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GENERALIZED CONTRACTIONS AND COMMON FIXED POINT
THEOREMS CONCERNING 7-DISTANCE

A. BAGHERI VAKILABAD?, S. MANSOUR VAEZPOUR?

ABSTRACT. In this paper we consider the generalized distance, present a generalization of
Ciri¢’s generalized contraction fixed point theorems on a complete metric space and inves-
tigate a common fixed point theorem about a sequence of mappings concerning generalized
distance.

1. INTRODUCTION AND PRELIMINARY

In order to generalization of Banach’s contraction principle, Ciri¢ introduced generalized
contraction([16]). In 2001 Suzuki introduced the concept of 7-distance, a generalization of
both w-distance ([3]) and Tataru’s distance([13]), on a metric space, and discussed it’s proper-
ties and improved the generalization of Banach’s contraction principle , Caristi’s fixed point
theorem, Downing-Kirk’s theorem, Ekeland’s variational principal, Hamilton-Jacobi equa-
tion, the nonconvex minimization theorem according Takahashi and several fixed point the-
orems for contractive mapping with respect to w-distanc, See ([7],[8],[9], [10],[L1], [6],[12],[13]).
In this paper using the A-generalized contraction and 7-distance we prove some fixed point
theorems. Also, we investigate a sequence of maps which satisfy a common condition of
generalized contraction type.

At first we recall some definitions and lemmas which will be used later.

Definition 1.1. ([8])Let X be a metric space with metric d. A function p : X x X — [0, 00)
is called T-distance on X if there ezist a function n : X x [0,00) — [0,00) such that the
following are satisfied:

(1) p(z, 2) < p(a,y) + p(y, 2) for all z,y,z € X;
(19)n(z,0) =0 and n(x,t) >t for allx € X and t € [0,00), and 7 is
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concave and continuous in it’s second variable;

(13) lim,, z,, = x and lim,, sup{n(zn, p(2n, Tm)) : m > n} =0, imply
p(w, x) < liminf, p(w,z,) for all w € X;

(14) limy, sup{p(xp, ym) : m > n} =0 and lim, n(z,,t,) = 0, imply
limy, 7(Yn, tn) = 0;

(7-5) hmn U(Zn,p(zn, 'xn)) =0 and hmn n(znup<zna yn)) = 07 Zmply
lim,, d(zp, y,) = 0.

It can be replaced (3) by the following (72)’.

(12) inf{n(x,t) : t >0} =0 for all x € X, and n is nondecreasing in its second variable.
The best well-known T-distances are the metric function d and w-distances. If p be a w-
distance on the metric space (X, d) and a function n from : X x [0, 00) into [0,00) given by
n(x,t) =t, for all v € X, then it is easy to check that p is a T-distance.

Let (X,d) be a metric space and p be a T-distance on X. A sequence {x,} in X is called
p-Cauchy if there exists a function n : X x[0,00) — [0, 00) satisfying (12)-(75) and a sequence
zn in X such that lim,, sup{n(z,, p(zn, Tm)) : m > n} = 0.

The following lemmas are essential for next sections.

Lemma 1.2. ([7]) Let (X,d) be a metric space and p be a T-distance on X. If {x,} is a
p-Cauchy sequence, then it is a Cauchy sequence. Moreover if {y,} is a sequence satisfying
lim, sup{p(zpn, ym) : m > n} = 0, then {y,} is also p-Cauchy sequence and lim,, d(x,,y,) = 0.

Lemma 1.3. ([7]) Let (X,d) be a metric space and p be a T-distance on X. If {x,} in X
satisfies lim,, p(z, x,) = 0 for some z € X, then x,, is a p-Cauchy sequence. Moreover if {y,}
in X also satisfies lim, p(z,y,) = 0, then lim, d(z,,y,) = 0. In particular, for x,y,z € X,
p(z,2) =0 and p(z,y) = 0 imply x = y.

Lemma 1.4. ([7]) Let (X,d) be a metric space and p be a T-distance on X. If a sequence
{z,} in X satisfies lim,, sup{p(zp,zn) : m > n} = 0, then {x,} is a p-Cauchy sequence.
Moreover, if {y,} in X satisfies lim,, p(z,,yn) = 0, then {y,} is also p-Cauchy sequence and
lim,, d(zp, y,) = 0.

Remark 1.5. If p(x,y) = 0 then the equality x = y is not necessarily hold, but p(x,y) =
p(y,x) = 0 imply © = y because 0 < p(x,z) < p(x,y) + p(y,z) = 0 and hence p(x,z) = 0.
Now by Lemma 1.3 v = y.

2. GENERALIZED CONTRACTIONS

Throughout this paper we denote by /N the set of all positive integer, R real numbers with
usual metric and (X, d) be a complete metric space.

Definition 2.1. Let f and g be selfmappings on a complete metric space X, p be a T-distance
on X and g(X) C f(X). We say g is A\-generalized contraction (shortly A\-GC) with respect
to (p, ), A € (0,1), if and only if there exist nonnegative functions q,r,s,t, satisfying

supryex{q(z,y) +r(z,y) + sz, y) + 4t(z,y)} <A <1 (2.1)
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such that for each x,y € X;

max{p(f(x),g(y)).p(g(y), f(x))} < q(z,y)p(x,y) + r(x,y)p(z, f(x)) (2.2)
+s(x,y)p(y, 9(y)) + t(z,y)[p(x, g(y)) + py, f(2))].

Example 2.2. a)Let (X,d) be a complete metric space and p(z,y) = d(x,y), then every
contraction selfmapping f on X is \-GC with respect to (p, f).
b) Let X =10,2] C R and

B s xel0,1]
(@) = gla) = {_ i
q(z,y) = %, r(z,y) = s(z,y) = i, t(x,y) = 7 and p(x,y) = |v —y|. Then g is \-GC with

respect to (p, f), but it is not a contraction mappmg
We prove the following lemma which will be used in the next theorem.
Lemma 2.3. Let vy € X. Define the sequence {x,} by

Tont1 = f(T2n), Tant2 = 9(Tans1), (2.3)
where f and g are selfmappings on X such that g is \-GC with respect to (p, f). Then {x,}
1s a Cauchy sequence.

Proof. Put
My = max{p(22n+1, Tan+2), P(T2n+2, Tant1)}
and
My = max{p(Tan, Tant1), P(T2nt1, T2n) }

by (2.1), (2.2) and (2.3) we have,

M, = max{p(f(z2n), 9(xon+1)),P(9(z2n11), f(220))}

/\max{p(x2mx2n+1) p I2m (x2n))a

IN

(
P(T2nt1, 9(Tons1)), [P(@m 9(Tont1)) + P(@2nt1, f(T20)]}
p(

A max{p(xgn, $2n+1) P(Zon, $2n+1)

1
p($2n+1, $2n+2)> —[p(@n, $2n+2) + p($2n+17 $2n+1)]}
4

= AM(zan, Tont1)

where

1
M(@m $2n+1) = maX{p(@m $2n+1)7p(952n+1, $2n+2)7 Z[P(%m $2n+2) +p(952n+1, $2n+1)]}'

Now if M(xon, Toni1) = p(Tani1, Tons2), then we have,

P(Zont1, Tont2) < AD(Tont1, Tont2),
which implies p(x9,11, Zon12) = 0.
If M (22, Tont1) = 5[p(@2n, Tont2) + D(Tont1, Tany1)] then,
A

P(Tont1, Tons2) < Z[p($2n,$2n+2) + p(Tont1, Tont1)],
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SO
A A
p($2n+1,$2n+2) < §p($2n,$zn+2) or p($2n+1,$2n+2) < §p($2n+1,$2n+1)-
If p(zont1, Tonso) < %p($2n,$2n+2) since,
A
§p<$2ml’2n+2) < §[p($2n7$2n+1) + p(Tont1; Tant2)]
A 1
< §p($2m Tont1) + Ep(xzmrl, Tant2)

we have

P(Tont1; Tant2) < AP(Tan, Tont1).
%p('xQnJrla x2n+1) since,

A
P(Tont1, Tant1) < §[p(172n+1>$2n) + p(@2n, Tont1)]

If p(xontt, Tont2) <

N | >

we have
P(Tont1, Tont2) < AD(Tont1,Ton) O P(Tantt, Tont2) < AD(Ton, Tont1)-
Therefore in any cases we have;

My < Ap(z2n41,%2,) o My < Ap(Zon, Tont1)- (2.4)

Similarly
My < Ap(on—1,Ta,) or My < Ap(xan, Ton—1). (2.5)

Continuing this process we have,

P(Tn; Tpy1) < Amax{p(zn-1,n), P(Tn, Tn-1)} < ... < A" max{p(zo, 1), p(z1,20)}

Putting r(z¢) = max{p(xo, z1), p(x1,x0)}, then for any m > n;

m—n—1 m—n—1
P(@m @) < Y P(@nprin Tngr) < > AT(z0) < Xr(ao)(1—A)
k=0 k=0

So limsup, {p(zy,x,) : m > n} = 0. Hence by Lemmas 1.2 and 1.4 {z,} is a Cauchy
sequence. [

Theorem 2.4. Let (X,d) be a metric space, p be a T-distance on X and xy € X and f and
g be selfmappings on X such that g is \-GC with respect to (p, f). Moreover assume that the
following holds:

If limsup, {p(xn,m) : m > n} = 0 and lim, p(z,,y) = 0 then, lim, p(z,, f(z,)) = 0
implies f(y) = y and im, p(z,, g(x,)) = 0 implies g(y) = y. Then f and g have a unique
common fized point, namely z, such that p(z,z) =0 and (fg)" (z0) — 2z and (gf)" (z0) — 2.
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Proof. Let zy € X. Define the sequence {z,} by 2op41 = f(22,) and zonyo = g(T2n+1).
Then by Lemma 2.3 {z,} is a Cauchy sequence and converges to some point z € X. We
show that f(z) = z, and g(z) = 2.

By (73) we have;

hm Sup(p<x2n7 f<x2n>> + p(x2n7 Z)) S hm Sup<p($2n7 I2n+1) + lﬂmfp@z”’ xm)

n o0

< 2limsup p(xop, Tym) = 0.

o m>2n
Similarly limsup,,(p(z2n+1, 9(2n+1)) + P(@2nt1, 2)) = 0. Therefore

limsup{p(x,, xy) :m >n} =0 and lim,(z,,2) =0.

So we have,

and
lim p(xg,, z) = 0.

Putting z!, = x9,, the hypothesis implies f(z) = z. With a similar computations we have
9(z) = z.
Now if we put z = y = z in (2.2) we get p(z, z) < Ap(z, z) which implies p(z,z) = 0.
If u be another common fixed point for f and ¢ by using (2.2) we have
q(z,u)p(z, u) +r(z,u)p(z, 2) + s(z, u)p(u, u)
t(z, u)[p(z,u) + p(u, 2)]

max{p(z,u),p(u, z)}

IN -+ A

1
A-max{p(z, u), p(z, 2), p(u, u), 7 [p(2,u) + p(u, 2)]}
1

) é_l[p(z’ u) _'_p(ua Z)}

The last equality holds because p(z,z) = p(u,u) = 0. In any cases this inequalities show
that p(z,u) = p(u, z) = 0 and by Remark 1.5 z = u.0J

Note that if f is continuous then, {z,} and {f(x,)} converge to y, implies f(y) = y. If

limsup, {p(zp, ) : m >n} =0, lim,p(x,,y) =0, and lim, p(z,, f(z,)) = 0, then by
Lemma 1.4 we have lim, z,, = lim,, f(x,) = y, but in general it doesn’t imply f(y) = y.
For example, let X = R, (real numbers with usual metric), x, = '”T—l, p=d,y=1and

f: R — R defined by
t, t#£1,
t:
/() {z t=1.

It is possible that g* be A-GC with respect to (p, f), for some k € N and k > 1, but g is not
so.

= A max{p(z,u)

Example 2.5. Let X = {a,b,c} where a,b,c € R are three distinct real numbers; f(z) = a,
constant map on X, and g : X — X is given by g(a) = a, ¢(b) =c¢, g(c) =a. Putp=d.
We have g* = f, and so g* is \-GC with respect to (p, f), but since g(X) € f(X) so g is
not A-GC with respect to (p, f).
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Corollary 2.6. Let (X,d) be a metric space, p be a T-distance on X and xy € X and f
and g be selfmappings on X such that g* is \-GC with respect to (p, f), for some k € N.
Moreover assume that the following holds:
If limsup,{p(x,,zm) : m > n} =0 and lim, p(z,,y) = 0 then, lim, p(z,, f(z,)) = 0
implies f(y) =y and lim,, p(x,, ¢*(z,)) = 0 implies g¥(y) = y. Then f and g have a unique
common fized point.

Proof. By Theorem 2.4 f and g* have common fized point, z. Now we have g*(g(z)) =
9(g%(2)) = g(2). It follows that g(z) = z = f(2), by uniqueness.(]

Corollary 2.7. Let (X, d) be a metric space, p be a T-distance on X, vo € X and f and

g be selfmappings on X such that g is \-GC with respect to (p, f). Moreover assume that if

{zn}, {f(x,)} and {g(x,)} converges toy, it implies f(y) =y and g(y) =y. Then f and g
have a unique common fized point, namely z, such that p(z,z) = 0 and (fg)"(zo) — 2 and

(9f)"(x0) — 2

Corollary 2.8. Let (X,d) be a metric space, p be a T-distance on X and xy € X. Suppose
f and g are continuous selfmappings on X ,and g is \-GC with respect to (p, f). Then f and
g have a unique common fized point, namely z, such that p(z,z) =0 and (fg)"(x0) — z and

(9f)" (x0) — =

3. SEQUENCE OF GENERALIZED CONTRACTION MAPS

Throughout this section we prove a common fixed point theorem for a sequence of maps
which satisfy a common condition of generalized contraction type. We begin with a lemma.

Lemma 3.1. Let (X,d) be a metric space, p be a T-distance on X. Let f and fy be self-
mappings on X such that the following holds:

max{p(fo(x), f(¥)), p(f(y), fo(x))} < Amax{p(z,y),p(z, fo(z)), (3.1)

p(y, (), p(x, f(y)), p(y, fo(z))}
for some X\ € (0,1) and all z,y € X. If fo(z) = z and p(z,2) = 0, for some z € X, then

f(2) = z and z is unique.
Proof. Since fy(z) = z, by (3.1) we have
max{p(z, f(2)),p(f(2), 2)} = max{p(fo(2), f(2)), p(f(2), fo(2))}
S Amax{p(z,2),p(z f(2))} = Ap(z, f(2))
)

and hence by Lemma 1.3 z = f(2).
= v and p(v,v) = 0 then we have f(v) = v and

which implies p(z, f(2)) =0
If v € X be such that fo(v)
o(z

p(z,v) = p(fo(z), f(v)) < Amax{p(z,v),p(z,2),p(v,v),p(v, 2)}
= dmax{p(z,v),p(v,2)}.
With similar computation
p(o, 2) < Amax{p(z,v), p(v, )}

so p(z,v) = p(v, z) = 0 and by Remark (1.5) v = 2. O
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Theorem 3.2. Let (X,d) be a complete metric space, p be a T-distance on X and {f,} be
a sequence of selfmappings on X, such that fy is continuous and for each x,y € X;

max{p(fo(z), fu(y)), p(fa(y), fo(2))} = A max{p(z,y), p(z, fo(z)), (32)
p(y, f2 (), 1p(2, fu(y)) + 0y, fol2))},
whereas A € (0,1) and n = 0,1,2,3,... . Then {f,} have a unique common fized point,

namely z, such that p(z,z) = 0.
Proof. Let 2y € X. Define the sequence {z,} by

x1 = fo(wo), w3 = folw1) = f2(20), ..., Tn = fi(zo), ... (3.3)
We show that {z,} is a Cauchy sequence. By (3.2) we have
max{p(Tn, Tn-1), P(Tn—1,T5) } = max{p(fo(zn-1), fo(rn-2)), P(fo(xn-2), folzn-1))}
< A max{p(l’n—% xn—l)a p(xn—la xn)a lep(xn—% xn) + p(xn—la xn—l)}'

We will prove that

max{p(zn, Tn_1),p(Tn_1,2n)} < Amax{p(rn_1,Tn—2), p(Tn_2,Tn_1)} (3.4)
To show this set M = max{p(2,-2, Tn-1), P(Tn-1,Tn), %p(‘rn—% Tp) + P(Tn_1,Tn-1)}
If M = p(zy—1,2,) then p(z,—1,2,) =0 and (3.4) holds.
If M = p(xp—2,2n—1) then max{p(z,, x,—1), p(Tn_1,2n)} < Ap(Ty—2,T,—1) and (3.4) holds
If M = ip(xn_g,xn) + p(xp_1,2,-1)} then
4 max{p(xn, xn—1)7p(xn—17 xn)} S Ap(xn—% xn) + p(xn—h xn—l) hence

2max{p(T,, Tn_1),p(Tn_1,2,)} < Ap(xh_2,2,)
S )\p(zn727 $n71> + p(xnflv zn)

or

)‘p(ajn—la xn—l)
Ap(xn—la xn—?) + p(xn—% xn—l)

2 max{p(xn, xn—1)7p<xn—la xn)} S
<

which implies
max{p(z,, Tn_1), p(Tn_1,2n)} < Amax{p(zn_1,Tn_2),p(Tn_2,2n1)},
so in any cases (3.4) holds.
Continuing this process one has,
P(Tn_1,2,) < Amax{p(zn_2,Tn_1), P(Tn_1,Tn_2)} < ... < X" max{p(xo, z1),p(x1,20)}

Putting r(z¢) = max{p(xg, x1), p(x1, x0)}, for any m > n;

m—n—1 m—n—1

P Tm) < > p@nsk Torer) < AT () < A (o) (1 — A) 7
k=0 k=0

So limsup,,{p(zn, Zy) : m > n} = 0. Then by Lemma 1.4 {z,} is a Cauchy sequence, since
X is complete metric space there exist some point z € X such that lim, z, = z. On the
other hand continuity of f, implies

fo(z) = fo(limzy) = lim(fo(z,)) = lim(zny,) = 2
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therefore fo(z) = 2. By (3.2) we have

p(2,2)

n=123,...0

Note that if the condition of continuity of f; is replaced by the lower semicontinity of p
in its first variable, the theorem will be holds too. Because if p be lower semicontinuous in

= p(fo(2), 2) = p(z, fo(2)) = p(fo(2), fo(2)) = Ap(2, 2),
so p(z,2z) = 0. Then by Lemma 3.1 z is a unique fixed point of fy and f,(z) = z for all

its first variable by (3.2) and triangle inequality we have

p(z fo(2)) <

p(z, xn) +p(f0(xn—1)7 fo(Z))

< p(z ) + Amax{p(z, 2n-1), (2, fo(2)), P01, fo(Tn-1)),
110z, Faln) + a1, fol2)}
< plzyxn) + Amax{p(z, xn-1), p(z, fo(2)), D(Tn-1, Tn),
1Pz 0) + Pl fo(2))]
< p(zan) + A p(z, 2n1) +0(2, fo(2)) + (@01, 2n) + P20, 2)]
hence
p(2, fo(2)) < %[p(zaxn) +Ap(z, 2n1) + P01, Tn) + p(2n, 2)]].
By (73)
(p(xn, 2)) < li%inf(p(xn,xm) < A'r(20)(1—A)7t
so lim,(p(z,, 2)) = 0, moreover by construction lim,(p(z,-1,%,)) = 0. Since p is lower

semicontinuous in its first variable we have

limp(z, x,) = limp(z, 2,-1) = 0,

therefore p(z, fo(2)) = 0. On the other hand

p<f0(2>7 Z)

[VANRVAN

IN

<

(s 2) + pol2), fol 1)

0, 2) + A {3, 2 1), D1, ol 1)), fol2),
1P, fo(2)) + bl folza )]}

0, 2) + A {3, 20 1), 1,20, 0, fol2)),
1P, Jo(2)) + oz, )

P(Tn, 2) + Alp(2, Tn1) + p(Tn_1,20) + (0, 2) + (2, fo(2))].

Hence p(fo(2),2) =0 and so fy(z) = z and we have the following theorem:

Theorem 3.3. Let (X,d) be a complete metric space, p be a T-distance on X such that p
is lower semicontinuous in its first variable and {f,} be a sequence of selfmappings on X,

satisfying

max{p(fo(), fn(y)), P(fa(y), fo(2))} = A-max{p(z, y), p(z, fo(x)),
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Py, f2(y)), 1oz, fa(y)) + p(y, folz))}.

for each z,y € X, A\ € (0,1) andn =0,1,2,3,... . Then {f,} have a unique common fized
point, namely z, such that p(z,z) = 0.
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