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Communicated by S. M. Vaezpour

Abstract. This paper deals with topical and sub-topical functions in a class
of ordered Banach spaces. The separation theorem for downward sets and
sub-topical functions is given. It is established some best approximation prob-
lems by sub-topical functions and we will characterize sub-topical functions as
superimum of elementary sub-topical functions.

1. Introduction and preliminaries

Topical functions are intensively studied (see [2,3]), and they have many ap-
plications in various parts of applied mathematics in particular in the modeling
of discrete event system (see [2,3]). Topical functions are also interesting from a
different point of view, namely as a tool in the study of the so-called downward
sets. Downward set arise in the study of some problems of mathematical eco-
nomics and game theory (see [4]).
Moreover, topical functions have studied in much more general class of sub-
topical (increasing plus-sub-homogeneous) functions (see [9]). In section 1, we
recall some definitions and establish some results related to topical functions of
ϕ(x, y) := sup{λ ∈ R : λ · 1 ≤ x + y}. In section 2, we will prove some basic
properties of sub-topical functions, we prove separability theorem for downward
sets and sub-topical functions. In section 3, it is given other form of separation
theorem with respect to sub-topical function. We would characterize best ap-
proximation problem by sub-topical functions.It is given separation theorem for
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downward sets and sub-topical functions. Finally we establish best approxima-
tion problem by sub-topical functions and characterize sub-topical functions as
superimum of elementary sub-topical functions.

Let (X, ‖ . ‖) be a Banach space and C be a closed convex cone in X such that
C ∩ (−C) = {0} and intC 6= ∅. X is equipped with the relation ≥ i.e; generated
by C : y ≤ x if and only if x − y ∈ C (x, y ∈ X) and C : y < x if and only if
x− y ∈ intC (x, y ∈ X). Assume that C is a normal cone. Recall that a cone C
is called normal if there exits a constant m > 0 such that ‖x‖ ≤ m‖y‖, whenever
0 ≤ x ≤ y and x, y ∈ X. Let 1 ∈ int C and

B = {x ∈ X : -1 ≤ x ≤ 1}. (1)

It is well known and easy to check that B can be considered as the unit ball under
a certain norm ‖.‖1, which is equivalent to the initial norm ‖.‖. Without loss of
generality one can assume that ‖.‖ = ‖.‖1 (see [6]).
For any subset W of X, denote by intW , clW and bdW the interior, closure and
boundary of W respectively.
For a non-empty subset W of X and x ∈ X, define ( see[6])

d(x, W ) = inf
w∈W

‖x− w‖. (2)

Recall (see [6]), a point wo ∈ W is called best approximation for x ∈ X, if

‖x− wo‖ = d(x, W ).

Let W ⊂ X. For x ∈ X it is denoted by PW (x) the set of all best approximations
of x in W :

PW (x) = {w ∈ W : ‖x− w‖ = d(x, W )}. (3)

It is well-known that PW (x) is a closed and bounded subset of X. If x ∈ X�W
then PW (X) is located in the boundary of W (see [6]).
For x ∈ X and r > 0, according to (1),

B(x, r) := {y ∈ X : ‖x− y‖ ≤ r} = {y ∈ X : x− r · 1 ≤ y ≤ x + r · 1}. (4)

Definition 1.1. [5, 6] A function f : X −→ R to the set of extended real numbers
is a topical function if
a) (Plus-homogeneous), i.e, f(x + λ.1) = f(x) + λ for ∀x ∈ X and ∀λ ∈ R,
b) (Increasing function), i.e; if x ≤ y then f(x) ≤ f(y).

Let ϕ : X ×X −→ R be a function which is defined by

ϕ(x, y) := sup{λ ∈ R : λ · 1 ≤ x + y} (∀x, y ∈ X). (5)

From (5) it is easy to see that the set {λ ∈ R : λ · 1 ≤ x + y} is non-empty
and bounded above by ‖x + y‖. Clearly this set is closed. It follows from the
definition of ϕ ϕ enjoys the following properties:

−∞ < ϕ(x, y) ≤ ‖x + y‖ for all x, y ∈ X. (6)
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ϕ(x, y) · 1 ≤ x + y for all x, y ∈ X. (7)

ϕ(x, y) = ϕ(y, x) for all x, y ∈ X. (8)

ϕ(x,−x) = sup{λ ∈ R : λ · 1 ≤ x− x = 0} = 0 for all x ∈ X. (9)

For each y ∈ X, define a function ϕy : X −→ R by

ϕy(x) := ϕ(x, y) ∀x ∈ X. (10)

Let f : X −→ R. Recall that directional derivative f ′+(x, u) of f at x ∈ X in
direction of u ∈ X is defined by (see [7]),

f ′+(x, u) := lim
t−→0+

f(x + tu)− f(x)

t
. (11)

2. Basic properties of sub-topical functions

Definition 2.1. [9] A function f : X −→ R is called plus-sub-homogeneous if

f(x + λ.1) ≤ f(x) + λ ∀x ∈ X and ∀λ ∈ R+. (12)

f is called sub-topical if it be increasing and plus-sub-homogeneous.In the fol-
lowing, we characterize plus-sub-homogenous which its proof is direct.

Lemma 2.2. A function f : X −→ R is plus-sub-homogeneous if and only if

f(x + λ.1) ≥ f(x) + λ ∀x ∈ X and ∀λ ∈ R−. (13)

Let us present some examples of sub-topical functions:

Example 2.3. .
a) Every topical function is sub-topical.
b) Every sub-linear function such that f(1) ≤ 1 is sub-topical. Indeed

f(x + λ.1) ≤ f(x) + λf(1) ≤ f(x) + λ ∀x ∈ X and ∀λ ∈ R+.

Following is a result for showing Lipschitz continuity of a sub-topical function.
Its proof is direct.

Theorem 2.4. Let f : X −→ R be a sub-topical function, then f is Lipschitz
continuous.

Theorem 2.5. Let f : X −→ R be a sub-topical function. Then the following
assertions are true.
a) If there exists x ∈ X such that f(x) = ∞, then f ≡ ∞.
b) If there exists x ∈ X such that f(x) = −∞, then f ≡ −∞.
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Proof.
a) Suppose that there exists x ∈ X such that f(x) = ∞. Let y ∈ X.
λ = ϕ(−x, y). There are two cases:

Case (1): If λ < 0, by (7) we have ϕ(−x, y) · 1 ≤ y − x, then x ≤ y − λ · 1.
Since −λ > 0 and f is sub-topical, so

f(x) ≤ f(y)− λ.

It implies that f(y) = ∞.

Case (2): If λ ≥ 0, then 0 ≤ ϕ(−x, y) · 1 ≤ y − x, so x ≤ y and f is an
increasing. Then f(x) ≤ f(y), so f(y) = ∞.
b) Let y ∈ X be an arbitrary, λ = ϕ(x,−y). Then the remind of proof is similar
to that one in (a). �

Theorem 2.6. Let f : X −→ R be an increasing function. Then f is plus-sub-
homogeneous if and only if,
fx : R+ −→ R given by fx(α) = f(x + α · 1)− α,
is decreasing.

Proof. If f(x) = ∞ (or, −∞) for some x ∈ X, by theorem 2.5 f ≡ ∞ (or, −∞),
then fx ≡ ∞(−∞) and so fx is decreasing for all x ∈ X. Therefore, f : X −→ R
is sub-topical and 0 ≤ α ≤ β.

fx(β) = f(x + β · 1)− β = f(x + α · 1 + (β − α) · 1)− β

≤ f(x + α · 1) + β − α− β = fx(α).

Conversely, if fx is decreasing, fx(0) ≥ fx(α) for all α ≥ 0. Hence, f(x) ≥
f(x + α · 1)− α and f is plus-sub-homogeneous. �

Theorem 2.7. Let f : X −→ R be an increasing function. Then f is plus-sub-
homogeneous if and only if f ′+(x,1) ≤ 1 (∀x ∈ X).

Proof. (=⇒). According to theorem 2.6, fx is decreasing. Then (fx)
′
+(λ) ≤

0 (∀x ∈ X).

(fx)
′
+(λ) = lim

t−→0+

fx(λ + t)− fx(λ)

t

lim
t−→0+

f(x + λ · 1 + t · 1)− λ− t− f(x + λ · 1) + λ

t
.

If z := x + λ · 1

(fx)
′
+(λ) = lim

t−→0+

f(z + t · 1)− t− f(z)

t
= (fz)

′
+(0) = f ′+(z,1)− 1.

Therefore, f ′+(x,1) ≤ 1, ∀x ∈ X.

(⇐=) Conversely, if f
′
+(x, 1) ≤ 1 for all x ∈ X, then (fx)

′
+(λ) ≤ 0. Indeed

(fx)
′
+(λ) = f ′+(x + λ · 1,1) − 1. Therefore, fx is decreasing and f is plus-sub-

homogeneous. �
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Let {fα : α ∈ I} be a family of sub-topical functions. Then f(x) = sup
α∈I

fα(x)

and f(x) = inf
α

fα(x) are sub-topical functions.

Next result is an example for a sub-topical function which is not topical.

Example 2.8. If α > 1, we define

ϕα(x, y) := sup{λ ∈ R : λα · 1 ≤ x + y} (∀x, y ∈ X). (14)

It follows from (14) that the set {λ ∈ R : λα · 1 ≤ x + y} is non-empty and
bounded from above (by α−1‖x + y‖). Clearly this set is closed. It follows from
the definition of ϕα that ϕα enjoys the following properties:

−∞ < ϕα(x, y) ≤ α−1‖x + y‖ for all x, y ∈ X. (15)

ϕα(x, y) · 1 ≤ α−1(x + y) for all x, y ∈ X. (16)

ϕα(x, y) = ϕα(y, x) for all x, y ∈ X. (17)

ϕα(x,−x) = sup{λ ∈ R : λα · 1 ≤ x− x = 0} = 0 for all x ∈ X. (18)

For each y ∈ X define the function ϕα,y : X −→ R by

ϕα,y(x) := ϕα(x, y) ∀x ∈ X. (19)

Then,

ϕα,y(x) = ϕα(x, y) = α−1ϕ(x, y) = α−1ϕy(x).

Lemma 2.9. Let ϕα be the function defined by (14). Then

a) For 1 ≤ α ≤ β, then ϕβ ≤ ϕα ≤ ϕ.

b) lim
α−→1+

ϕα(x, y) = sup
α>1

ϕα(x, y) = ϕ(x, y)

Proof. (a). ϕβ = β−1ϕ ≤ α−1ϕ = ϕα

(b). lim
α−→1+

ϕα(x, y) = lim
α−→1+

α−1ϕ(x, y) = ϕ(x, y). �

Consider Xϕα = {ϕα,y : α > 1, y ∈ X}. Lemma 2.2 shows that, elements of
Xϕα can be elementary function for ϕ, (i.e; ϕy(x) = sup{ϕα,y(x) : ϕα,y ∈ Xϕα}).

Remark.1. The function ϕα,y defined by (19) is sub-topical, so by theorem 2.4
is Lipschitz continuous.

Now it is given a characterization of downward sets in terms of separation from
outside points by sub-topical functions instead of topical functions.
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Theorem 2.10. Let ϕα be the function defined by (14). Then for a nonempty
subset W of X the following assertions are equivalent:
i) W is a downward subset of X.
ii) For each x ∈ X \W ,

ϕα(w,−x) < 0, (∀w ∈ W ). (20)

iii) For each x ∈ X \W , there exists l ∈ X such that

ϕα(w, l) < 0 ≤ ϕα(x, l), (∀w ∈ W ). (21)

Proof. (i) =⇒ (ii). Suppose that (i) holds and there exists x ∈ X \ W . It
is known (in [6]) that, ϕ(w,−x) < 0. Therefore, ϕα(w,−x) = α−1ϕ(w,−x) <
0 (∀w ∈ W ).
(ii) =⇒ (iii). Assume that (ii) holds and x ∈ X \ W is arbitrary. Then by
hypothesis, ϕα(w,−x) < 0 (∀w ∈ W ). Let l = −x ∈ X,

ϕα(w,−x) = ϕα(w, l) < 0 = ϕα(x,−x) = ϕα(x, l).

(iii) =⇒ (i). Suppose that (iii) holds and W is not downward set. There is x ≤ w
such that w ∈ W and x ∈ X \W . There is l ∈ X such that ∀α > 1, ϕα(w, l) <
0 ≤ ϕα(x, l). But ϕα,l(·) is increasing. Therefore,

ϕα(x, l) ≤ ϕα(w, l) < 0,

which is a contradiction. �

Theorem 2.11. [6] For a function f : X −→ R, the following assertions are
equivalent:
i) f is topical.
ii) For each y ∈ X, there exists ly ∈ X such that

ϕly : X −→ R

satisfies in

ϕly ≤ f and f(y) = ϕly(y) (y ∈ domf).

iii) f in Xϕ − convex. �

Example 2.12. Let the function f : R −→ R given by f(x) = x is topical and
for α = 2, ϕ2 : R× R −→ R is defined by

ϕ2(x, y) = 2−1(x + y) (∀x, y ∈ X).

For arbitrary but fixed y ∈ R, if there exist ly ∈ R such that

ϕ2,ly(x) ≤ f(x) ∀x ∈ R and ϕ2,ly(y) = f(y),

then ly = y and y ≤ x ∀x ∈ R which is a contradiction.
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3. Separation theorem and abstract convexity by sub-topical
functions

Remark.2. Define, Sy,d(·) := min{ϕy(·), d} if y ∈ X and d ∈ R, then Sy,d is
sub-topical. Indeed Sy,d is increasing since ϕy is increasing. Also

(∗) y1 ≤ y2 ⇐⇒ Sy1,d ≤ Sy2,d

(∗∗) d1 ≤ d2 ⇐⇒ Sy,d1≤Sy,d2 .

and if x ∈ X, λ > 0

Sy,d(x + λ · 1) = min{ϕy(x + λ · 1), d} = min{ϕy(x) + λ, d = d1 + λ}

= min{ϕy(x), d1}+ λ = Sy,d1(x) + λ ≤ Sy,d(x) + λ.

Theorem 3.1. Let f : X −→ R be a function. The following assertions are
equivalent:
i) f is topical.
ii) f(x) ≥ Sy,d(x) + f(−y) for all x, y ∈ X, d ∈ R+.

Proof. Suppose that (i) holds and since Sy,d(x) = min{ϕ(x, y), d} ≤ ϕy(x).
Then by (see [1]),

Sy,d(x) ≤ ϕy(x) ≤ f(x)− f(−y).

It implies that

f(x) ≥ Sy,d(x) + f(−y).

Conversely, assume that (ii) holds, if f(x) = ∞(or − ∞) for some x ∈ X, by
hypothesis f ≡ ∞(or −∞). Then f is topical. We assume that f : X −→ R.

f(x + λ · 1) ≥ S−x,|λ|(x + λ · 1) + f(x).

By definition of Sy,d ∈ S,

f(x + λ · 1) ≥ f(x) + λ (I)

and

f(x) + λ ≥ S−x−λ·1,|λ|(x) + f(x + λ · 1) + λ = f(x + λ · 1) (II)

Therefore, (I) and (II) imply that f(x + λ · 1) = f(x) + λ. We show that f is
increasing. Let x ≤ y for x, y ∈ X. According to (9):

0 = ϕ(x,−x) ≤ ϕ(y,−x)

and

0 = S−x,0(y) = min{ϕ−x(y), 0} ≤ ϕ−x(y) ≤ f(y)− f(x).

Therefore, f(x) ≤ f(y). �

Theorem 3.2. The map ξ : X × R −→ S = {Sy,d : y ∈ X, d ∈ R} which
(y, d) 7→ Sy,d is bijection.
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Proof. ξ is obviously onto. We show f is one-to-one. If Sy1,d1 = Sy2,d2 ,
Sy1,d1(−y1 + d1 · 1) = d1 = Sy2,d2(−y1 + d1 · 1) = min{ϕ(y2,−y1) + d1, d2}.
Then d1 ≤ d2 and d1 ≤ ϕ(y2,−y1) + d1, so 0 ≤ ϕ(y2,−y1) and implies that
0 ≤ ϕ(y2,−y1) · 1 ≤ y2 − y1, so y1 ≤ y2. Also since, Sy2,d2(−y2 + d2 · 1) =
d2 = Sy1,d1(−y2 + d2 · 1) = min{ϕ(y1,−y2) + d2, d1}, then d2 ≤ d1 and d2 ≤
ϕ(y1,−y2) + d2, so 0 ≤ ϕ(y1,−y2) and implies that 0 ≤ ϕ(y1,−y2) · 1 ≤ y1 − y2.
Therefore, y2 ≤ y1. It follows that y1 = y2 and d1 = d2. �

Theorem 3.3. Let f : X −→ R be a function. If f is a topical function then
there exists a set M = Y × R+ ⊆ X × R such that

f(x) = sup
(y,d)∈M

Sy,d(x). (22)

In this case, one can take Y = {y ∈ X : f(−y) ≥ 0}.

Proof. Let f be a topical. If f(x) = ∞ for some x ∈ X, by theorem (3.6),
f ≡ ∞. Then Y = X, so f(x) = sup

y∈Y
ϕ(x, y) = ∞. If f(x) = −∞ for some

x ∈ X, by theorem 2.5, f ≡ −∞. Then Y = ∅ and f(x) = sup
y∈Y

ϕ(x, y) = −∞.

Suppose that f : X −→ R, be a topical function. According to theorem 2.11,
∀x ∈ X there exists y ∈ Y such that,

ϕy ≤ f, ϕy(x) = f(x).

Choose d = |f(x)|, Sy,d = min{ϕy, d} ≤ f and Sy,d(x) = f(x). Therefore,
f(x) = sup

(y,d)∈M

Sy,d(x). �

Definition 3.4. The lower polar-function of f : X −→ R is the function f ? :
S −→ R

f ?(Sy,d) := sup
x∈X

{Sy,d(x)− f(x)}, (∀Sy,d ∈ S). (23)

Theorem 3.5. Let f : X −→ R be a function, then

f ?(Sy,d) ≥ d− f(−y + d · 1) (∀Sy,d ∈ S). (24)

f is topical if and only if

f ?(Sy,d) = −f(−y) (∀Sy,d ∈ S). (25)

Proof . f ?(Sy,d) = sup
x∈X

{Sy,d(x)− f(x)}

≥ Sy,d(−y + d · 1)− f(−y + d · 1) = d− f(−y + d · 1).
Indeed Sy,d(−y + d · 1) = d. Then f ?(Sy,d) ≥ d− f(−y + d · 1).
If f is a topical function. Let x, y ∈ X be arbitrary. It follows from (7) that
Sy,d(x) · 1 ≤ x + y and hence Sy,d(x) · 1− y ≤ x. Since f is topical function,

Sy,d(x)− f(x) ≤ −f(−y) (x, y ∈ X).

Then

f ?(Sy,d) = sup
x∈X

{Sy,d(x)− f(x)} ≤ −f(−y), (y ∈ Y ).
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From (24), d− f(−y + d ·1) = d− f(−y)− d = −f(−y) ≤ f ∗(Sy,d) ≤ −f(−y).
Therefore, f ?(Sy,d) = −f(−y).
Conversely, we assume that (25) holds. Let x, y ∈ X be arbitrary. f ?(Sy,d) ≥
Sy,d(x) − f(x). By (25), −f(−y) ≥ Sy,d(x) − f(x), so f(x) ≥ Sy,d(x) + f(−y).
By theorem 3.3, f is a topical function which it completes the proof.

Definition 3.6. Let f : X −→ R be a topical function and Sl,d ∈ S. Define the
Xs− subdifferential ∂Xsf(y) of at a point y ∈ X by,

∂Xsf(y) = {(l, d) ∈ X × R : Sl,d(x) ≤ f(x) ∀x ∈ X, and Sl,d(y) = f(y)}, (26)

where Xs := {(l, d) ∈ X × R : Sl,d ∈ S}.

Theorem 3.7. Let f : X −→ R be a topical function and y ∈ X. Then

∂Xsf(y) = {(l, d) ∈ X × R : Sl,d(y) ≥ f(y) and f(−l) = 0}.

In particular, (f(y) ·1− y, f(y)) ∈ ∂Xsf(y) and (f(y) ·1− y, |f(y)|) ∈ ∂Xsf(y)

Proof. Let

Q := {(l, d) ∈ X × R : Sl,d(y) ≥ f(y) and f(−l) = 0}.

Let (l, d) ∈ ∂Xsf(y). Then f(y) ≤ Sl,d(y). It follows that f(y) · 1 ≤ Sl,d(y) · 1 ≤
ϕl(y) · 1 ≤ y + l. Therefore, y ≥ f(y) · 1 − l and f(y) ≥ f(y) + f(−l). Then
f(−l) ≤ 0 (I). Since f(x) ≥ Sl,d(x), ∀x ∈ X so f(−l + d · 1) ≥ Sl,d(−l + d · 1).
Therefore, f(−l)+d ≥ min{ϕl(−l+d·1), d} = d. This implies that f(−l) ≥ 0 (II)
by using (I), (II), f(−l) = 0 and (l, d) ∈ D.
Conversely, if (l, d) ∈ D, there exists x ∈ X such that Sl,d(x) > f(x) which implies
that there exists r > 0 such that Sl,d(x) > f(x) + r, and so x > (f(x) + r) · 1− l.
Since f is topical and f(−l) = 0. It shows that

f(x) > f(x) + r + f(−l),

which is a contradiction by choosing of r. Therefore, Sl,d(x) ≤ f(x), ∀x ∈ X.
Also Sl,d(y) ≤ f(y). Since (l, d) ∈ D, then f(y) ≤ Sl,d(y). It implies f(y) =
Sl,d(y). Hence, (l, d) ∈ ∂Xsf(y). If f(y) · 1 − y, d = |f(y)| or d = f(y), then
(l, d) ∈ ∂Xsf(y)

Sl,d(y) = min{ϕl(y), d} = f(y) and f(y − f(y) · 1) = 0.

Then (l, d) ∈ ∂Xsf(y). �

It is worth noting that the function Sl,d defined by remark (2) is sub-topical
and by theorem (3.5) Lipschitz continuous. We now give characterizations of
downward sets in terms of separation from outside points.

Theorem 3.8. Let W ⊆ X and Sl,d be a function defined by remark (2). Then
the following assertions are equivalent:
i) W is a downward set.
ii) For each x ∈ X \ W , there exists (l, d) ∈ X × R+ such that Sl,d(w) < 0 ≤
Sl,d(x).
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Proof .
(i) =⇒ (ii). Suppose that (i) holds and x 6∈ W . Let l = −x, d ∈ R+, then by [6],
ϕl(w) < 0 ≤ ϕl(x) ∀w ∈ W . From the definition of Sl,d(w) = min{ϕl(w), d},

Sl,d(w) < 0 ≤ Sl,d(x) (∀w ∈ W ).

(ii) =⇒ (i). Suppose that (ii) holds and W is not a downward set. There is
w0 ∈ W and x0 ∈ X \W with x0 ≤ w0. By hypothesis, there exists l ∈ X, d ∈ R+

such that
Sl,d(w) < 0 ≤ Sl,d(x0) (∀w ∈ W ).

Since Sl,d is increasing, then Sl,d(x0) ≤ Sl,d(w0).
Therefore,

Sl,d(w0) < 0 ≤ Sl,d(x0) ≤ Sl,d(w0).

This is a contradiction. �

Theorem 3.9. Let W ⊆ X, and Sl,d be the function defined by remark (2). Then
the following assertions are equivalent:
i) W is a closed downward subset of X.
ii) W is downward, and for each x ∈ X the set

H = {λ ∈ R : x + λ · 1 ∈ W}, (27)

is closed in R.
iii) For each x ∈ X \W . There is (l, d) ∈ X × R++ such that

Sl,d(w) < 0 < Sl,d(x), (w ∈ W ). (28)

vi) For each x ∈ X \W there exists (l, d) ∈ X × R++ such that

sup
w∈W

Sl,d(w) < Sl,d(x). (29)

Proof.
(i) =⇒ (ii). The proof is the same as in [6]
(ii) =⇒ (iii). Suppose that (ii) holds and x ∈ X \W is arbitrary. There is l ∈ X
such that

ϕ(w, l) < 0 < ϕ(x, l) (∀w ∈ W ).

Let d = ϕ(x, l) ∈ R++, then

Sl,d(w) = min{ϕ(w, l), d} = ϕ(w, l) < 0 (∀w ∈ W ).

and
Sl,d(x) = min{ϕ(x, l), d} = ϕ(x, l) > 0.

Therefore,
Sl,d(w) < 0 < Sl,d(x) (∀w ∈ W ).

(iii) =⇒ (vi), is obvious.
(vi) =⇒ (i). Suppose that (vi) holds and W is not downward. There is w0 ∈ W
and x0 ∈ X \W with x0 ≤ w0. By hypothesis, there exists l ∈ X, d ∈ R++ such
that

sup
w∈W

Sl,d(w) < Sl,d(x0).
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Since Sl,d(·) is increasing, it follows that;

Sl,d(x0) ≤ Sl,d(w0) ≤ sup
w∈W

Sl,d(w) < Sl,d(x0).

This is a contraction. Hence, W is a downward set. Finally, assume that W
is not closed. There is a sequence {wn}n≥1 ⊆ W and x0 ∈ X \ W such that
‖wn − x0‖ −→ 0 as n −→ ∞. Since x0 ∈ X \ W , there exists l ∈ X, d ∈ R++

such that;
sup
w∈W

Sl,d(w) < Sl,d(x0).

Thus,
Sl,d(wn) ≤ sup

w∈W
Sl,d(w) (∀n ≥ 1).

From continuity of Sl,d(·), Sl,d(x0) ≤ sup
w∈W

Sl,d(w). This is a contradiction. �

Lemma 3.10. Let W be a closed downward subset of X, w0 ∈ bdW and let Sl,d be
the function defined by remark (2). Then S−w0,d(w) ≤ 0 (∀w ∈ W, ) and d ∈ R+.

Proof. Suppose that this condition holds, by (see [6]), ϕ(w,−w0) ≤ 0 (∀w ∈ W ).
Therefore, if d ∈ R+,

S−w0,d(w) = min{ϕ(w,−w0), d} = ϕ(w,−w0) ≤ 0 (∀w ∈ W ).

�

Lemma 3.11. Let W be a closed downward subset of X,w0 ∈ bdW, l = −w0 and
d ∈ R+. Let Sl,d be the function defined by remark (2). Then

Sl,d(w) ≤ 0 = Sl,d(w0), (∀w ∈ W ).

Proof. By hypothesis and [6]

ϕ(w, l) ≤ 0 = ϕ(w0, l) (∀w ∈ W ).

Let d = 0
Sl,d(w) = min{ϕ(w, l), d} = ϕ(w, l) ≤ 0,

and
Sl,d(w0) = min{ϕ(w0, l), d} = 0.

Therefore,
Sl,d(w) ≤ 0 = Sl,d(w0) (∀w ∈ W ).

�
The following theorem gives a necessary and sufficient condition for the best

approximation in terms of separation from outside points.

Theorem 3.12. Let W be a closed downward subset of X and x0 ∈ X. Let
y0 ∈ W and r0 = ‖x0 − y0‖. Assume that Sl,d is the function defined by remark
(2). Then the following assertions are equivalent:
i) y0 ∈ PW (x0).
ii) There exists l ∈ X and d ∈ R+ such that;

Sl,d(w) ≤ 0 ≤ Sl,d(y) (∀w ∈ W, y ∈ B(x0, r0)) (30)

Moreover, if (30) holds with l = −y0, then y0 = minPW (x0).
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Proof. (i) =⇒ (ii). Suppose that y0 ∈ PW (x0), then r0 = ‖x0 − y0‖ = d(W, x0).
Since W is closed downward subset of X, then by (see [6]), that the least element
w0 = x0 − r0 · 1 of the set PW (x0) exists. Let l = −w0 ∈ X. Then,

ϕ(w, l) ≤ 0 ≤ ϕ(y, l) (∀w ∈ W, y ∈ B(x0, r0)). (31)

Let ϕl(x0 + r0 · 1) = d, then d ∈ R+. Indeed ∀y ∈ B(x0, r0). By (4), 0 ≤ y ≤
x0 + r0 · 1, then by (31), 0 ≤ ϕ(y, l) ≤ ϕ(x0 + r0 · 1, l). Therefore,

Sl,d(w) = min{ϕ(w, l), d} = ϕ(w, l) ≤ 0, (∀w ∈ W )

and

Sl,d(y) = min{ϕ(y, l), d} = ϕ(y, l) ≥ 0. (∀y ∈ B(x0, r0))

(ii) =⇒ (i). Assume that there exists l ∈ X and d ∈ R+ such that

Sl,d(w) ≤ 0 ≤ Sl,d(y). (∀w ∈ W, y ∈ B(x0, r0))

From (4), x0 − r0 · 1 ∈ B(x0, r0). From the hypothesis Sl,d(x0 − r0 · 1) ≥ 0.
According to the definition of Sl,d, ϕ(x0 − r0 · 1, l) ≥ 0. Indeed Sl,d(x0 − r0 · 1) =
min{ϕ(x0 − r0 · 1, l)} ≥ 0. Since ϕ(., l) is topical, ϕ(x0, l) ≥ r0. Due to (7),

r0 · 1 ≤ ϕ(x0, l) · 1 ≤ x0 + l. (32)

Let w ∈ W be an arbitrary and pw = ϕ(w,−x0)·1+x0 ∈ X. Then ϕ(w,−x0)·1 ≤
w−x0 and pw ≤ w. Since W is downward set and w ∈ W , it follows that pw ∈ W .
By hypothesis Sl,d(pw) ≤ 0 and since d ∈ R+, ϕ(pw, l) ≤ 0. Since ϕ(pw, .) is
topical and (32) holds,

S−x0,d(pw) ≤ ϕ(pw,−x0) ≤ ϕ(pw, l)− r0 ≤ −r0.

Since ϕ(.,−x0) is topical

−r0 ≥ ϕ(pw,−x0) = ϕ(ϕ(w,−x0) · 1 + x0,−x0) = ϕ(w,−x0).

From Lipschitz continuity of ϕ−x0 ,

r0 ≤ |ϕ(w,−x0)| = |ϕ(x0,−x0)− ϕ(w,−x0)| ≤ ‖x0 − w‖.

Thus r0 ≤ ‖x0 − w‖ for all (w ∈ W ) and ‖x0 − y0‖ = d(x0, W ). Consequently,
y0 ∈ PW (x0). Finally, suppose that (30) holds with l = −y0. From implication
(ii) =⇒ (i), y0 ∈ PW (x0). Let w ∈ PW (x0) be an arbitrary. Thus, ‖x0 − w‖ =
d(x0, W ) = ‖x0 − y0‖ = r0, that is w ∈ B(x0, r0). It follows from the hypothesis
S−y0,d(w) ≥ 0 and so 0 ≤ S−y0,d(w) · 1 ≤ ϕ(w,−y0) · 1 ≤ w − y0. This implies
that y0 ≤ w for all w ∈ PW (x0). Hence, y0 = min PW (x0), which it completes the
proof. �
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