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SEPARATION THEOREM WITH RESPECT TO SUB-TOPICAL
FUNCTIONS AND ABSTRACT CONVEXITY

M. ALIMOHAMMADY? AND A. SHAHMARI?*

Communicated by S. M. Vaezpour

ABSTRACT. This paper deals with topical and sub-topical functions in a class
of ordered Banach spaces. The separation theorem for downward sets and
sub-topical functions is given. It is established some best approximation prob-
lems by sub-topical functions and we will characterize sub-topical functions as
superimum of elementary sub-topical functions.

1. INTRODUCTION AND PRELIMINARIES

Topical functions are intensively studied (see [2,3]), and they have many ap-
plications in various parts of applied mathematics in particular in the modeling
of discrete event system (see [2,3]). Topical functions are also interesting from a
different point of view, namely as a tool in the study of the so-called downward
sets. Downward set arise in the study of some problems of mathematical eco-
nomics and game theory (see [4]).

Moreover, topical functions have studied in much more general class of sub-
topical (increasing plus-sub-homogeneous) functions (see [9]). In section 1, we
recall some definitions and establish some results related to topical functions of
o(z,y) :==sup{A € R: A1 < x+y}. In section 2, we will prove some basic
properties of sub-topical functions, we prove separability theorem for downward
sets and sub-topical functions. In section 3, it is given other form of separation
theorem with respect to sub-topical function. We would characterize best ap-
proximation problem by sub-topical functions.It is given separation theorem for
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downward sets and sub-topical functions. Finally we establish best approxima-
tion problem by sub-topical functions and characterize sub-topical functions as
superimum of elementary sub-topical functions.

Let (X, || . ||) be a Banach space and C' be a closed convex cone in X such that
CN(—=C)={0} and intC' # (. X is equipped with the relation > i.e; generated
by C:y<zifandonlyifz—y € C (z,y € X) and C : y < z if and only if
x—y € intC (x,y € X). Assume that C' is a normal cone. Recall that a cone C
is called normal if there exits a constant m > 0 such that ||z|| < m||y||, whenever
0<zr<yand z,y € X. Let 1 € int C' and

B={reX:-1<az<1}. (1)

It is well known and easy to check that B can be considered as the unit ball under
a certain norm ||.||;, which is equivalent to the initial norm ||.||. Without loss of
generality one can assume that ||.|| = ||.||1 (see [6]).

For any subset W of X, denote by intW, c¢lW and bdW the interior, closure and
boundary of W respectively.

For a non-empty subset W of X and z € X, define ( see[6])

dw, W) = inf v —w]. (2)

Recall (see [6]), a point w, € W is called best approximation for x € X, if
|z = w,|| = d(z, W).

Let W C X. For x € X it is denoted by Py (x) the set of all best approximations
of x in W:

Py(z) ={w e W : ||z —wl| =d(x,W)}. (3)
It is well-known that Py (x) is a closed and bounded subset of X. If z € X\ W
then Py (X) is located in the boundary of W (see [6]).
For z € X and r > 0, according to (1),

B(z,r) ={yeX:||lze—y[|<r}={yeX:z—r-1<y<zxz+r-1}. (4)
Definition 1.1. [5,6] A function f : X — R to the set of extended real numbers
is a topical function if
a) (Plus-homogeneous), i.e, f(x + A1) = f(z) + X for Vo € X and VA € R,

b) (Increasing function), i.e; if x <y then f(z) < f(y).
Let ¢ : X x X — R be a function which is defined by
o(z,y) :=sup{A\eR: A1 <z+y} Vr,y € X). (5)

From (5) it is easy to see that the set {\ € R : A1 < z + y} is non-empty
and bounded above by ||z + y||. Clearly this set is closed. It follows from the
definition of ¢ ¢ enjoys the following properties:

—00 < ¢(z,y) < ||z +yl|| for all z,y € X. (6)
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o(r,y)-1 <z+yforalxye X (7)

o(z,y) = p(y,z) for all z,y € X. (8)

o(x,—x) =sup{A€R: N1 <zx—2x=0}=0forall z € X. (9)
For each y € X, define a function ¢, : X — R by

oy(x) = p(x,y) Vo € X. (10)

Let f: X — R. Recall that directional derivative f’ (z,u) of f at z € X in
direction of u € X is defined by (see [7]),

fi(z,u) = lim flottu) — (@)

t—s0F t

. (11)

2. BASIC PROPERTIES OF SUB-TOPICAL FUNCTIONS

Definition 2.1. [9] A function f: X — R is called plus-sub-homogeneous if
flz+ A1) < f(z)+AVr € X and VA € R,. (12)

f is called sub-topical if it be increasing and plus-sub-homogeneous.In the fol-
lowing, we characterize plus-sub-homogenous which its proof is direct.

Lemma 2.2. A function f : X — R is plus-sub-homogeneous if and only if

flz+ A1) > f(x)+ A Ve e X and VA € R_. (13)

Let us present some examples of sub-topical functions:

Example 2.3. .
a) Every topical function is sub-topical.
b) Every sub-linear function such that f(1) <1 is sub-topical. Indeed

fla+ A1) < f(z)+ Af(1) < f(z) + AV € X and V) € R,.

Following is a result for showing Lipschitz continuity of a sub-topical function.
Its proof is direct.

Theorem 2.4. Let f : X — R be a sub-topical function, then f s Lipschitz
continuous.

Theorem 2.5. Let f : X — R be a sub-topical function. Then the following
assertions are true.

a) If there exists x € X such that f(x) = oo, then f = co.

b) If there exists x € X such that f(z) = —o0, then f = —oo.
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Proof.
a) Suppose that there exists z € X such that f(z) = co. Let y € X.
A = @(—x,y). There are two cases:

Case (1): If A <0, by (7) we have p(—z,y) -1 <y —x,then z <y —A-1.
Since —A > 0 and f is sub-topical, so
flz) < fly) -
It implies that f(y) = oco.

Case (2): If A > 0, then 0 < ¢o(—z,y) -1 < y—=x,s0 ¢ < y and f is an
increasing. Then f(z) < f(y), so f(y) = oo.
b) Let y € X be an arbitrary, A = ¢(z, —y). Then the remind of proof is similar
to that one in (a). 4

Theorem 2.6. Let f : X — R be an increasing function. Then f is plus-sub-
homogeneous if and only if,

fe : Ry — R given by f.(a) = f(z +a- 1) —

1S decreasing.

Proof. If f(z) = oo (or, —o0) for some z € X, by theorem 2.5 f = oo (or, —o0),
then f, = co(—o0) and so f, is decreasing for all z € X. Therefore, f : X — R
is sub-topical and 0 < a < f3.

fo(B)=fla+0-1) == flet+a-1+(F-a)-1)=0
<flzta-1)+5—-a-F=fila)

Conversely, if f, is decreasing, f.(0) > f.(a) for all > 0. Hence, f(x) >
f(r+a-1) —«a and f is plus-sub-homogeneous. ¢

Theorem 2.7. Let f : X — R be an increasing function. Then f is plus-sub-
homogeneous if and only if f' (x,1) <1 (Vo € X).

Proof. (=). According to theorem [ is decreasing. Then (f,) () <
0 (Vz e X).

(f)o(3) = lim fe(A ti — £:(N)
g JEFA LD At flz+ A1)+ A
{—0+ p .

fzi=2+X-1

o fle+t-1) -t f(z)
(A =1
(fo):(A) = lm ,
Therefore, f (x,1) <1, Vo € X.
(<=) Conversely, if f,(z,1) < 1 for all z € X, then (f,),(\) < 0. Indeed
(fa) (N = fi(z+ A-1,1) — 1. Therefore, f, is decreasing and f is plus-sub-
homogeneous. ¢

= (£.),(0) = fi(z,1) — 1.
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Let {f, : @ € I} be a family of sub-topical functions. Then f(z) = sup fa(z)
ael

and f(r) = inf f,(x) are sub-topical functions.
Next result is an example for a sub-topical function which is not topical.

Example 2.8. If o > 1, we define
Yoz, y) =sup{A e R: da- 1 <z +y} (Vo,y € X). (14)

It follows from (14) that the set {\ € R : Aa-1 < x + y} is non-empty and
bounded from above (by a~!||z + y||). Clearly this set is closed. It follows from
the definition of ¢, that ¢, enjoys the following properties:

—00 < pa(z,y) < a7z +y|| for all z,y € X. (15)
olr,y) -1 < a Mz +y) for all 7,y € X. (16)

Pa(@,y) = @aly, ) for all 7,y € X. (17)

Ya(r,—z) =sup{A eR: Xa-1<zx—2=0}=0forall z € X. (18)
For each y € X define the function ¢, , : X — R by
Pay(@) = palz,y) Vo € X. (19)
Then,

Pay(®) = pal®,y) = a7 p(z,y) = a”py(2).
Lemma 2.9. Let ¢, be the function defined by (14). Then

a) For 1 < a < f, then g5 < p, < .

b) lim pa(z,y) = supa(z,y) = p(z,y)
a—1t a>1
Proof. (a). pg=0"1p<a o=,
(0). lim ga(z,y) = lim a™lo(z,y) = ¢(z,y). ¢

a—-s1t

Consider X, = {¢pay : @ > 1, y € X}. Lemma shows that, elements of
Xy, can be elementary function for ¢, (i.e; ¢, (x) = sup{pay(z) : Yo,y € Xo. })-

Remark.1. The function ¢, , defined by (19) is sub-topical, so by theorem
is Lipschitz continuous.

Now it is given a characterization of downward sets in terms of separation from
outside points by sub-topical functions instead of topical functions.
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Theorem 2.10. Let ¢, be the function defined by (14). Then for a nonempty
subset W of X the following assertions are equivalent:

i) W is a downward subset of X.

ii) For each x € X \ W,

Yo(w,—x) <0, (Yw € W). (20)
iii) For each x € X \ W, there exists | € X such that
Va(w,l) <0< oz, 1), (VweW). (21)

Proof. (i) = (i7). Suppose that (i) holds and there exists z € X \ W. It
is known (in [6]) that, ¢(w,—x) < 0. Therefore, p,(w, —z) = a tp(w, —x) <
0 (Vw e W).

(17) = (i73). Assume that (ii) holds and = € X \ W is arbitrary. Then by
hypothesis, ¢, (w, —z) < 0 (Yw € W). Let | = —z € X,

Pa(w, —7) = pa(w,l) < 0= pu(r, —7) = po(r,1).

(131) => (i). Suppose that (iii) holds and W is not downward set. There is z < w
such that w € W and x € X \ W. There is | € X such that Va > 1, ¢, (w,l) <
0 < palz,1). But ¢, (-) is increasing. Therefore,

Ya(z,1) < pa(w,l) <0,
which is a contradiction. ¢

Theorem 2.11. [6] For a function f : X — R, the following assertions are
equivalent:

i) f is topical.

ii) For each y € X, there exists I, € X such that

o, X — R

satisfies in
o, < f and f(y) = ¢, (y) (y € domf).

iii) f in X, — convex. 4

Example 2.12. Let the function f : R — R given by f(x) = z is topical and
for a =2, g3 : R x R — R is defined by

pa(z,y) =27 (2 +y) (Va,y € X).
For arbitrary but fixed y € R, if there exist [, € R such that

pa1,(7) < f(z) Vo € R and p2,,(y) = f(y),

then [, = y and y < o Vo € R which is a contradiction.
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3. SEPARATION THEOREM AND ABSTRACT CONVEXITY BY SUB-TOPICAL
FUNCTIONS

Remark.2. Define, S, 4(-) := min{p,(:),d} if y € X and d € R, then S,  is
sub-topical. Indeed S, 4 is increasing since ¢, is increasing. Also

(%) y1 < Yo <= Sy.a < Syp.d

(**) di < dy <= Sy’dlgsy,(b.
andifxr € X, A >0

Sya(x+X-1) =min{p,(x + X-1),d} = min{p,(z) + X\, d=d; + \}
=min{py(x),di1} + X =Sy a4, () + X < Sya(x) + A

Theorem 3.1. Let f : X — R be a function. The following assertions are
equivalent:

i) [ is topical.

ii) f(x) > Sya(z)+ f(—y) forallz,y € X, d € Ry.

Proof. Suppose that (i) holds and since S, q(z) = min{p(z,y),d} < @,(x).
Then by (see [1]),
Sya(x) < @y(x) < fz) = f(=y).
It implies that
f(x) 2 Syalz) + f(—y).
Conversely, assume that (ii) holds, if f(z) = oo(or — oo) for some z € X, by
hypothesis f = oo(or — 00). Then f is topical. We assume that f: X — R.

fle+A-1) >S5 ,n@+ A1)+ f(x).
By definition of S, 4 € S,
fla+X-1) = flz) + A (D)

and
fl@)+A> S apn@) +fla+X- 1)+ A= fe+ A1) (1])
Therefore, (I) and (1) imply that f(z + A-1) = f(z) + A. We show that f is
increasing. Let x <y for z,y € X. According to (9):
0=z, —z) < ¢y, —)
and
0=5_20(y) = minf{e_.(y), 0} < ¢_.ly) < fly) — f(2).
Therefore, f(x) < f(y). ¢

Theorem 3.2. The map £ : X xR — S = {S,4 : y € X,d € R} which
(y,d) — Sy.q is bijection.
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Proof. ¢ is obviously onto. We show f is one-to-one. If Sy 4, = Sy, .dss
Sya(=y1 +di-1) = di = Sy, a,(—n +di - 1) = min{p(ys, —y1) + di,da}.
Then d; < dy and dy < @(y2, —y1) + d1, s0 0 < (Y2, —y1) and implies that
0 < @(yo,—y1) -1 < yo —y1, so y1 < yo. Also since, Sy, 4,(—y2 +do - 1) =
dy = Sy,.a,(=y2 + dy - 1) = min{p(y1, —y2) + do,d1}, then dy < dy and dy <
o(y1, —y2) + da, s0 0 < ¢(y1, —yo) and implies that 0 < p(y1, —y2) - 1 < 1 — yo.
Therefore, yo < y;. It follows that y; = yo and d; = do.

Theorem 3.3. Let f : X — R be a function. If f is a topical function then
there exists a set M =Y x R, C X X R such that

f(z) = sup Sya(x). (22)

(y,d)eM
In this case, one can take Y ={y € X : f(—y) > 0}.

Proof. Let f be a topical. If f(z) = oo for some x € X, by theorem (3.6),
f =o00. Then Y = Xsof()—supgp(xy)—oo Iff():—ooforsome

x € X, by theorem 2.5 f = —oc. Then Y =0 and f(x) = supp(x,y) = —oc.
yey

Suppose that f : X — R, be a topical function. According to theorem [2.11
Vz € X there exists y € Y such that,

vy < [, wyla) = f(2).
Choose d = |f(z)|, Syqa = min{p,,d} < f and S,4(x) = f(x). Therefore,
flx) = sup Sya(z). 4

(y,d)eM

Definition 3.4. The lower polar-function of f : X — R is the function f* :
S— R
f*(Sy,d) = Sup{sy,d(x) - f(l‘)}, (VSy,d S S) (23)

zeX
Theorem 3.5. Let f : X — R be a function, then
[ (Sya) >d—f(—y+d-1) (VS,q€5). (24)
f s topical if and only if
f(Sya) = =f(=y) (VSya € 5). (25)
Proof. f*(S,q) = ig}}g{Sy,d(a:) — f(z)}

> Sya(—y+d-1) = f(-y+d-1)=d— f(-y+d-1).

Indeed Sy 4(—y +d-1) =d. Then f*(S,q4) >d— f(—y+d-1).

If f is a topical function. Let z,y € X be arbitrary. It follows from (7) that
Sy.d(z) -1 <z +y and hence Syvd(:v) -1 —y < x. Since f is topical function,

Sya(z) — f(z) < —f(—y) (z,y € X).
Then
f*(Sy.a) = sup{Sya(z) — f(x)} < —f(-y), (y€Y).

zeX
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From (24), d - f(~ ’y+d 1) =d—f(-y)—d=—f(-y) < [(Sya) < =f(=v).
Therefore, f*(S,q4) = —f(—y).
Conversely, we assurne that (25) holds. Let z,y € X be arbitrary. f*(S,q4) >
Sya(z) — f(x). By (25), —f(=y) = Sya(z) — f(2), so f(x) = Sya(z) + f(—y).
By theorem [3.3] f is a topical function which it completes the proof.

Definition 3.6. Let f : X — R be a topical function and Sia € S. Define the
X,— subdifferential dx, f(y) of at a point y € X by,

Ox. fy) ={(l,d) € X xR : Sa(z) < f(z) Yz € X, and Siqa(y) = f(y)}, (26)
where X, := {(I,d) € X x R: S 4 € S}.
Theorem 3.7. Let f : X — R be a topical function and y € X. Then
Ox,f(y) ={(l,d) € X xR : Spa(y) > f(y) and f(-1) = 0}.
In particular, (f(y)-1—y, f(y)) € Ox,f(y) and (f(y)-1—y,|f(y)]) € Ix,f(y)
Proof. Let

Q:={(,d) € X xR: S(y) = f(y) and f(-1) = 0}.

Let (I,d) € Ox,f(y). Then f(y) < Spa(y). It follows that f(y) -1 < Spa(y) -1 <
oi(y) -1 < y+1. Therefore, y > f(y)-1—1and f(y) > f(y) + f(—1). Then
f(=1) <0 (I). Since f(x) > Sja(x), Yo € X so f(=l+d-1) > Sia(—l+d-1).
Therefore, f(—{)+d > min{y;(—l+d-1),d} = d. This implies that f(—{) > 0 (I1)
by using (1), (I1), f(=1) =0 and (I,d) € D.

Conversely, if (I, d) € D, there exists x € X such that S; 4(z) > f(z) which implies
that there exists r > 0 such that S;4(x) > f(x)+r, and so z > (f(x)+7r)-1—1.
Since f is topical and f(—[) = 0. It shows that

f(@) > fz) +r+ f(=1),

which is a contradiction by choosing of r. Therefore, S;4(z) < f(z), Vo € X.
Also Sia(y) < f(y). Since (I,d) € D, then f(y) < Sld,( ). It implies f(y) =
Sia(y). Hence, (I,d) € Ox,f(y). If f(y) -1 —y,d=1f(y)] or d = f(y), then
(l’d> < aXsf(y)

Sra(y) = min{pi(y),d} = f(y) and f(y — f(y) -1) = 0.
Then (I,d) € Ox,f(y). ¢

It is worth noting that the function S;; defined by remark (2) is sub-topical
and by theorem (3.5) Lipschitz continuous. We now give characterizations of
downward sets in terms of separation from outside points.

Theorem 3.8. Let W C X and S;4 be a function defined by remark (2). Then
the following assertions are equivalent:

i) W is a downward set.

ii) For each x € X \ W, there exists (I,d) € X x Ry such that S;q(w) < 0 <

Sl,d(l’)-
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Proof.
(1) = (ii). Suppose that (i) holds and ¢ W. Let | = —z, d € R, then by [6],
wi(w) < 0 < ¢(z) Yw € W. From the definition of S 4(w) = min{p;(w), d},
Sl7d(’LU) <0< SLd(.CE) (Vw € W)
(17) = (7). Suppose that (i7) holds and W is not a downward set. There is
wo € W and zg € X \ W with zy < wp. By hypothesis, there exists [ € X,d € RT
such that
Sl,d(w) <0< Sl,d<w0) (Vw € W)
Since S 4 is increasing, then S; 4(xo) < Sp4(wo).

Therefore,
Sra(wo) <0< S a(xg) < Spa(wo).

This is a contradiction. 4

Theorem 3.9. Let W C X, and S; 4 be the function defined by remark (2). Then
the following assertions are equivalent:

i) W is a closed downward subset of X.

it) W is downward, and for each x € X the set

H={ eR:zx+X-1€W}, (27)

is closed in R.
iii) For each x € X \ W. There is (I,d) € X x Ry, such that

Sl,d(w) <0< SLd(l’), (w S W) (28)
vi) For each x € X \ W there ezists (I,d) € X x Ry such that

sup Slvd(w) < Sl,d(x)- (29)

weW
Proof.
(1) = (4i). The proof is the same as in [6]
(1) == (i4i). Suppose that (i7) holds and x € X \ W is arbitrary. Thereisl € X
such that

o(w,l) <0< p(z,l) (Ywe W).
Let d = ¢(x,l) € Ry, then
Sra(w) = min{p(w,l),d} = p(w,l) <0 (Vw € W).

and

Sra(z) = min{e(x,1),d} = ¢(z,1) > 0.
Therefore,

Sld(w) <0< Sl,d(l’) (Vw S W)

(171) => (vi), is obvious.
(vi) = (7). Suppose that (vi) holds and W is not downward. There is wy € W
and zg € X \ W with zg < wg. By hypothesis, there exists [ € X, d € R, such
that

sup Sl,d(w) < SLC[(ZL'()).
weW
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Since S;4(+) is increasing, it follows that;

Sta(ze) < Spa(wy) < SUII/I)/ Sra(w) < Spa(zo).
we

This is a contraction. Hence, W is a downward set. Finally, assume that W
is not closed. There is a sequence {w,},>1 € W and zy € X \ W such that
|wy, — zo|| — 0 as n — oo. Since g € X \ W, there exists | € X,d € R,
such that;

sup Spa(w) < Spa(xo).

weW
Thus,
Sra(wy) < sup Spq(w) (Yn > 1).
weW
From continuity of S;4(-), Si.a(xo) < sup Spq(w). This is a contradiction. ¢
weW

Lemma 3.10. Let W be a closed downward subset of X, wy € bdW and let S; 4 be
the function defined by remark (2). Then S_,q(w) <0 (Vw € W,) and d € R,

Proof. Suppose that this condition holds, by (see [6]), ¢(w, —wy) < 0 (Vw € W).
Therefore, if d € R,

S_we.a(w) = min{p(w, —wp), d} = p(w, —wy) <0 (Yw € W).
¢

Lemma 3.11. Let W be a closed downward subset of X ,wy € bdW,l = —wqg and
deR,. Let S 4 be the function defined by remark (2). Then

Sl,d(w) <0= SLd(’LUo), (Vw € W)
Proof. By hypothesis and [6]
o(w,l) <0 = p(w,l) (Yw e W).

Let d=0
Sra(w) = min{p(w,l),d} = p(w,l) <0,
and
Sta(wo) = min{p(wo, 1), d} = 0.
Therefore,
Sl7d(w) <0= Sl,d(’LUo) (Vw € W)
¢

The following theorem gives a necessary and sufficient condition for the best
approximation in terms of separation from outside points.

Theorem 3.12. Let W be a closed downward subset of X and xzy € X. Let
yo € W oand ro = ||xg — yol||. Assume that S; 4 is the function defined by remark
(2). Then the following assertions are equivalent:

i) Yo € Pw(x0).
it) There exists | € X and d € R, such that;

Sia(w) <0 < Spa(y) (Yw € Wy € B(wo,70)) (30)
Moreover, if (30) holds with | = —yq, then yo = minPy (zo).
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Proof. (i) = (i7). Suppose that yo € Py (z0), then 7o = ||zo — yo|| = d(W, o).
Since W is closed downward subset of X, then by (see [6]), that the least element
wo = Tg — 1o - 1 of the set Py (zg) exists. Let | = —wy € X. Then,

p(w, 1) <0 < o(y,l) (Yw € W,y € B(xo,10)). (31)

Let ¢i(xg +1ro-1) = d, then d € R,. Indeed Yy € B(zg,70). By (4), 0 <y <
xo + 1o - 1, then by (31), 0 < p(y,1) < ¢(xg + ro-1,1). Therefore,

Sualw) = minfp(w, 1), d} = p(w,1) <0, (Yw € W)
and
Sta(y) = min{p(y,1),d} = ¢(y,1) > 0. (Vy € B(xo,70))
(1) = (i). Assume that there exists [ € X and d € Ry such that
Sra(w) <0< S4(y). (Yw e W,y € B(xg,10))

From (4), g — 19 -1 € B(xg,79). From the hypothesis S 4(zg — 19 - 1) > 0.
According to the definition of S; 4, (2o —r¢-1,1) > 0. Indeed S 4(zo — 10 1) =
min{y(xg — 19 - 1,1)} > 0. Since ¢(.,1) is topical, ¢(xq,l) > ry. Due to (7),

ro-1 < @(xp,1) -1 <29+ 1. (32)

Let w € W be an arbitrary and p,, = p(w, —x¢)-1+x9 € X. Then p(w, —z¢)-1 <
w—xg and p,, < w. Since W is downward set and w € W, it follows that p,, € W.
By hypothesis S 4(pw) < 0 and since d € Ry, ¢(pw,l) < 0. Since ¢(py,.) is
topical and (32) holds,

S*fm,d(pw) < So(puh —xo) < @(punl) — 19 < —Tg.

Since ¢(., —xp) is topical

—70 2 (P, —0) = (p(w, =x0) - 1 4 z0, —20) = (w, —2o).

From Lipschitz continuity of ¢_,,
ro < |e(w, —z0)| = (w0, —T0) — p(w, —20)| < [lzo — w].

Thus 9 < [|zg — w|| for all (w € W) and ||z¢ — yo|| = d(xo, W). Consequently,
Yo € Pw(xo). Finally, suppose that (30) holds with [ = —yy. From implication
(11) = (i), Yo € Pw(zo). Let w € Py (o) be an arbitrary. Thus, ||zg — w| =
d(xo, W) = ||xo — yo|| = 70, that is w € B(x,70). It follows from the hypothesis
S_yod(w) >0 and so 0 < S_p 4(w) -1 < p(w, —yp) - 1 < w — yo. This implies
that yo < w for all w € Py (zo). Hence, yo = min Py (), which it completes the
proof. ¢
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