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GENERALIZED CONE METRIC SPACES

ISMAT BEG, MUJAHID ABBAS AND TALAT NAZIR

Abstract. A notion of generalized cone metric space is introduced, and some
convergence properties of sequences are proved. Also some fixed point results
for mappings satisfying certain contractive conditions are obtained. Our results
complement, extend and unify several well known results in the literature.

1. Introduction

To overcome fundamental flaws in Dhage’s theory of generalized metric spaces
[3], Mustafa and Sims [8] introduced a more appropriate generalization of metric
spaces, that of G−metric spaces. Afterwards, Mustafa et. el [6] obtained several
fixed point theorems for mappings satisfying different contractive conditions in
G−metric spaces. Recently Guang and Xian [4] defined the concept of a cone
metric space, replacing the set of real numbers by an ordered Banach space and
obtained some fixed point theorems for mappings satisfying different contractive
conditions. The normality property of cone was an important ingredient in their
results (see also, [1], and [2]). Afterward Rezapour and Hamlbarani [9] omitting
the assumption of normality of cone generalized some results of [4]. In this pa-
per, a concept of G−cone metric space is introduced by replacing the set of real
numbers by an ordered Banach space, and convergence properties of sequences
are proved. Finally some fixed point theorems satisfying certain contractive con-
ditions are obtained. It is worth mentioning that we did not use the normality
property of cone to obtain results in this paper. Our results have several conse-
quences including generalizations of comparable results in the literature (see for
example [4, 5, 6, 9] and the references therein).
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2. Generalized cone metric spaces

First we define generalized cone metric space and prove some convergence prop-
erties of sequences.
Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed, non empty and P 6= {0},
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax + by ∈ P ; More generally if a, b,

c ∈ R, a, b, c ≥ 0, x, y, z ∈ P ⇒ ax + by + cz ∈ P,
(c) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y
if and only if y − x ∈ P. A cone P is called normal if there is a number K > 0
such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K ‖y‖ .

The least positive number satisfying the above inequality is called the normal
constant of P, while x ¿ y stands for y − x ∈ intP (interior of P ).
Rezapour and Hamlbarani [9] proved that there are no normal cones with normal
constants K < 1 and for each k > 1 there are cones with normal constants K > k.

Definition 2.1. Let X be a nonempty set. Suppose a mapping G : X×X×X →
E satisfies:

(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y); whenever x 6= y, for all x, y ∈ X,
(G3) G(x, x, y) ≤ G(x, y, z); whenever y 6= z,
(G4) G(x, y, z) = G(x, z, y) = G(y, x, z) = ... (Symmetric in all three variables),
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X.

Then G is called a generalized cone metric on X, and X is called a generalized
cone metric space or more specifically a G− cone metric space.

The concept of a G− cone metric space is more general than that of a G−
metric spaces and cone metric spaces. For the definition of G− metric, cone
metric spaces and related concepts we refer the reader to [4, 7, 8, 9].

Definition 2.2. A G− cone metric space X is symmetric if

G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Following are examples of symmetric and non symmetric G−cone metric spaces
respectively.

Example 2.3. Let (X, d) be a cone metric space. Define G : X ×X ×X → E ,
by G(x, y, z) = d(x, y) + d(y, z) + d(z, x).

Example 2.4. Let X = {a, b}, E = R3, P = {(x, y, z) ∈ E | x, y, z ≥ 0}. Define
G : X ×X ×X → E by

G(a, a, a) = (0, 0, 0) = G(b, b, b),

G(a, b, b) = (0, 1, 1) = G(b, a, b) = G(b, b, a),

G(b, a, a) = (0, 1, 0) = G(a, b, a) = G(a, a, b)

Note that X is nonsymmetric G−cone metric space as G(a, a, b) 6= G(a, b, b).
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Remark 2.5. If E is a real Banach space with cone P and if a ≤ λa where a ∈ P
and 0 < λ < 1 then a = 0.

Proposition 2.6. Let X be a G− cone metric space, define dG : X ×X → E by

dG(x, y) = G(x, y, y) + G(y, x, x).

Then (X, dG) is a cone metric space.
It can be noted that G(x, y, y) ≤ 2

3
dG(x, y). If X is a symmetric G− cone metric

space, then
dG(x, y) = 2G(x, y, y),

for all x, y ∈ X.

Definition 2.7. Let X be a G− cone metric space and {xn} be a sequence in X.
We say that {xn} is:

(a) Cauchy sequence if for every c ∈ E with 0 ¿ c, there is N such that for
all n, m, l > N, G(xn, xm, xl) ¿ c.

(b) Convergent sequence if for every c in E with 0 ¿ c, there is N such that
for all m, n > N, G(xm, xn, x) ¿ c for some fixed x in X. Here x is called
the limit of a sequence {xn} and is denoted by lim

n→∞
xn = x or xn → x as

n →∞.

A G− cone metric space X is said to be complete if every Cauchy sequence in
X is convergent in X.

Proposition 2.8. Let X be a G− cone metric space then the following are equiv-
alent.

(i) {xn} is converges to x.
(ii) G(xn, xn, x) → 0, as n →∞.
(iii) G(xn, x, x) → 0 , as n →∞.
(iv) G(xm, xn, x) → 0, as m,n →∞.

Lemma 2.9. Let X be a G− cone metric space, {xm}, {yn}, and {zl} be se-
quences in X such that xm → x, yn → y, and zl → z, then G(xm, yn, zl) →
G(x, y, z) as m, n, l →∞.

Proof. Given that {xm}, {yn}, {zl} converges to x, y, z respectively. For any
c ∈ E with 0 ¿ c, we can find N such that for all m,n, l > N, we have

G(xm, x, x) ¿ c/3, G(yn, y, y) ¿ c/3

and G(zl, z, z) ¿ c/3.

Since
G(xm, yn, zl) ≤ G(xm, x, x) + G(x, yn, zl),

G(x, yn, zl) ≤ G(yn, y, y) + G(y, x, zl),

and
G(y, x, zl) ≤ G(zl, z, z) + G(z, y, x).

Therefore

G(xm, yn, zl)

≤ G(xm, x, x) + G(yn, y, y) + G(zl, z, z) + G(z, y, x).
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Thus

G(xm, yn, zl)−G(x, y, z)

≤ G(xm, x, x) + G(yn, y, y) + G(zl, z, z)

¿ c

3
+

c

3
+

c

3
= c.

Thus
G(xm, yn, zl)−G(x, y, z) ¿ c.

Similarly
G(x, y, z)−G(xm, yn, zl) ¿ c.

Thus for all k ≥ 1, we have

G(xm, yn, zl)−G(x, y, z) ¿ c

k
,

and
G(x, y, z)−G(xm, yn, zl) ¿ c

k
.

It implies that
c

k
− (G(x, y, z)−G(xm, yn, zl)) and

c

k
+ (G(xm, yn, zl)−G(x, y, z)

are in P. Since P is closed and c
k
→ 0 as k →∞, therefore lim

m,n,l→∞
G(xm, yn, zl)−

G(x, y, z) and G(x, y, z)− lim
m,n,l→∞

G(xm, yn, zl) ∈ P. It gives that

lim
m,n,l→∞

G(xm, yn, zl) = G(x, y, z).

Hence the result follows. ¤
Lemma 2.10. Let {xn} be a sequence in G− cone metric space X and x ∈ X.
If {xn} converges to x, and {xn} converges to y, then x = y.

Proof. For any c ∈ E, with 0 ¿ c, there is N such that for all m,n > N ,

G(xm, xn, x) ¿ c

3
and G(xm, xn, y) ¿ c

3
.

Now
G(x, x, y) ≤ G(xm, xn, y) + G(xm, xn, x),

and
G(xn, x, y) ≤ G(xm, xm, y) + G(xm, xn, x).

Hence

G(x, x, y) ≤ G(xn, xn, x) + G(xm, xn, y) + G(xm, xn, x)

¿ c

3
+

c

3
+

c

3
= c.

Thus G(x, x, y) ¿ c

m
for all m ≥ 1. So

c

m
− G(x, x, y) ∈ P , for all m ≥ 1.

Since
c

m
→ 0, as m → ∞ and P is closed, therefore −G(x, x, y) ∈ P but

G(x, x, y) ∈ P ⇒ G(x, x, y) = 0. Therefore x = y. ¤
Lemma 2.11. Let {xn} be a sequence in a G− cone metric space X and if {xn}
converges to x for x ∈ X, then G(xm, xn, x) → 0 as m, n →∞.
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Proof. Suppose that {xn} converges to x. Then there is N , such that when m,
n > N , we have

G(xn, xm, x) ¿ c.

Thus for all k ≥ 1, we have

G(xn, xm, x) ¿ c

k
,

It implies that c
k
−G(xn, xm, x) ∈ P and hence

− lim
n,m→∞

G(xn, xm, x) ∈ P.

But lim
n,m→∞

G(xn, xm, x) ∈ P. This means lim
n,m→∞

G(xn, xm, x) = 0. ¤

Lemma 2.12. Let {xn} be a sequence in a G− cone metric space X and x ∈ X.
If {xn} converges to x ∈ X, then {xn} is a Cauchy sequence.

Proof. For any c ∈ E with 0 ¿ c. From xn → x, there is N such that for all
m,n, l > N, we have

G(xm, xn, x) ¿ c/3, G(xn, xl, x) ¿ c/3

and G(xm, xl, x) ¿ c/3.

Now

G(xm, xn, xl) ≤ G(xm, xn, x) + G(xn, xl, x) + G(xm, xl, x)

¿ c.

Therefore {xn} is a Cauchy sequence. ¤
Lemma 2.13. Let {xn} be a sequence in a G− cone metric space X and if {xn}
is a Cauchy sequence in X, then G(xm, xn, xl) → 0, as m,n, l →∞.

Proof. Suppose that {xn} is a Cauchy sequence. Then for every c ∈ E with
0 ¿ c, there is N such that for all m,n, l > N , G(xm, xn, xl) ¿ c. Thus for all k
≥ 1, we have

G(xn, xm, xl) ¿ c

k
.

It implies that c
k
−G(xn, xm, xl) ∈ P and hence

− lim
n,m,l→∞

G(xn, xm, xl) ∈ P.

But lim
n,m,l→∞

G(xn, xm, xl) ∈ P. This means lim
n,m,l→∞

G(xn, xm, xl) = 0. ¤

3. Fixed point theorems

In this section we prove fixed point theorems in the setting of G− cone metric
spaces.

Theorem 3.1. Let X be a complete symmetric G− cone metric space and T :
X → X be a mapping satisfying one of the following conditions

G(Tx, Ty, Tz) ≤ aG(x, y, z) + bG(x, Tx, Tx)

+cG(y, Ty, Ty) + dG(z, Tz, Tz), (3.1)
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or

G(Tx, Ty, Tz) ≤ aG(x, y, z) + bG(x, Tx, x)

+cG(y, y, Ty) + dG(z, z, Tz), (3.2)

for all x, y, z ∈ X, where 0 ≤ a + b + c + d < 1. Then T has a unique fixed point.

Proof. Suppose that T satisfies condition (1), then for all x, y ∈ X

G(Tx, Ty, Ty)

≤ aG(x, y, y) + bG(x, Tx, Tx) + (c + d)G(y, Ty, Ty) (3.3)

and

G(Ty, Tx, Tx)

≤ aG(y, x, x) + bG(y, Ty, Ty) + (c + d)G(x, Tx, Tx). (3.4)

Since X is a symmetric G− cone metric space, therefore by adding (3) and (4),
we have

dG(Tx, Ty)

≤ adG(x, y) +
b + c + d

2
dG(x, Tx) +

b + c + d

2
dG(y, Ty)

= αdG(x, y) + βdG(x, Tx) + γdG(y, Ty), (3.5)

for all x, y ∈ X, where α = a, β = γ =
b + c + d

2
. Obviously α +β + γ < 1. Take

any point x ∈ X and consider the sequence {T nx}. Replacing x by T nx and y by
T n−1x in (5), we obtain

dG(T n+1x, T nx)

≤ αdG(T nx, T n−1x) + βdG(T nx, T n+1x)

+γdG(T n−1x, T nx).

It further implies that

dG(T n+1x, T nx) ≤ pdG(T nx, T n−1x),

where p =
α + γ

1− β
< 1. It follows that

dG(T n+1x, T nx) ≤ pndG(Tx, x).

For any m > n, we have

dG(Tmx, T nx) ≤ pn

1− p
dG(Tx, x).

Let 0 ¿ c be given. Following similar arguments to those given in [9, theorem

2.3], we conclude that
pn

1− p
dG(Tx, x) ¿ c. So we have dG(Tmx, T nx) ¿ c, for

all m > n. Therefore {T nx} is a Cauchy sequence and hence T nx → z.
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Next we will show that Tz = z. First, we prove that T n+1x → Tz. For this, take
x = T nx, y = z in (5),

dG(T n+1x, Tz)

≤ αdG(T nx, z) + βdG(T nx, T n+1x) + γdG(Tz, z)

≤ αdG(T nx, z) + βdG(T nx, T n+1x)

+γ(dG(T n+1x, Tz) + dG(T n+1x, z))

≤ αdG(T nx, z) + βpndG(Tx, x)

+γ(dG(T n+1x, Tz) + dG(T n+1x, z)).

Thus

dG(T n+1x, Tz) ≤ 1

1− γ
(αdG(T nx, z) + βpndG(Tx, x)

+γdG(T n+1x, z)) ¿ c

for any c ∈ E. Which shows that T n+1x → Tz as n →∞. Now,

dG(z, Tz) ≤ dG(T n+1x, z) + dG(T n+1x, Tz)

¿ c

2
+

c

2
= c,

whenever n > N . Thus dG(Tz, z) ¿ c

m
, for all m ≥ 1. So

c

m
−dG(Tz, z) ∈ P, for

all m ≥ 1. Since
c

m
→ 0 as m →∞ and P is closed , therefore −dG(Tz, z) ∈ P

gives dG(Tz, z) = 0 and hence Tz = z. ¤

Remark 3.2. If X is not a symmetric G− cone metric space, then as in above
theorem, adding (3) and (4) we obtain the following

dG(Tx, Ty) ≤ adG(x, y) +
2(b + c + d)

3
dG(x, Tx) +

2(b + c + d)

3
dG(y, Ty),

for all x, y ∈ X. Here, 0 ≤ a +
2(b + c + d)

3
+

2(b + c + d)

3
which may not be less

than 1. So above theorem gives no information.

Theorem 3.3. Let X be a complete G− cone metric space and T : X → X be a
mapping satisfying one of (1) or (2). Then T has a unique fixed point.

Proof. Let x0 ∈ X. Define a sequence {xn} by xn = T n(x0). From (1) we have

G(xn, xn+1, xn+1) ≤ aG(xn−1, xn, xn) + bG(xn−1, xn, xn)

+(c + d)G(xn, xn+1, xn+1).

It implies that

G(xn, xn+1, xn+1) ≤ qG(xn−1, xn, xn),

where q =
a + b

1− c− d
. Obviously 0 ≤ q < 1. Continue this process to obtain

G(xn, xn+1, xn+1) ≤ qnG(x0, x1, x2).
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Moreover for all n, m ∈ N with m > n, we have

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) + G(xn+1, xn+2, xn+2) +

+... + G(xm−1, xm, xm)

≤ (qn + qn+1 + .... + qm−1)G(x0, x1, x1)

≤ qn

1− q
G(x0, x1, x1).

Let 0 ¿ c be given. Choose δ > 0 such that c + Nδ(0) ⊆ P , where Nδ(0) = {y ∈
E : ‖y‖ < δ}. Also, choose a natural number N1 such that

qn

1− q
G(x0, x1, x1) ∈

Nδ(0), for all m ≥ N1. Then,
qn

1− q
G(x0, x1, x1) ¿ c, for all m ≥ N1. So we have

G(xn, xm, xm) ¿ c, for all m > n. Thus {xn} is a Cauchy sequence, so there exist
u ∈ X such that {xn} converges to u. Now, from (1)

G(xn, Tu, Tu) ≤ aG(xn−1, u, u) + bG(xn−1, xn, xn) + (c + d)G(u, Tu, Tu).

Taking limit n →∞, we get

G(u, Tu, Tu) ≤ (c + d)G(u, Tu, Tu),

which implies that T (u) = u. To prove uniqueness, suppose that u 6= v = T (v),
then

G(u, v, v) ≤ aG(u, v, v) + bG(u, Tu, Tu) + (c + d)G(v, Tv, Tv)

= aG(u, v, v),

implies that u = v. ¤

Theorem 3.4. Let X be a complete G− cone metric space, and T : X → X be
a mapping satisfying one of the conditions

G(Tx, Ty, Ty)

≤ a{G(x, Ty, Ty) + G(y, Tx, Tx)}, (3.6)

or

G(Tx, Ty, Ty)

≤ a{G(x, x, Ty) + G(y, y, Tx)}, (3.7)

for all x, y ∈ X where a ∈ [0, 1/2], then T has a unique fixed point.

Proof. Suppose that T satisfies condition (6), then for all x, y ∈ X

G(Tx, Ty, Ty) ≤ a{G(y, Tx, Tx) + G(x, Ty, Ty)}
and

G(Ty, Tx, Tx) ≤ a{G(x, Ty, Ty) + G(y, Tx, Tx)}.
Now if X is a symmetric G− cone metric space, then above two inequalities give

dG(Tx, Ty) ≤ a{dG(x, Ty) + dG(y, Tx)},
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for all x, y ∈ X. Since 0 ≤ a <
1

2
, therefore result follows from [9, theorem 2.7].

Now if X is not a symmetric G− cone metric space. Then adding (6) and (7) we
obtain

dG(Tx, Ty) = G(Tx, Ty, Ty) + G(Ty, Tx, Tx)

≤ 2a{G(y, Tx, Tx) + G(x, Ty, Ty)}
≤ 4a

3
{dG(y, Tx) + dG(x, Ty)},

for all x, y ∈ X. Here, contractivity factor
4a

3
may not be less than 1. Therefor

cone metric gives no information. In this case, let x0 ∈ X and define a sequence
{xn} by xn = T nx0. So by (6)

G(xn, xn+1, xn+1) ≤ a{G(xn−1, xn, xn) + G(xn, xn, xn)}
= aG(xn−1, xn+1, xn+1).

But

G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn) + G(xn, xn+1, xn+1).

Thus we have

G(xn, xn+1, xn+1) ≤ kG(xn−1, xn, xn),

where k =
a

1− a
, and 0 ≤ k < 1. Continuing above process, we obtain

G(xn, xn+1, xn+1) ≤ knG(x0, x1, x1).

Now following similar arguments as those given in Theorem 4, {xn} is a Cauchy
sequence, so there exist u ∈ X such that {xn} converges to u.
Now we show that Tu = u. From (6)

G(xn, Tu, Tu)

≤ a{G(xn−1, Tu, Tu) + G(u, xn, xn)}.
Which on taking limit n →∞ implies that

G(u, Tu, Tu) ≤ aG(u, Tu, Tu).

Thus Tu = u. Suppose that u 6= v = Tv, then

G(u, v, v) ≤ a{G(u, v, v) + G(v, u, u)},
so

G(u, v, v) ≤ kG(v, u, u),

again, we have

G(u, v, v) ≤ k2G(u, v, v),

which implies that u = v. ¤
Example 3.5. Let E = R3, P = {(x, y, z) ∈ R3 | x, y, z ≥ 0}, and

X = {(x, 0, 0) ∈ R3 | 0 ≤ x ≤ 1} ∪
{(0, x, 0) ∈ R3 | 0 ≤ x ≤ 1} ∪ {(0, 0, x) ∈ R3 | 0 ≤ x ≤ 1}.
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Define mapping G : X ×X ×X → E by

G((x, 0, 0), (y, 0, 0), (z, 0, 0))

= (
4

3
(|x− y|+ |y − z|), |x− y|+ |y − z|, (|x− y|+ |y − z|)),

G((0, x, 0), (0, y, 0), (0, z, 0))

= ((|x− y|+ |y − z|), 2

3
(|x− y|+ |y − z|), (|x− y|+ |y − z|)),

G((0, 0, x), (0, 0, y), (0, 0, z))

= ((|x− y|+ |y − z|), |x− y|+ |y − z|, 1

3
(|x− y|+ |y − z|))

and

G((x, 0, 0), (0, y, 0), (0, 0, z)) = G((0, 0, z), (0, y, 0), (x, 0, 0)) =

..... = (
4

3
x + y + z, x +

2

3
+ z, x + y +

1

3
z).

Then X is a Complete G− cone metric space. Let T : X → X

T = (x, 0, 0) = (0, x, 0), T (0, x, 0) = (0, 0,
1

3
x),

and T (0, 0, x) = (
2

3
x, 0, 0).

Then T satisfies the contractive condition given in Theorem 5 with constant
a = 3

4
∈ [0, 1). Note that T has a unique fixed point (0, 0, 0) ∈ X.
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