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Abstract. In this paper we deal with the Nonlinear Coupled Ordinary Dif-
ferential Equations(Nonlinear CODE). A Multipoint Boundary Value Prob-
lem(MBVP) associated with these Nonlinear Equations is defined as an Oper-
ator Equation. This equation(infinite dimensional) is reduced to an Equivalent
Bifurcation Equation(finite dimensional) using Schauder’s Fixed Point Theo-
rem. This Bifurcation Equation being on a finite dimensional space can be
easily solved by using standard approximation techniques.

1. Introduction and preliminaries

A lot of work has been done on the Differential Operator and the associated
Boundary Value Problems. Coupled Systems are very common in nature. Many
real life situations can be modeled using these coupled differential equations.
Some applications of such equations can be found in the prey-predator models
[14] where the interdependence of the dependent variables is clearly seen. So there
is a need for a unified theory for these Coupled Ordinary Differential Equations.
There are various methods to analyse differential equations and show the existence
of their solutoins, one such is through the fixed point theorems. Some papers in
literature dealing with operators and fixed point theorems are [1, 2, 13]. We
study these equations through a Functional Analytic approach. This approach
was first given by Kantorovich [8]. Cesari and Locker [9, 10, 3, 4] have adopted
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this approach for studying the nonlinear Differential Equations and the associated
BVPs. It is very useful to study the linear equations first before embarking on the
nonlinear equations. So we have studied the Linear Coupled Ordinary Differential
Equations and the associated BVPs in [11] and [12]. P C Das and Venkatesulu
[5],[6],[7] have studied a MBVP associated with Nonlinear Ordinary Differential
Equations using the alternative method given by Cesari [3]. We adopted the same
approach to study the Nonlinear Coupled Ordinary Differential Equations and
the associated MBVP.
First we have given few mathematical preliminaries useful in the study. We
define the Projections Pm, Qm and the right inverse H. Then we prove some
relations involving H, L, Pm and Qm. We gave an integral representation for H
and H(I − Pm). In the succeeding sections we define the MBVP associated with
Nonlinear CODE as an operator equation. Then we reduce this operator equation
(on an infinite dimensional space) in to an equivalent Bifurcation Equation (on a
finite dimensional space) using the Schauder’s Fixed Point Theorem as in [6].

1.1. Mathematical Preliminaries. In this section we have given some prelim-
inary definitions about the setting in which we are dealing the problem. We
have also defined the formal coupled differential operator, maximal and the min-
imal operator and stated some proven results, which characterize these operators.

Definition 1.1. We denote by L2[a, b]×L2[a, b] a real or complex Hilbert space of
ordered pairs(formed by the cartesian product) of all square integrable functions
with inner product defined as

({u1, u2}, {v1, v2}) = (u1, v1)1 + (u2, v2)1 =
∫ b

a
u1(t)v1(t)dt +

∫ b

a
u2(t)v2(t)dt

and norm

‖{u1, u2}‖ =

(
‖u1(t)‖1

2 + ‖u2(t)‖1
2

)1/2

and convergence is denoted by {u1, u1}k → {u1, u1} where (., .)1 and
‖ . ‖1 denote the inner product and norm in L2[a, b] defined as

(u1, u2) =

∫ b

a

u1(t)u2(t)dt

Definition 1.2. we denote by Hn[a, b], the subspace of L2[a, b], consisting of
all functions u ∈ Cn−1[a, b], with u(n−1) absolutely continuous on [a,b] and with
u(n) ∈ L2[a, b]. Also we let
H0[a, b] = L2[a, b].
We denote by Hn[a, b]×Hm[a, b] the cartesian product of Hn[a, b] and Hm[a, b],
taken in that order.(i.e., It consists of all ordered pairs of the form {u, v}, where,
u ∈ Hn[a, b] and v ∈ Hm[a, b]) The inner product and norm are induced from the
space L2[a, b]× L2[a, b]

Definition 1.3. A formal Coupled Ordinary Differential Operator(CODO) of
order (n, m̂, n̂,m) on the interval [a, b] is an operator of the form:

(L1M1; L2M2)({f, g}) = {h1, h2},
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such that

L1(f) + M1(g) = h1

L2(f) + M2(g) = h2

where {f, g} ∈ Hn[a, b]×Hm[a, b] , {h1, h2} ∈ L2[a, b]× L2[a, b]
L1,M1, L2,M2 are formal differential operators of orders n, m̂, n̂, m respectively
on the interval [a, b], and are of the form

L1 =
∑n

i=0 pi(t)(
d
dt

)i , M1 =
∑m̂

i=0 q̂i(t)(
d
dt

)i

L2 =
∑n̂

i=0 p̂i(t)(
d
dt

)i , M2 =
∑m

i=0 qi(t)(
d
dt

)i

where all coefficients
pi (i = 0, 1, 2, ......, n), q̂i (i = 0, 1, 2, ......, m̂), p̂i (i = 0, 1, 2, ......, n̂)
and qi (i = 0, 1, 2, ......,m) belong to L2[a, b] and t ∈ [a, b]

Definition 1.4. If L be a (n, n, n, n) ordered coupled ordinary differential oper-
ator it is said to be invertible iff L is one to one and on to L2[a, b]× L2[a, b].

The operator (L1M1, L2M2) is linear and closed.
The proof of the statement can be concluded from the actual definitions of the
linearity and the closedness of the operator and some of the other properties of
it.
Assumption 1:
n ≥ n̂, m ≥ m̂, n ≥ m̂, m ≥ n̂.

Theorem 1.5. Basic Existence-Uniqueness Theorem for IVP :
Let assumption 1 be true. Also, assume that there exist positive constants α and
β such that |pn(t)| ≥ α and |qm(t)| ≥ β for all t ∈ [a, b]. Let h1, h2 belong to
L2[a, b], let to ∈ [a, b] and let c0, c1........, cn−1, cn, ......, cn+m−1 be any arbitrary
set of (n + m) scalars. Then there exists a unique pair of functions {(f, g)} ∈
Hn[a, b]×Hm[a, b] such that

L1(f) + M1(g) = h1, L2(f) + M2(g) = h2 (1.1)

a.e., on [a, b] and satisfying the initial conditions

f (i)(t0) = ci, i = 0, ....., n− 1 (1.2)

and
g(i)(t0) = cn+i, i = 0, ....., m− 1 (1.3)

For the next results, we assume the following:
Assumption 2:
(L1M1; L2M2) is a formal coupled ordinary differential equation of order (n, m̂, n̂,m)
on [a, b], such that the following conditions are satisfied.
Suppose that the coefficients, pi, (i = 0, 1, 2, ...., n), q̂i, (i = 0, 1, 2, ...., m̂), p̂i,
(i = 0, 1, 2, ...., n̂), qi, (i = 0, 1, 2, ....,m) satisfy the following conditions:

pi ∈ H i[a, b],i = 0, 1, ...., n, q̂i ∈ H i[a, b], i = 0, 1, ...., m̂
p̂i ∈ H i[a, b], i = 0, 1, ...., n̂ , qi ∈ H i[a, b], i = 0, 1, ...., m
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Now we have a definition.

Definition 1.6. Let (L1M1; L2M2) be a formal coupled ordinary differential oper-
ator of order (n, m̂, n̂,m) on [a, b], such that assumptions 1 and 2 are satisfied.The
formal coupled ordinary differential operator

(L1M1; L2M2)
∗ = (L∗1L

∗
2; M

∗
1 M∗

2 )

is called the formal adjoint of (L1M1; L2M2) where

L∗1 =
∑n

j=0 p∗j(t)(
d
dt

)j where p∗j ∈ Hj[a, b]forj = 0, 1, 2, ....n.

with p∗j(t) =
∑n

i=j(−1)i

(
i
j

)
( d

dt
)i−jpi(t), j = 0, 1, 2, ....., n− 1.

M∗
1 =

∑m̂
j=0 q̂∗j(t)(

d
dt

)j where q̂∗j ∈ Hj[a, b]forj = 0, 1, 2, .....m̂

with q̂∗j(t) =
∑m̂

i=j(−1)i

(
i
j

)
( d

dt
)i−j(q̂i(t)), j = 0, 1, 2, ....., m̂− 1.

L∗2 =
∑n̂

j=0 p̂∗j(t)(
d
dt

)j where p̂∗j ∈ Hj[a, b]forj = 0, 1, 2, .....n̂

with p̂∗j(t) =
∑n̂

i=j(−1)i

(
i
j

)
( d

dt
)i−j(p̂i(t)), j = 0, 1, 2, ....., n̂− 1.

M∗
2 =

∑n
j=0 q∗j (t)(

d
dt

)j where q∗j ∈ Hj[a, b]forj = 0, 1, 2, ....m.

with q∗j (t) =
∑m

i=j(−1)i

(
i
j

)
( d

dt
)i−j(qi(t)), j = 0, 1, 2, ....., m− 1.

In case (L1M1; L2M2) = (L1M1; L2M2)
∗, we say that (L1M1; L2M2) is formally

self-adjoint.

Now we define few norms which are used throughout this paper.

Definition 1.7.

‖{x, x̂}‖Hn[a,b]×Hn[a,b] =
√

b− a

n−1∑
i=0

supt∈[a,b]

∣∣{xi, x̂i
}∣∣ + ‖{xn, x̂n}‖

µ({x, x̂}) = max
(
maxi=0..n−2supt∈[a,b]

∣∣{xi, x̂i
}∣∣ , ess.supt∈[a,b] |{xn, x̂n}|)

Let τ be the formal coupled differential operator defined above.
For each j = 1, 2, ..., k we define,

Bj {x1, x2} =
2∑

l=1

n−1∑
i=0

(
αl

0jix
i
l(a) + αl

1jix
i
l(a1) + ... + αl

hjix
i
l(b)

)
(1.4)

where the interval [a, b] is divided as a = a0 ≤ a1 ≤ .... ≤ ah = b. We assume
that k ≤ n and all Bjs are linearly independent.
So let us define the Linear Coupled Ordinary Differential Operator L here as the
operator generated by the formal coupled ordinary differential operator and the
boundary conditions in the equation (1.4).
Then let the linear operators T1(τ) and T0(τ) be defined as follows

D(T1(τ)) = {{x, y} ∈ Hn[a, b]×Hn[a, b]}
T1(τ) {x, y} = τ {x, y}
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and

D(T0(τ)) = {{x, y} ∈ Hn
0 [a, b]×Hn

0 [a, b]}
T0(τ) {x, y} = τ {x, y}

Clearly, T1(τ) is an extension of both T0(τ) and L.
Moreover, T1(τ) is the adjoint of the operator To(τ

∗) where τ ∗ represents the
formal adjoint of the operator τ .
Now let us recollect the following well known facts(Proved in [11]) about L:
D(L) is dense in L2[a, b]× L2[a, b].
L is a closed linear operator.
R(L) is closed in L2[a, b]× L2[a, b].
L2[a, b] × L2[a, b] = R(L) ⊕ N(L∗) where N(L∗) denotes the null space of the
adjoint of L.
We know that N(T1(τ)) is n-dimensional with N(L) ⊆ N(T1(τ)). Let us choose

function pairs
{

φi, φ̂i

}
, i = 1, 2, ..., n. in C∞[a, b] to form an orthonormal basis for

N(T1(τ)) in such a way that
{

φi, φ̂i

}
, i = 1, 2, ..., p. forms an orthonormal basis

for N(L). we also chose {ωi, ω̂i}, i = 1, 2, .., q in D(L∗) to form an orthonormal
basis for N(L∗).
We note that the operator L/D(L)∩N(L)⊥ is a one-to-one closed linear operator
having the same range as L. Now Let H denote the inverse of this operator.

H =
{

L/D(L) ∩N(L)⊥
}−1

By the closed graph theorem, H is a one-to-one continuous linear operator.
Clearly, D(H) = R(L), R(H) = L/D(L) ∩N(L)⊥.
Moreover,

LH {y1, y2} = {y1, y2}
for all {y1, y2} ∈ R(L)
and

HL {x1, x2} = {x1, x2} −
p∑

i=1

(
{x1, x2} ,

{
φi, φ̂i

}){
φi, φ̂i

}
,

for all {x1, x2} ∈ D(L)
Thus H is a continuous right inverse of L.

1.2. Projections Pm and Qm and their Relation with L and H. We assume
that there exist elements {ωq+1, ω̂q+1} , {ωq+2, ω̂q+2} , ...., {ωm, ω̂m} .... belonging to
D(L∗) such that the sequence of functions {ω1, ω̂1} , {ω2, ω̂2} , ....,
{ωq, ω̂q} {ωq+1, ω̂q+1} , {ωq+2, ω̂q+2} , ...., {ωm, ω̂m} .... form a complete orthonor-
mal set in L2[a, b]×L2[a, b]. Since L2[a, b]×L2[a, b] = R(L)⊕N(L∗), the elements
{ωq+1, ω̂q+1} , {ωq+2, ω̂q+2} , ...., {ωm, ω̂m} .... belong to R(L). Hence H {ωq+i, ω̂q+i},
i ≥ 1 are defined and belong to D(L) ∩N(L)⊥. Let So be the subspace spanned

by the elements
{

φi, φ̂i

}
, i = 1, 2, ..., p. and H {ωq+i, ω̂q+i}, i = 1, 2, ..., m.
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Now we define the sequences of projections Pm and Qm as

Pm {x, x̂} =
m∑

i=1

({x, x̂} , {ωi, ω̂i}) {ωi, ω̂i}

Qm {x, x̂} =

p∑
i=1

(
{x, x̂} ,

{
φi, φ̂i

}){
φi, φ̂i

}

+
∑m

i=q+1 ({x, x̂} , L∗ {ωi, ω̂i}) H {ωi, ω̂i}
where m > q.
These operators Pm, Qm have the following properties.
Pm and Qm are continuous linear operators on all of L2[a, b]× L2[a, b].
R(Pm) =< ω1, ω2, ....., ωm >.
R(Qm) = S0 ⊂ D(L).
P 2

m = Pm and Q2
m = Qm.

The range of (I − Pm) is a subset of R(L) and H(I − Pm) is a continuous linear
operator defined on all of S.
Proofs of these statements are very trivial from the definitions.
We now prove a theorem which we use in the subsequent discussions.

Theorem 1.8. The following results are valid:

(1) H(I − Pm)L {x1, x2} = (I −Qm) {x1, x2} for all {x1, x2} ∈ D(L).
(2) LH(I − Pm) {x1, x2} = (I − Pm) {x1, x2} for all {x1, x2} ∈ S.
(3) LQm {x1, x2} = PmL {x1, x2} for all {x1, x2} ∈ D(L).
(4) QmH(I − Pm) {x1, x2} = 0 for all {x1, x2} ∈ S.

Proof. (1) Let {x1, x2} ∈ D(L). Then
(I − Pm) {x1, x2} = L {x1, x2} −

∑m
i=1 (L {x1, x2} , {ωi, ω̂i}) {ωi, ω̂i}

= L {x1, x2} −
m∑

i=1

({x1, x2} , L∗ {ωi, ω̂i}) {ωi, ω̂i}

= L {x1, x2} −
m∑

i=q+1

({x1, x2} , L∗ {ωi, ω̂i}) {ωi, ω̂i}

Therefore
H(I − Pm)L {x1, x2} = HL {x1, x2}

−
m∑

i=q+1

({x1, x2} , L∗ {ωi, ω̂i}) H {ωi, ω̂i}

= {x1, x2} −
p∑

i=1

(
{x1, x2} ,

{
φi, φ̂i

}){
φi, φ̂i

}

−
m∑

i=q+1

({x1, x2} , L∗ {ωi, ω̂i}) {ωi, ω̂i}

= (I −Qm) {x1, x2}.
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(2) Since (I − Pm) {x1, x2} ∈ R(L) for all {x1, x2} ∈ L2[a, b] × L2[a, b], we
have
LH(I − Pm) {x1, x2} = (I − Pm) {x1, x2}

(3) Let {x1, x2} ∈ D(L). Then

Qm {x1, x2} =

p∑
i=1

(
{x1, x2} ,

{
φi, φ̂i

}) {
φi, φ̂i

}
+

m∑
i=q+1

({x1, x2} , L∗ {ωi, ω̂i}) H {ωi, ω̂i}

Therefore

LQm {x1, x2} =

p∑
i=1

(
{x1, x2} ,

{
φi, φ̂i

})
L

{
φi, φ̂i

}
+

m∑
i=q+1

({x1, x2} , L∗ {ωi, ω̂i}) LH {ωi, ω̂i}

=
m∑

i=q+1

({x1, x2} , L∗ {ωi, ω̂i}) LH {ωi, ω̂i}

Thus

LQm {x1, x2} =
m∑

i=1

({x1, x2} , L∗ {ωi, ω̂i}) LH {ωi, ω̂i}

=
m∑

i=1

(L {x1, x2} , {ωi, ω̂i}) {ωi, ω̂i}

= PmL {x1, x2}
(4) Let {x1, x2} ∈ L2[a, b]× L2[a, b]. Then

H(I − Pm) {x1, x2} = H

(
{x1, x2} −

m∑
j=1

({x1, x2} , {ωj, ω̂j}) {ωj, ω̂j}
)

= H {x1, x2} −
m∑

j=1

({x1, x2} , {ωj, ω̂j}) H {ωj, ω̂j}

Therefore
QmH(I − Pm) {x1, x2}
= QmH {x1, x2} −Qm

(∑m
j=1 ({x1, x2} , {ωj, ω̂j}) H {ωj, ω̂j}

)

=
∑p

i=1

(
H {x1, x2} ,

{
φi, φ̂i

}){
φi, φ̂i

}
+

∑m
i=q+1 (H {x1, x2} , L∗ {ωi, ω̂i}) H {ωi, ω̂i}

−∑p
i=1

(∑m
j=1 ({x1, x2} , {ωj, ω̂j}) H {ωj, ω̂j} ,

{
φi, φ̂i

}){
φi, φ̂i

}

−∑m
i=q+1

(∑m
j=1 ({x1, x2} , {ωj, ω̂j}) H {ωj, ω̂j} , L∗ {ωi, ω̂i}

)
H {ωi, ω̂i}

=
∑m

i=q+1 (H {x1, x2} , L∗ {ωi, ω̂i}) H {ωi, ω̂i}
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−∑m
i=q+1

(∑m
j=1 ({x1, x2} , {ωj, ω̂j}) {ωj, ω̂j} , {ωi, ω̂i}

)
H {ωi, ω̂i}

Thus
QmH(I − Pm) {x1, x2} = 0(i.e {0, 0})

¤

Now we give an integral representation to H and H(I − Pm).
The right inverse operator H, being a one-to-one continous linear operator has
an integral representation given by

(H {y1, y2}) (t) =

∫ b

a

K(t, s) {y1, y2}T (1.5)

where K(t, s) is called the Generalise Green’s function.
Similarly H(I − Pm) is also given the following representation

(H(I − Pm) {x1, x2}) (t) =

∫ b

a

Km(t, s) {x1(s), x2(s)}T ds (1.6)

where Km(t, s) be the function defined by
Km(t, s) =

K(t, s)−
n∑

i=1

(∫ b

a

K(t, ξ) {ωi(ξ), ω̂i(ξ)}T dξ

)T

{ωi(s), ω̂i(s)} , a ≤ t, s ≤ b (1.7)

2. Main results

2.1. The MBVP, Assumptions and Inequalities. In this section we follow
the notations of the previous one. We deal with the the Nonlinear Multipoint
Boundary Value Problem(MBVP) L {x, x̂} = N {x, x̂}, where N is defined sub-
sequently. Indeed we reduce the equation L {x, x̂} = N {x, x̂} to an equivalent
bifurcation equation by making use of the Schauder’s fixed point theorems.
We reduce the equation L {x, x̂} = N {x, x̂} under the following assumption
We assume the following for the rest of our study.

(1) L satisfies all the assumptions of the previous section.

(2) Let
{

X(t, x0, x1, ..., xn−1), X̂(t, x̂0, x̂1, ..., x̂n−1)
}

be a pair of nonlinear real

valued function defined on the interval [a, b].and |{xi, x̂i}| ≤ Ri, , i =
0, 1, ..., n− 1.

(3)
{

X(t, x0, x1, ..., xn−1), X̂(t, x̂0, x̂1, ..., x̂n−1)
}
∈ L2[a, b] × L2[a, b] for each

fixed {xi, x̂i} satisfying |{xi, x̂i}| ≤ Ri, i = 0, 1, ..., n− 1.
(4) There exists a real number k0 ≥ 0 such that for |{xi, x̂i}| ≤ Ri and

|{yi, ŷi}| ≤ Ri, the pair of functions
{

X, X̂
}

satisfies the following
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‖
{

X(t, x0, x1, ..., xn−1), X̂(t, x̂0, x̂1, ..., x̂n−1)
}

−
{

X(t, y0, y1, ..., yn−1), X̂(t, ŷ0, ŷ1, ..., ŷn−1)
}
‖ ≤ k0(

n−1∑
i=0

|{xi, x̂i} − {yi, ŷi}|)
(2.1)

, t ∈ [a, b].

We now define the operator N as following

Definition 2.1. D(N) = {{x, x̂} ∈ Hn−1[a, b]×Hn−1[a, b] : supt∈[a,b] |{xi, x̂i}| ≤
Ri,

i = 0, .., n− 2, ess.supt∈[a,b] |{xn−1, x̂n−1}| ≤ Rn−1}
N {x(t), x̂(t)} =

{
X(t, x(t), x1(t), ..., xn−1(t)), X̂(t, x̂0, x̂1, ..., x̂n−1)

}
for all t ∈

[a, b] for which |{xn−1, x̂n−1}| ≤ Rn−1

Clearly we can see that N {x, x̂} ∈ L2[a, b]× L2[a, b] for {x, x̂} ∈ D(N).
Now we develop an existential theory for the Nonlinear multipoint boundary value
problem(NL MBVP)

L {x, x̂} = N {x, x̂} (2.2)

Now we prove some inequalities useful in our analysis.
‖N {x, x̂} −N {y, ŷ}‖ =

‖
{

X(., x(.), x1(.), ..., xn−1(.)), X̂(., x̂(.), x̂1(.), ..., x̂n−1(.))
}

−
{

X(., y(.), y1(.), ..., yn−1(.)), X̂(., ŷ(.), ŷ1(.), ..., ŷn−1(.))
}
‖

≤ k0

∥∥(
∑n−1

i=0 |{xi, x̂i} − {yi, ŷi}|)
∥∥

≤ k0

(∑n−1
i=0 ‖{xi, x̂i} − {yi, ŷi}‖)

≤ k0{
√

b− a{∑n−2
i=0 supt∈[a,b] |{xi, x̂i} − {yi, ŷi}|}+

‖{xn−1, x̂n−1} − {yn−1, ŷn−1}‖}

≤ k0 ‖{x, x̂} − {y, ŷ}‖Hn[a,b]×Hn[a,b]

where ‖.‖Hn[a,b]×Hn[a,b] is the norm also on Hn−1[a, b]×Hn−1[a, b].

Thus for {x, x̂} , {y, ŷ} ∈ D(N) we have

‖N {x, x̂} −N {y, ŷ}‖ ≤ k0 ‖{x, x̂} − {y, ŷ}‖Hn[a,b]×Hn[a,b] (2.3)

Let

ρi
m = (supt∈[a,b]

∫ b

a

∣∣∣∣
(

∂iKm(t, s)

∂ti

)∣∣∣∣
2

ds)
1
2 , i = 0, 1, ..., n− 2 (2.4)

and

ρn−1
m = (

∫

a

b

∫ b

a

∣∣∣∣
(

∂n−1Km(t, s)

∂tn−1

)∣∣∣∣
2

dsdt)
1
2 (2.5)
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Noting that
∫ b

a

∣∣∣
(

∂iKm(t,s)
∂ti

)∣∣∣
2

ds)
1
2 is a monotone decreasing sequence for every t,

Dini’s theorem assures uniform convergence of this sequence to zeros m →∞ for
i = 0, 1, ..., n − 1. Thus ρi

m → 0 as m → ∞, i = 0, 1, ..., n − 1 and ρn−1
m → 0 as

m →∞.
So define

θm =
√

b− a(
n−2∑
i=0

ρi
m) + ρn−1

m (2.6)

θm = maxi=0,1,..,n−1ρ
i
m (2.7)

We observe that both θm, θm tend to zero as m → ∞. let X be the vector with
the pair of functions {x, x̂}. Then∥∥∥
∫ b

a
Km(., s)X(s)ds

∥∥∥
Hn[a,b]×Hn[a,b]

=

√
b− a

(∑n−2
i−0 supt∈[a,b]

∣∣∣
∫ b

a

(
∂iKm(t,s)

∂ti

)
X(s)ds

∣∣∣
)

+
∥∥∥
∫ b

a

(
∂n−1Km(t,s)

∂tn−1

)
X(s)ds

∥∥∥

≤ √
b− a

(
∑n−2

i=0

(
supt∈[a,b]

∣∣∣∣
∫ b

a

(
∂iKm(t,s)

∂ti

)2

ds

∣∣∣∣
) 1

2

‖X‖
)

+

(∫ b

a

∫ b

a

(
∂n−1Km(t,s)

∂tn−1

)2

dsdt

) 1
2

‖X‖
(by Schwartz inequality)
=

(√
b− a

(∑n−2
i=0 ρi

m

)
+ ρn−1

m

) ‖X‖
= θm ‖X‖
Hence for all X ∈ L2[a, b]× L2[a, b] we have

∥∥∥∥
∫ b

a

Km(., s)X(s)ds

∥∥∥∥
Hn[a,b]×Hn[a,b]

≤ θm ‖X‖ (2.8)

Also
µ(

∫ b

a
Km(., s)X(s)ds) = maxi=0,1..n−1supt∈[a,b]

∣∣∣
∫ b

a
∂iKm(t,s)

∂ti
X(s)ds

∣∣∣
≤ maxi=0,1..n−1(supt∈[a,b]

∫ b

a

∣∣∣∂iKm(t,s)
∂ti

∣∣∣
2

ds)
1
2 ‖X‖

(by Schwartz inequality)
= (maxi=0,1,..,n−1ρ

i
m) ‖X‖

(by it’s definition)
= θm ‖X‖
Therefore for X ∈ L2[a, b]× L2[a, b] we have

µ(

∫ b

a

Km(., s)X(s)ds) ≤ θm ‖X‖ (2.9)

2.2. Construction of Sets V and S0. Let us consider the Banach Space Hn−1[a, b]×
Hn−1[a, b]. We observe that the set H̃n−1[a, b] × H̃n−1[a, b] is a linear manifold

of Hn−1[a, b] ×Hn−1[a, b]. We remember the function µ defined on H̃n−1[a, b] ×
H̃n−1[a, b].
We consider the p+m− q dimensional space S0. Clearly S0 ⊂ D(L) ⊂ Hn[a, b]×
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Hn[a, b]. We chose {x0, x̂0} ∈ S0 such that β = µ({x0, x̂0}) < R where R =
mini=0,..,n−1Ri. Here Ris are the constants defined previously in the assump-
tions. Let {z0, ẑ0} = H(I − Pm)N {x0, x̂0}, and let e and e be real numbers such
that

‖{z0, ẑ0}‖Hn[a,b]×Hn[a,b] ≤ e, µ({z0, ẑ0}) ≤ e (2.10)

Let c, d, r and R be real numbers such that

0 < c < d, 0 < r < R, c + e < d, R + β ≤ R, r + e < R (2.11)

The sets V and S̃0 in H̃n−1[a, b]× H̃n−1[a, b] are defined as follows:

Definition 2.2. V = {{x, x̂} ∈
S0 : ‖{x, x̂} − {x0, x̂0}‖Hn[a,b]×Hn[a,b] ≤ c and µ({x, x̂}− {x0, x̂0}) ≤ r}

(2.12)

and S̃0 = {{x, x̂} ∈ H̃n[a, b]× H̃n[a, b] :

‖{x, x̂} − {x0, x̂0}‖Hn[a,b]×Hn[a,b] ≤ d and µ({x, x̂}−{x0, x̂0}) ≤ R}
(2.13)

We observe that V is a closed and bounded subset of L2[a, b] × L2[a, b]. In-
deed, let {{yk, ŷk}} be any sequence contained in V and let {{yk, ŷk}} converge
to {y, ŷ} in the topology of L2[a, b]× L2[a, b].
Firstly, we notice that {{yk, ŷk}} ∈ Hn[a, b] ×Hn[a, b]. Since S0 is finite dimen-
sional, the element {y, ŷ} ∈ S0. From the fact that the linear operators on a finite
dimensional space are bounded, it readily follows that {L {yk, ŷk}} converges to
L {y, ŷ} in the topology of S(i.e.L2[a, b]×L2[a, b]). Hence the sequence {{yk, ŷk}}
converges to {y, ŷ} in the topology of Hn[a, b]×Hn[a, b], which implies that the se-
quence {{yk, ŷk}} converges to {y, ŷ} in the topology of Hn−1[a, b]×Hn−1[a, b] and
µ ({yk, ŷk} − {y, ŷk}) → 0 as k →∞. Hence ‖{y, ŷ} − {x0, x̂0}‖Hn[a,b]×Hn[a,b] ≤ c
and
µ ({y, ŷ} − {x0, x̂0}) ≤ r. Thus {y, ŷ} ∈ V . Obviously V is a bounded subset of
L2[a, b]× L2[a, b]. Thus V is a closed and bounded subset of L2[a, b]× L2[a, b].

2.3. Operator T and sets A ({x∗, x̂∗}) and A. For each {x∗, x̂∗} ∈ V , let T be

the operator on S̃0 defined by

Definition 2.3.

T {x, x̂} = {x∗, x̂∗}+ H(I − Pm)N {x, x̂} (2.14)

for {x, x̂} ∈ S̃0.

We observe that T is well defined on S̃0.
For each {x∗, x̂∗} ∈ V , the set A ({x∗, x̂∗}) is defined by

Definition 2.4.

A ({x∗, x̂∗}) =
{
{x, x̂} ∈ S̃0 : {x, x̂} = T {x, x̂}

}
(2.15)
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We denote by A = ∪{x∗,x̂∗}∈V A ({x∗, x̂∗}).
Suppose A ({x∗, x̂∗}) is non-empty. Then {x, x̂} = T {x, x̂} = {x∗, x̂∗} + H(I −
Pm)N {x, x̂} for some X ∈ S̃0.
Clearly {x, x̂} ∈ D(L) and by Theorem 1.8 we have Qm {x, x̂} = {x∗, x̂∗}
Thus
L {x, x̂} = LQm {x, x̂}+ LH(I − Pm)N {x, x̂}
using parts of Theorem 1.8 we get
L {x, x̂} −N {x, x̂} = Pm (L {x, x̂} −N {x, x̂})
Hence {x, x̂} ∈ S̃0 is a solution of the nonlinear BVP if it satisfies th equation

Pm (L {x, x̂} −N {x, x̂}) (2.16)

This equation is called the bifurcation equation of order m.
We notice that L {x, x̂} −N {x, x̂} = Pm (L {x, x̂} −N {x, x̂}) on the set A pro-
vided A is non-empty. In the following sections we show that A ({x∗, x̂∗}) is
non-empty. Thus the original MBVP will be reduced to the equivalent bifurca-
tion equation (2.16) on the set A.

2.4. Reduction of the Original MBVP in to an Equivalent Bifurca-
tion Equation using the Schauder’s Fixed Point Theorem. The following
lemma is needed for our discussions in this section.

Lemma 2.5. Consider the Banach Spaces Hn[a, b] × Hn[a, b] and Hn−1[a, b] ×
Hn−1[a, b]. Let {xm, x̂m} be a bounded sequence in the space Hn[a, b]×Hn[a, b].Then
this sequence has a subsequence which converges in the topology of Hn−1[a, b] ×
Hn−1[a, b].

Lemma 2.6. Let all the assumptions stated at the starting of this section and

conditions (2.10), (2.11) be satisfied. Then the operator T : S̃0 → Hn[a, b] ×
Hn[a, b] is continuous.

Proof. From the above Lemma we have

T {x, x̂} = {x∗, x̂∗}+
∫ b

a
Km(., s) (N {x, x̂} (s)) ds for {x, x̂} ∈ D(N).

Suppose x and y ∈ S̃0. Then

T {x, x̂} − T {y, ŷ} =
∫ b

a
Km(., s) (N {x, x̂} (s)−N {y, ŷ} (s)) ds

So√
b− a

(∑n−1
i=0 supt∈[a,b]

∣∣∣(T {x, x̂} − T {y, ŷ})i (t)
∣∣∣
)

+ ‖(T {x, x̂} − T {y, ŷ})n‖
=
√

b− a
(∑n−1

i=0 supt∈[a,b]

∣∣∣
∫ b

a
∂iKm(t,s)

∂ti
(N {x, x̂} (s)−N {y, ŷ} (s)) ds

∣∣∣
)

+
∥∥∥
∫ b

a
∂nKm(.,s)

∂tn
(N {x, x̂} (s)−N {y, ŷ} (s)) ds

∥∥∥

≤ √
b− a

(
∑n−1

i=0

(
supt∈[a,b]

∫ b

a

(
∂iKm(t,s)

∂ti

)2

ds

) 1
2

)
‖N {x, x̂} (s)−N {y, ŷ}‖+

(∫ b

a

∫ b

a

(
∂nKm(t,s)

∂tn

)2

dsdt

) 1
2

‖N {x, x̂} (s)−N {y, ŷ}‖
This comes from the Schwartz’s inequality
=

(√
b− a

(∑n−1
i=0 ρi

m

)
+ ρn

m

) ‖N {x, x̂} (s)−N {y, ŷ}‖
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where

ρn
m =

(∫ b

a

∫ b

a

(
∂nKm(t,s)

∂tn

)2

dsdt

) 1
2

We clearly notice that ρn
m → 0 as m →∞.

Define
γm =

(√
b− a

(∑n−1
i=0 ρi

m

)
+ ρn

m

)
Then γm → 0 as m →∞.
Therefore from the above inequality we get that√

b− a
(∑n−1

i=0 supt∈[a,b]

∣∣∣(T {x, x̂} − T {y, ŷ})i (t)
∣∣∣
)

+ ‖T {x, x̂} − T {y, ŷ}‖
≤ γm ‖N {x, x̂} (s)−N {y, ŷ}‖
≤ γmk0 ‖{x, x̂} (s)− {y, ŷ}‖Hn[a,b]×Hn[a,b]

Hence the map T is continuous. ¤
Corollary 2.7. with all the assumptions in the previous theorem satisfied, the

map T : S̃0 → Hn−1[a, b]×Hn−1[a, b] is continuous.

Proof. The proof of the corollary follows from the above result and the fact that

‖T {x, x̂}‖Hn−1[a,b]×Hn−1[a,b] ≤
√

b− a
(∑n−1

i=0 supt∈[a,b]

∣∣∣(T {x, x̂} − T {y, ŷ})i (t)
∣∣∣
)
+

‖(T {x, x̂} − T {y, ŷ})n‖ ¤
In addition to the previous assumptions, only for the present case we assume

that |{x, x̂}| ≤ K0. Thus for {x, x̂} ∈ S̃0 we have
|N {x, x̂}| ≤ k0 and hence

‖N {x, x̂}‖ ≤ k0

√
b− a (2.17)

Lemma 2.8. Suppose all the assumptions of this section and (2.10), (2.11),(2.17)

are satisfied. Then the set T (S̃0) is relatively compact in Hn[a, b]×Hn[a, b].

Proof. Firstly we observe that T (S̃0) is bounded in Hn[a, b]×Hn[a, b].

Indeed, let {x, x̂} ∈ S̃0. Then we have

T {x, x̂} = {x∗, x̂∗}+
∫ b

a
Km(., s) [N {x, x̂}] ds

Therefore√
b− a

(∑n−1
i=0 supt∈[a,b]

∣∣∣(T {x, x̂})i (t)
∣∣∣
)

+ ‖(T {x, x̂})n‖
≤ √

b− a
(∑n−1

i=0 supt∈[a,b]

∣∣∣({x∗, x̂∗})i (t)
∣∣∣
)

+ ‖({x∗, x̂∗})n‖+
√

b− a
(∑n−1

i=0 supt∈[a,b]

∣∣∣
∫ b

a
∂iKm(t,s)

∂ti
[N {x, x̂} (s)] ds

∣∣∣
)

+∥∥∥
∫ b

a
∂nKm(t,s)

∂tn
[N {x, x̂} (s)] ds

∥∥∥
then, by a simple calculation as in the previous proof, we get

√
b− a

(∑n−1
i=0 supt∈[a,b]

∣∣∣(T {x, x̂})i (t)
∣∣∣
)

+ ‖(T {x, x̂})n‖
≤ √

b− a
(∑n−1

i=0 supt∈[a,b]

∣∣∣({x∗, x̂∗})i (t)
∣∣∣
)

+ ‖({x∗, x̂∗})n‖+ γm ‖N {x, x̂}‖
≤ √

b− a
(∑n−1

i=0 supt∈[a,b]

∣∣∣({x∗, x̂∗})i (t)
∣∣∣
)

+ ‖({x∗, x̂∗})n‖+ γmk0

√
b− a

We notice that the right hand side of the above inequality is independent of
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{x, x̂}. Therefore the set T (S̃0) is bounded in Hn[a, b]×Hn[a, b]. Hence from the

Lemma 2.5, the set T (S̃0) is relatively compact in Hn−1[a, b] × Hn−1[a, b]. This
completes the proof. ¤

We now present a theorem which reduces the original MBVP to an equivalent
bifurcation equation by making use of the Schauder’s fixed point theorem.

Theorem 2.9. Let all the assumptions in this section and conditions (2.10),
(2.11) and (2.17) be true. Let m be sufficiently large such that

c ≤ d− θmk0

√
b− a, r ≤ R− θmk0

√
b− a (2.18)

Then for each {x∗, x̂∗} ∈ V the set A({x∗, x̂∗}) is non-empty. Moreover L {x, x̂}−
N {x, x̂} = Pm(L {x, x̂} −N {x, x̂}) on the set A.

Proof. By (2.15), it is enough to show that the map T corresponding to {x∗, x̂∗} ∈
V has a fixed point in S̃0. We have seen in the previous theorems that the map

T is continuous and the set T (S̃0) is relatively compact in Hn−1[a, b]×Hn−1[a, b].

We now prove that T (S̃0) ⊂ S̃0

Let {x, x̂} ∈ S̃0, then T {x, x̂} ∈ Hn[a, b]×Hn[a, b] and

T {x, x̂} = {x∗, x̂∗}+
∫ b

a
Km(., s) [N {x, x̂} (s)] ds

Therefore
T {x, x̂} − {x0, x̂0} = {x∗, x̂∗} − {x0, x̂0}+

∫ b

a
Km(., s) [N {x, x̂} (s)] ds

Hence
‖T {x, x̂} − {x0, x̂0}‖Hn[a,b]×Hn[a,b] = ‖{x∗, x̂∗} − {x0, x̂0}‖Hn[a,b]×Hn[a,b]

+
∥∥∥
∫ b

a
Km(., s) [N {x, x̂} (s)] ds

∥∥∥
Hn[a,b]×Hn[a,b]

≤ c + θm ‖N {x, x̂}‖
≤ c + θmk0

√
b− a

≤ d
Also
µ(T {x, x̂} − {x0, x̂0}) ≤ µ({x∗, x̂∗} − {x0, x̂0}) + µ(

∫ b

a
Km(., s) [N {x, x̂}] ds)

≤ r + θm ‖N {x, x̂}‖
≤ r + θmk0

√
b− a

≤ R
Thus T (S̃0) ⊂ S̃0

We also observed that S̃0 is a closed, bounded and convex subset of Hn−1[a, b]×
Hn−1[a, b]. Hence the application of Schauder’s fixed point theorem to the pair S̃0

and T yields that the map T has a fixed point in S̃0. Moreover, since A({x∗, x̂∗})
is non-empty. So, thus we have the desired reduction on the non-empty set A.

So, We notice that L {x, x̂} − N {x, x̂} = Pm (L {x, x̂} −N {x, x̂}) on the set
A since A is non-empty. ¤
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