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Abstract. Existence of positive solution for a class of singular boundary value
problems of the type

−x′′(t) = f(t, x(t), x′(t)), t ∈ (0, 1)

x(0) = 0, x(1) = 0,

is established. The nonlinearity f ∈ C((0, 1) × (0,∞) × (−∞,∞), (−∞,∞))
is allowed to change sign and is singular at t = 0, t = 1 and/or x = 0. An
example is included to show the applicability of our result.

1. Introduction and preliminaries

Singular boundary value problems arise in various fields of Mathematics and
Physics such as nuclear physics, boundary layer theory, nonlinear optics, gas
dynamics, etc, [1, 5, 9, 12, 14, 17, 18, 19]. For more details on singular BVPs
and recent developments, we refer the readers to the recent monograph by R. P.
Agarwal and D. O’ Regan [4] and [6, 8, 9, 15].

In this paper, we consider a class of second order singular boundary value
problems of the type

−x′′(t) = f(t, x(t), x′(t)), t ∈ (0, 1),

x(0) = 0, x(1) = 0,
(1.1)
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where f ∈ C((0, 1)× (0,∞)× (−∞,∞), (−∞,∞)) and may be singular at t = 0,
t = 1 and/or x = 0 and is allowed to change sign. We establish existence of
positive solutions for the BVP (1.1) under a weaker hypothesis on f . Recently,
existence of positive solutions for singular boundary value problems, in the case
when the nonlinearity f is independent of the derivative term, has been studied
by many authors, [3, 10, 11, 13, 21]. In these papers, the nonlinearity is assumed
to be non-negative and either be sublinear or superlinear. Hence, the results of
these papers would be applicable to a limited class of boundary values problems.
Moreover, most of nonlinear problems from the applied sciences, the nonlinearity
explicitly depends on the derivative term, for example, the differential equation

x′′(t) = −λ
(1− t2

x(t)

)′ − t

x(t)
, t ∈ [0, 1),

together with some suitable boundary conditions, that explicitly depends on the
derivative, arises in the boundary layer theory in fluid mechanics [19]. Further,
the nonlinearity f does not satisfy the sublinear and superlinear conditions in
most cases and may change sign. Hence, the study of boundary value problems
without the above mentioned restrictions is of great importance.

Recently, existence theory for positive solutions of two point boundary value
problems without the first derivative term is studied in [16, 19, 20]. Inspired by
the above papers, the aim of the present paper is to improve and generalize the
result studied in [20] to the case when the nonlinearity f explicitly depends on
the derivative term x′. We study the problem under much weaker hypothesis on
f . We include an example to show the applicability of our result.

Throughout this paper, we assume that the following condition holds.
(A1) there exist k ∈ C((0, 1), (0,∞)) and a decreasing F ∈ C((0,∞), (0,∞)) such
that ∫ 1

0

t(1− t)k(t)dt < ∞ and

∫ ∞

0

du

F (u)
= ∞.

The condition
∫∞

0
du

F (u)
= ∞ implies that we can choose R > 1 such that

∫ R

1

du

F (u)
> max

{∫ 1/2

0

sk(s)ds,

∫ 1

1/2

(1− s)k(s)ds

}
. (1.2)

For fixed n ∈ {3, 4, 5, . . .}, let M = max{F ( 1
n
)k(t) : t ∈ [ 1

n
, 1 − 1

n
]} and choose

C >
√

2MR.
For u ∈ C[0, 1] we write ‖u‖ = max{|u(t)| : t ∈ [0, 1]} and for u ∈ C1[0, 1], we

write ‖u‖1 = max{‖x‖, γ
3
‖x′‖} where γ = n−2

n
for n ≥ 3. Clearly, C1[0, 1] with

the norm ‖.‖1 is a Banach space.
The only condition we are imposing on the nonlinearity f is the following:
(A2)

0 ≤ f(t, x(t), x′(t)) ≤ k(t)F (x(t)) on (0, 1)× (0, R]× [−C, C].
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For fixed n ∈ {3, 4, 5, ...}, consider the BVPs

−x′′(t) = f(t, x(t), x′(t)), t ∈ [
1

n
, 1− 1

n
],

x(
1

n
) =

1

n
, x(1− 1

n
) =

1

n
.

(1.3)

We write (1.3) as an equivalent integral equation

x(t) =
1

n
+

∫ 1−1/n

1/n

Gn(t, s)f(s, x(s), x′(s))ds, t ∈ [
1

n
, 1− 1

n
], (1.4)

where

Gn(t, s) =
n

n− 2

{
(s− 1

n
)(1− 1

n
− t), if 1

n
≤ s < t ≤ 1− 1

n

(t− 1
n
)(1− 1

n
− s), if 1

n
≤ t ≤ s ≤ 1− 1

n
,

is the Green’s function for the corresponding homogeneous problem

−x′′(t) = 0, t ∈ [
1

n
, 1− 1

n
]

x(
1

n
) = 0, x(1− 1

n
) = 0.

(1.5)

Notice that Gn(t, s) ≥ 0 on ( 1
n
, 1− 1

n
)×( 1

n
, 1− 1

n
) and Gn(t, s) ≤ Gn(s, s), t ∈ (0, 1).

Moreover,

max
t∈[0,1]

∫ 1−1/n

1/n

Gn(t, s)ds =

∫ 1−1/n

1/n

Gn(s, s)ds =
γ2

6
,

max
t∈[0,1]

|
∫ 1−1/n

1/n

∂Gn

∂t
(t, s)ds| =

∫ 1−1/n

1/n

|∂Gn

∂t
(t, s)|ds =

γ

2
.

2. Main results

Theorem 2.1. Assume that (A1) and (A2) hold. Then boundary value problem
(1.3) has a solution x ∈ C1[0, 1] such that 1

n
≤ x(t) < R and |x′(t)| < C for t ∈

[ 1
n
, 1− 1

n
].

Proof. Define retractions q : (−∞,∞) → [−C, C] by q(v) = max{−C, min{v, C}}
and p : (−∞,∞) → [ 1

n
, R] by pn(x(t)) = max{ 1

n
, min{x(t), R}}. Clearly, q, p are

continuous and q(v) = v for |v| ≤ C, p(v) = v for 1
n
≤ v ≤ R.

Consider the modified BVP

−x′′(t) = Fn(t, x(t), x′(t)), t ∈ [
1

n
, 1− 1

n
],

x(
1

n
) =

1

n
, x(1− 1

n
) =

1

n
,

(2.1)

where Fn(t, x(t), x′(t)) = f(t, pn(x(t)), q(x′(t))). Clearly, Fn is continuous, bounded
and nonnegative on [ 1

n
, 1− 1

n
]×R×R. Further, any solution x ∈ C1[0, 1] of (2.1)

such that
1

n
≤ x(t) < R, |x′(t)| < C, t ∈ [

1

n
, 1− 1

n
], (2.2)

is a solution of (1.3). Obviously, x(t) ≥ 1
n

on [ 1
n
, 1− 1

n
] as Fn ≥ 0.
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We write the BVP (2.1) as an equivalent integral equation of the type

x(t) =
1

n
+

∫ 1−1/n

1/n

Gn(t, s)Fn(s, x(s), x′(s))ds (2.3)

and define an operator Tn : C1[0, 1] → C1[0, 1] by

(Tnx)(t) =
1

n
+

∫ 1−1/n

1/n

Gn(t, s)Fn(s, x(s), x′(s))ds. (2.4)

By a solution of (2.1) we mean a solution of the operator equation (I−Tn)(x) = 0,
that is, a fixed point of Tn. We show that Tn has a fixed point x ∈ C1[0, 1].
Clearly, Tn is continuous and completely continuous as Fn is continuous and
bounded.

Choose R̄ > max{R, 1
3

+ M1γ2

6
}, where

M1 = max{f(t, x, x′) : t ∈ [
1

n
, 1− 1

n
], x ∈ [

1

n
, R], x ∈ [−C, C]}

and define an open, bounded and convex set

ΩR̄ = {x ∈ C1[0, 1] : ‖x‖1 < R̄}.

For x ∈ ΩR̄, we have

‖Tnx‖ ≤
1

n
+ max

t∈[0,1]
|
∫ 1−1/n

1/n

Gn(t, s)Fn(s, x(s), x′(s))ds|

≤ 1

3
+ M1

∫ 1−1/n

1/n

|Gn(s, s)|ds =
1

3
+

M1γ
2

6
,

‖(Tnx)′‖ ≤ max
t∈[0,1]

|
∫ 1−1/n

1/n

∂Gn

∂t
(t, s)Fn(s, x(s), x′(s))ds| ≤ M1γ

2
.

It follows that

‖Tnx‖1 = max{‖Tnx‖,
γ

3
‖(Tnx)′‖} ≤ 1

3
+

M1γ
2

6
< R̄ for every x ∈ ΩR̄.

Hence, Tn(ΩR̄) ⊂ ΩR̄. Consequently, by Schauder’s fixed point theorem, the BVP
(2.1) has a solution in ΩR̄.

Now, we show that any solution x of (2.1) must satisfies (2.2). Firstly, we show
that x < R on [ 1

n
, 1 − 1

n
]. Assume that this is not true and x(t) ≥ R for some

t ∈ [ 1
n
, 1− 1

n
]. Let

ξ = min{t ∈ [
1

n
, 1− 1

n
] : x(t) = R}.

We discuss different cases:
Case 1: If ξ ≤ 1/2, since x( 1

n
) = 1

n
< R, there exist subintervals, say [ξ2i−1, ξ2i] ⊆

[ 1
n
, ξ], i = 1, 2, 3, · · · , m such that

(1): ξ1 = 1
n
, ξ2m = ξ, ξ2i−1 < ξ2i for i = 1, 2, 3, · · · , m,

(2) ξ2i ≤ ξ2i+1, x(ξ2i) = x(ξ2i+1) and x′(ξ2i) = 0 for i = 1, 2, 3, · · · , m− 1,
(3) x′(t) ≥ 0 for t ∈ [ξ2i−1, ξ2i], i = 1, 2, 3, · · · , m.
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For t ∈ [ξ2i−1, ξ2i], i = 1, 2, 3, · · · , m, using (A2) and the fact that x(t) ∈ [ 1
n
, R],

we have

−x′′(t) = Fn(t, x(t), x′(t)) = f(t, pn(x(t)), q(x′(t))) ≤ k(t)F (x(t)), t ∈ [ξ2i−1, ξ2i].
(2.5)

Integrating (2.5) from t to ξ2i, using (2) and the decreasing property of F , we
obtain

x′(t) ≤ F (x(t))

∫ ξ2i

t

k(s)ds, t ∈ [ξ2i−1, ξ2i], i = 1, 2, 3, · · · , m,

which implies that

x′(t)

F (x(t))
≤

∫ ξ2i

t

k(s)ds, t ∈ [ξ2i−1, ξ2i], i = 1, 2, 3, · · · , m. (2.6)

Integrating (2.6) from ξ2i−1 to ξ2i, we have∫ ξ2i

ξ2i−1

x′(t)

F (x(t))
dt ≤

∫ ξ2i

ξ2i−1

∫ ξ2i

t

k(s)dsdt,

which can be written as∫ x(ξ2i)

x(ξ2i−1)

du

F (u)
≤

∫ ξ2i

ξ2i−1

sk(s)ds, i = 1, 2, 3, · · · , m. (2.7)

Summing from i = 1 to m and using (2) (x(ξ2i) = x(ξ2i+1)), we obtain∫ R

1/n

du

F (u)
≤

∫ 1/2

0

sk(s)ds.

Letting n →∞, we have ∫ R

0

du

F (u)
≤

∫ 1/2

0

sk(s)ds,

a contradiction to (1.2).
Case 2: Let ξ ≥ 1/2 and η = max{t ∈ [1

2
, 1− 1

n
] : x(t) = R}. Since x(1− 1

n
) =

1
n

< R, there exist subintervals [η2i, η2i−1] ⊆ [1
2
, 1 − 1

n
], i = 1, 2, 3, · · · , m′ such

that
(4) η1 = 1− 1

n
, η2m′ = η, η2i < η2i−1 for i = 1, 2, 3, · · · , m′,

(5) η2i+1 ≤ η2i, x(η2i) = x(η2i+1), x′(η2i) = 0 for i = 1, 2, 3, · · · , m′ − 1 and
(6) x′(t) ≤ 0 for t ∈ [η2i, η2i−1], i = 1, 2, 3, · · · , m′.
Integrating (2.5) from η2i to t, using (5), the decreasing property of F and then

integrating from η2i to η2i−1, we obtain∫ x(η2i)

x(η2i−1)

du

F (u)
≤

∫ η2i−1

η2i

(1− s)k(s)ds, i = 1, 2, 3, · · · , m′. (2.8)

Summing (2.8) from i = 1 to i = m′ and using (5) (x(η2i) = x(η2i+1)), we obtain∫ R

1/n

du

F (u)
≤

∫ 1

1/2

(1− s)k(s)ds.
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Letting limit n →∞, we get∫ R

0

du

F (u)
≤

∫ 1

1/2

(1− s)k(s)ds

which is a contradiction to (1.2).
Now we show that any solution x(t) of (2.1) must satisfies |x′(t)| ≤ C, t ∈

[ 1
n
, 1 − 1

n
]. From the boundary conditions, x( 1

n
) = 1

n
and x(1 − 1

n
) = 1

n
, it

follows that there exist p ∈ ( 1
n
, 1 − 1

n
) such that x′(p) = 0. Suppose there exist

t0 ∈ ( 1
n
, 1− 1

n
) such that x′(t0) > C. As in the first part of this theorem, choose

[ξ2i−1, ξ2i] ⊆ [ 1
n
, 1− 1

n
] such that

x′(t) ≥ 0 on [ξ2i−1, ξ2i] and x′(ξ2i) = 0, i = 1, 2, 3, · · · .

Hence, there exist some i0 such that t0 ∈ [ξ2i0−1, ξ2i0 ]. Let

C1 = max{x′(t) : t ∈ [ξ2i0−1, ξ2i0 ]} = x′(ξ∗).

Clearly, C1 ≥ C and in view of (A2), we have

−x′′(t) = f(t, x(t), q(x′(t))) ≤ k(t)F (x(t)) ≤ M.

Hence,

−x′(t)x′′(t) ≤ Mx′(t), t ∈ [ξ2i0−1, ξ2i0 ].

Integrating from ξ∗ to ξ2i0 , we have

−
∫ ξ2i0

ξ∗
x′(t)x′′(t)dt ≤ M

∫ ξ2i0

ξ∗
x′(t)dt,

implies that ∫ C1

0

vdv ≤ MR ⇒ C1 ≤
√

2MR,

which contradict the definition of C. Hence, x′(t) ≤ C, t ∈ [ 1
n
, 1− 1

n
].

Similarly, we can show that x′(t) ≥ −C, t ∈ [ 1
n
, 1− 1

n
]. �

Theorem 2.2. Assume that (A1) and (A2) hold. Then, the boundary value prob-
lem (1.1) has a positive solution x.

Proof. By Theorem 2.1, any solution xn of (1.3) satisfies

1

n
≤ xn(t) ≤ R, |x′n(t)| ≤ C for t ∈ [

1

n
, 1− 1

n
], n = 3, 4, 5, ....

Hence, for each h ∈ (0, 1/2), there exist a natural number m ∈ {3, 4, 5, · · · } such
that xn(t) > 0 for all t ∈ [h, 1− h] and n ≥ m.

Consider the integral equation,

xn(t) =
xn(1− h)− xn(h)

1− 2h
(t− h) + xn(h) +

∫ t

h

(s− h)(1− h− t)

1− 2h
f(s, xn(s), x′n(s))ds

+

∫ 1−h

t

(t− h)(1− h− s)

1− 2h
f(s, xn(s), x′n(s))ds, t ∈ [h, 1− h].

(2.9)
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Differentiating with respect to t, we obtain

x′n(t) =
xn(1− h)− xn(h)

1− 2h
− 1

1− 2h

∫ t

h

(s− h)f(s, xn(s), x′n(s))ds

+
1

1− 2h

∫ 1−h

t

(1− h− s)f(s, xn(s), x′n(s))ds.

(2.10)

For any t1, t2 ∈ [h, 1− h], we have

|x′n(t2)− x′n(t1)| =
∣∣∣ −1

1− 2h

∫ t2

h

(s− h)f(s, xn(s), x′n(s))ds

+
1

1− 2h

∫ 1−h

t2

(1− h− s)f(s, xn(s), x′n(s))ds

+
1

1− 2h

∫ t1

h

(s− h)f(s, xn(s), x′n(s))ds

− 1

1− 2h

∫ 1−h

t1

(1− h− s)f(s, xn(s), x′n(s))ds
∣∣∣

=
1

1− 2h

∣∣∣ ∫ t2

t1

(s− h)f(s, xn(s), x′n(s))ds +

∫ t2

t1

(1− h− s)f(s, xn(s), x′n(s))ds
∣∣∣

≤L|t2 − t1|,

where L = max{f(t, u, v) : (t, u, v) ∈ [h, 1 − h] × [ 1
n
, R] × [−C, C]}. Thus the

sequences {xn} and {x′n} are uniformly bounded and equicontinuous. By Arzelà-
Ascoli theorem, there exist a subsequence {xnk

} of {xn} converging uniformly on
[h, 1− h] such that

lim
nk→∞

xnk
(t) = x(t),

lim
nk→∞

x′nk
(t) = x′(t),

where x ∈ C1[0, 1]. Taking limh→0, we have

lim
nk→∞

xnk
(t) = x(t) on (0, 1).

Further, x > 0 on (0, 1). Letting limnk→∞, (2.12) and (2.10) yield

x(t) =
x(1− h)− x(h)

1− 2h
(t− h) + x(h) +

1

1− 2h

∫ t

h

(s− h)(1− h− t)f(s, x(s), x′(s))ds

+
1

1− 2h

∫ 1−h

t

(t− h)(1− h− s)f(s, x(s), x′(s))ds,

x′(t) =
x(1− h)− x(h)

1− 2h
− 1

1− 2h

∫ t

h

(s− h)f(s, x(s), x′(s))ds

+
1

1− 2h

∫ 1−h

t

(1− h− s)f(s, x(s), x′(s))ds.
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Hence,

x′′(t) = − 1

1− 2h
(t− h)f(t, x(t), x′(t))− 1

1− 2h
(1− h− t)f(t, x(t), x′(t)) = −f(t, x(t), x′(t))

⇒

−x′′(t) =f(t, x(t), x′(t)), t ∈ (0, 1) (2.11)

which implies that x satisfies the differential equation (1.1). Moreover,

x(0) = lim
nk→∞

x
( 1

nk

)
= lim

nk→∞
xnk

( 1

nk

)
= lim

nk→∞

1

nk

= 0,

and

x(1) = lim
nk→∞

x
(
1− 1

nk

)
= lim

nk→∞
xnk

(
1− 1

nk

)
= lim

nk→∞

1

nk

= 0,

which implies that x also satisfies the boundary conditions and hence is a solution
of (1.1). �

Example 2.3. Consider the boundary value problem

−x′′(t) =
x′(t) + 5

t(1− t)(x(t))2
; t ∈ (0, 1)

x(0) = 0, x(1) = 0.

(2.12)

Choose k(t) = 1
t(1−t)

and F (u) = 9
u2 . Clearly F is decreasing and

∫∞
0

du
F (u)

= ∞.

Since ∫ 1
2

0

tk(t)dt = ln 2,

∫ 1

1
2

(1− t)k(t)dt = ln 2.

Hence, from the relation
∫ R

1
du

F (u)
> ln 2, we have R > (1 + 27 ln 2)3. Also,

M = max{F (
1

n
)k(t) : t ∈ [

1

n
, 1− 1

n
]} = max{ 9n2

t(1− t)
: t ∈ [

1

n
, 1− 1

n
]} = 9.

Hence C = 3. Moreover,

0 ≤ x′(t) + 5

tµ(1− t)ν(x(t))2
= f(t, x(t), x′(t)) ≤ k(t)F (x(t)) for x′(t) ∈ [−3, 3], t ∈ (0, 1).

By Theorem 2.2, the problem (2.12) has a solution x such that

0 < x(t) ≤ (1 + 27 ln 2)3, |x′(t)| ≤ 3, t ∈ (0, 1).
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