ∈ F . Then we have

x ∈
∏
i∈N

Ui ⊂ U,

which shows that U is open in the product topology. This completes the proof.

Corollary 2.6. Each finite or countable Cartesian product of quasi-pseudo-
metrizable spaces is quasi-pseudo-metrizable.

Proof. By Lemma 2.5, it follows that each finite or countable cartesian product
of quasi-pseudo-Menger spaces is a quasi-pseudo-Menger space with uspect to
the t-norm W . Since that sup{W (x, x) : x < 1} = 1 the topology of it is
quasi-pseudo-metrizable (see [6], [7]). Indeed, let p be a quasi-pseudo-metric
that generates the topology. Then (X, Gp) of Theorem 1.4 satisfies the required
condition.

Remark 2.7. We note that the Cartesian products of PM -space were studied
by Istratescu and Vadura [4], Egbert [1], Sherwood and Taylor [9] and Radu [6].
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