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SECOND ORDER CONVERSE DUALITY FOR NONLINEAR
PROGRAMMING

I. AHMAD1,† AND RAVI P. AGARWAL1,‡∗

Abstract. Chandra and Abha [European J. Oper. Res. 122 (2000), 161-165]
considered a nonlinear programming problem over cone constraints and pre-
sented the correct forms of its four types of duals formulated by Nanda and
Das [European J. Oper. Res. 88 (1996) 572-577]. Yang et al. [Indian J. Pure
Appl. Math. 35 (2004), 699-708] considered the same problem and discussed
weak and strong duality for its four types of second order duals under the
assumptions of generalized second order F-convexity. In this paper, we are
intended to prove converse duality theorems for second order duals of Yang et
al.

1. Introduction

Nanda and Das [3] considered the following nonlinear programming problem
with cone constraints:

Problem (P)
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Minimize f(x)

subject to g(x) ∈ C∗
2

x ∈ C1,

and formulated four types of dual models associated to (P). Chandra and Abha [2]
removed certain omissions and inconsistencies in the dual formulations of Nanda
and Das [3]; they presented following correct forms of these duals as follows:
Problem (D1)

Maximize f(u) + ytg(u)− ut∇(f + ytg)(u)

subject to −∇(f + ytg)(u) ∈ C∗
1 ,

y ∈ C2.

Problem (D2)

Maximize f(u)

subject to −∇(f + ytg)(u) ∈ C∗
1 ,

ytg(u)− ut∇(f + ytg)(u) ≥ 0,

y ∈ C2.

Problem (D3)

Maximize f(u)− ut∇(f + ytg)(u)

subject to −∇(f + ytg)(u) ∈ C∗
1 ,

ytg(u) ≥ 0,

y ∈ C2.

Problem (D4)

Maximize f(u) + ytg(u)

subject to −∇(f + ytg)(u) ∈ C∗
1 ,

ut∇(f + ytg)(u) ≤ 0,
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y ∈ C2.

In continuation with the weak and strong duality theorems proved by Chan-
dra and Abha [2], Yang et al. [5] established the converse duality theorems
between (P) and (D1), (D2), (D3) and (D4), respectively. In [4], Yang et al. con-
structed following four types of second order duals associated to (P), which are
obviously the second order extension of above duals (i.e., (D1), (D2), (D3) and
(D4)). In order to relate (P) with (ND1), (ND2), (ND3) and (ND4), they proved
weak and strong duality theorems under generalized second order F-convexity
assumptions. But, the converse duality was not dealt in their treatment.

Problem (ND1)

Maximize f(u) + ytg(u)− 1
2
pt∇2(f(u) + ytg(u))p

−ut[∇(f(u) + ytg(u)) +∇2(f(u) + ytg(u))p]

subject to −[∇(f(u) + ytg(u)) +∇2(f(u) + ytg(u))p] ∈ C∗
1 ,

y ∈ C2.

Problem (ND2)

Maximize f(u)− 1
2
pt∇2f(u)p

subject to −[∇(f(u) + ytg(u)) +∇2(f(u) + ytg(u))p] ∈ C∗
1 ,

ytg(u)− 1
2
pt∇2ytg(u)p− ut[∇(f(u) + ytg(u)) +∇2(f(u) + ytg(u))p] ≥ 0,

y ∈ C2.

Problem (ND3)

Maximize f(u)− 1
2
pt∇2f(u)p− ut[∇(f(u) + ytg(u)) +∇2(f(u) + ytg(u))p]

subject to −[∇(f(u) + ytg(u)) +∇2(f(u) + ytg(u))p] ∈ C∗
1 ,

ytg(u)− 1
2
pt∇2ytg(u)p ≥ 0,

y ∈ C2.

Problem (ND4)

Maximize f(u) + ytg(u)− 1
2
pt∇2(f(u) + ytg(u))p
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subject to −[∇(f(u) + ytg(u)) +∇2(f(u) + ytg(u))p] ∈ C∗
1 ,

ut[∇(f(u) + ytg(u)) +∇2(f(u) + ytg(u))p] ≤ 0,

y ∈ C2.
The purpose of this paper is to establish converse duality theorems between

(P) and (ND1), (ND2), (ND3) and (ND4), respectively by invoking weak duality
(Theorems 1-4 in [4]).

2. Notations and preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+ be its nonnegative or-

thant. We now have the following definitions.

Definition 1. A set C of Rn is called a cone, if for each x ∈ C and λ ≥ 0, λx ∈ C.
Moreover, if C is convex, then it is convex cone.

Definition 2. C∗ = {z ∈ Rn | ztx ≤ 0, for all x ∈ C} is called the polar of the
cone C.

Let C1 ⊂ Rn, C2 ⊂ Rm be closed convex cones with nonempty interiors hav-
ing polars C∗

1 and C∗
2 , respectively. Let S ⊆ Rn be open and C1 ⊆ S and let

f : S → R and g : S → Rm be twice differentiable functions.

For other notations and preliminaries, we refer to Yang et al. [4].

3. Second order converse duality

In this section, we prove the following converse duality theorems for (ND1),
(ND2), (ND3), and (ND4) respectively:

Theorem 1 (Converse duality). Let (ū, ȳ) be a local or global optimal solution
of (ND1). Let

(i) the n× n Hessian matrix ∇2(f(ū) + ȳtg(ū)) is nonsingular, and
(ii) the vector p̄t∇(∇2f(ū)p̄ +∇2ȳtg(ū)p̄) = 0 implies p̄ = 0.

Then ū is a feasible solution of (P) and the objective values of (P) and (ND1) are
equal.

Also, if the hypotheses of weak duality (Theorem 1 in [4]) are satisfied for
all feasible solutions of (P) and (ND1), then ū is an optimal solution of (P).

Proof. Since (ū, ȳ) is a local or global optimal solution of (ND1), then by the
Fritz John conditions [1], there exist α ∈ R+ and β ∈ C1 such that for each y ∈ C2

(β − αū)t[∇2f(ū) +∇2ȳtg(ū) +∇(∇2f(ū)p̄ +∇2ȳtg(ū)p̄)]
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−1
2
αp̄t∇(∇2f(ū)p̄ +∇2ȳtg(ū)p̄)− α[∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0, (1)

[α(g(ū)− 1
2
p̄t∇2g(ū)p̄) + (β − αū)t[∇g(ū) +∇2g(ū)p̄]]t(y− ȳ) ≤ 0, ∀ y ∈ C2, (2)

(β − αū− αp̄)t[∇2f(ū) +∇2ȳtg(ū)] = 0, (3)

βt[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0, (4)

(α, β) 6= 0. (5)

Since ∇2(f(ū) + ȳtg(ū)) is nonsingular, we have from (3)

β = αū + αp̄. (6)

We claim that α 6= 0. Indeed, if α = 0, then from (6), β = 0. Thus (α, β) = 0, a
contradiction to (5). Hence α > 0.

Using (6) in (1), we get

1

2
αp̄t∇(∇2f(ū)p̄ +∇2ȳtg(ū)p̄) = 0,

which along with assumption (ii) and α > 0 implies p̄ = 0. When p̄ = 0, (6)
reduces to

β = αū. (7)

Therefore, we have

ū =
β

α
∈ C1. (8)

Using (7) in (2) along with α > 0, and p̄ = 0, we have

[g(ū)]t(y − ȳ) ≤ 0, ∀ y ∈ C2. (9)

Let y ∈ C2. Then y + ȳ ∈ C2, as C2 is a closed convex cone, and so (9) shows
that for every y ∈ C2, ytg(ū) ≤ 0,

which implies

g(ū) ∈ C∗
2 . (10)

Thus, from (8) and (10), it follows that ū is feasible for (P). Also, by letting y = 0
and y = 2ȳ, simultaneously in (9), we get

ȳtg(ū) = 0. (11)

From (4), (7), (11), p̄ = 0 and α > 0, it follows that

f(ū) = f(ū) + ȳtg(ū)− 1

2
p̄t∇2(f(ū) + ȳtg(ū))p̄

−ūt[∇(f(ū) + ȳtg(ū)) +∇2(f(ū) + ȳtg(ū))p̄].

That is, the objective values of (P) and (ND1) are equal. The optimality of ū for
(P) thus follows from weak duality (Theorem 1 in [4]).
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Theorem 2 (Converse duality). Let (ū, ȳ) be a local or global optimal solution
of (ND2). Let

(i) either (a) ∇2f(ū) is positive definite and p̄t∇f(ū) ≥ 0 or (b) ∇2f(ū) is
negative definite and p̄t∇f(ū) ≤ 0,

(ii) the vectors {[∇2f(ū)]j, [∇2ȳtg(ū)]j, j = 1, 2, . . . , n} are linearly indepen-
dent, where [∇2f(ū)]j is the jth row of ∇2f(ū) and [∇2ȳtg(ū)]j is the jth

row of ∇2ȳtg(ū), and
(iii) ∇f(ū) 6= 0.

Then ū is a feasible solution of (P) and the objective values of (P) and (ND2) are
equal.

Also, if the hypotheses of weak duality (Theorem 2 in [4]) are satisfied for
all feasible solutions of (P) and (ND2), then ū is an optimal solution of (P).

Proof. Since (ū, ȳ) is a local or global optimal solution of (ND2), then by the
Fritz John conditions [1], there exist α ∈ R+, β ∈ C1 and λ ∈ R+ such that for
each y ∈ C2

(β − λū)t[∇2f(ū) +∇2ȳtg(ū) +∇(∇2f(ū)p̄ +∇2ȳtg(ū)p̄)]− 1
2
αp̄t∇(∇2f(ū)p̄)

−1
2
λp̄t∇(∇2ȳtg(ū)p̄)− λp̄t[∇2f(ū) +∇2ȳtg(ū)] + (α− λ)∇f(ū) = 0, (12)

[λ(g(ū)− 1
2
p̄t∇2g(ū)p̄)+ (β−λū)t[∇g(ū)+∇2g(ū)p̄]]t(y− ȳ) ≤ 0, ∀ y ∈ C2, (13)

(β − λū− αp̄)t∇2f(ū) + (β − λū− λp̄)t∇2ȳtg(ū) = 0, (14)

βt[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0, (15)

λ[ȳtg(ū)− 1
2
p̄t∇2ȳtg(ū)p̄− ūt[∇(f(ū) + ȳtg(ū)) +∇2(f(ū) + ȳtg(ū))p̄]] = 0, (16)

(α, β, λ) 6= 0. (17)

Because of assumption (ii), (14) gives

β = λū + αp̄, (18)

β = λū + λp̄. (19)

Using (18) and (19) in (12), we get

1

2
(β − λū)t[∇(∇2f(ū)p̄ +∇2ȳtg(ū)p̄)] + (α− λ)∇f(ū) = 0. (20)

Let α = 0. Then, from (18), we have β = λū, and therefore (20) yields

(α− λ)∇f(ū) = 0,

which on using assumption (iii) gives λ = α = 0, and therefore, we have β = 0.
Thus, (α, β, λ) = 0, a contradiction to (17). Hence, α > 0.
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Letting y = 0 and y = 2ȳ, simultaneously in (13), we get

λ[ȳtg(ū)− 1

2
p̄t∇2ȳtg(ū)p̄] + (β − λū)t[∇ȳtg(ū) +∇2ȳtg(ū)p̄] = 0. (21)

From (15) and (16), it follows that

(β−λū)t[∇f(ū)+∇ȳtg(ū)+∇2f(ū)p̄+∇2ȳtg(ū)p̄]+λ[ȳtg(ū)− 1

2
p̄t∇2ȳtg(ū)p̄] = 0.

(22)
Subtracting (21) from (22) to get

(β − λū)t[∇f(ū) +∇2f(ū)p̄] = 0,

which on using (18) along with α > 0 yields

p̄t[∇f(ū) +∇2f(ū)p̄] = 0. (23)

We claim that p̄ = 0. Otherwise, either (a) or (b) of assumption (i) implies

p̄t[∇f(ū) +∇2f(ū)p̄] 6= 0,

contradicting (23). Hence p̄ = 0. So (18) and (19) give

β = λū. (24)

This together with (20), α > 0 and using hypothesis (iii) yields λ = α > 0.
Therefore, it follows from (24) that

ū =
β

λ
∈ C1. (25)

Using (24) in (13) with λ > 0 and p̄ = 0, we get

[g(ū)]t(y − ȳ) ≤ 0, ∀ y ∈ C2. (26)

Let y ∈ C2. Then y + ȳ ∈ C2, as C2 is a closed convex cone and so (26) shows
that for every y ∈ C2, ytg(ū) ≤ 0, which implies

g(ū) ∈ C∗
2 . (27)

Thus, from (25) and (27), it follows that ū is feasible for (P). Since p̄ = 0, we
have

f(ū) = f(ū)− 1

2
p̄t∇2f(ū)p̄.

That is, the objective values of (P) and (ND2) are equal. Optimality of ū for (P)
thus follows from weak duality (Theorem 2 in [4]).

Theorem 3 (Converse duality). Let (ū, ȳ) be a local or global optimal solution
of (ND3). Let

(i) either (a) ∇2ytg(ū) is positive definite and p̄t∇ytg(ū) ≥ 0 or (b) ∇2ytg(ū)
is negative definite and p̄t∇ytg(ū) ≤ 0,

(ii) the vectors {[∇2f(ū)]j, [∇2ȳtg(ū)]j, j = 1, 2, . . . , n} are linearly indepen-
dent, where [∇2f(ū)]j is the jth row of ∇2f(ū) and [∇2ȳtg(ū)]j is the jth

row of ∇2ȳtg(ū), and
(iii) ∇ytg(ū) 6= 0.
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Then ū is a feasible solution of (P) and the objective values of (P) and (ND3) are
equal.

Also, if the hypotheses of weak duality (Theorem 3 in [4]) are satisfied for
all feasible solutions of (P) and (ND3), then ū is an optimal solution of (P).

Proof. Since (ū, ȳ) is a local or global optimal solution of (ND3), then by the
Fritz John conditions [1], there exist α ∈ R+, β ∈ C1 and λ ∈ R+ such that for
each y ∈ C2

(β − αū)t[∇2f(ū) +∇2ȳtg(ū) +∇(∇2f(ū)p̄ +∇2ȳtg(ū)p̄)]− 1
2
αp̄t∇(∇2f(ū)p̄)

−1
2
λp̄t∇(∇2ȳtg(ū)p̄)− αp̄t[∇2f(ū) +∇2ȳtg(ū)] + (λ− α)∇ytg(ū) = 0, (28)

[λ(g(ū)− 1
2
p̄t∇2g(ū)p̄)+ (β−αū)t[∇g(ū)+∇2g(ū)p̄]]t(y− ȳ) ≤ 0, ∀ y ∈ C2, (29)

(β − αū− αp̄)t∇2f(ū) + (β − αū− λp̄)t∇2ȳtg(ū) = 0, (30)

βt[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0, (31)

λ[ȳtg(ū)− 1
2
p̄t∇2ȳtg(ū)p̄] = 0, (32)

(α, β, λ) 6= 0. (33)

Because of assumption (ii), (30) gives

β = αū + αp̄, (34)

β = αū + λp̄. (35)

Using (34) and (35) in (28), we get

1

2
(β − αū)t[∇(∇2f(ū)p̄ +∇2ȳtg(ū)p̄)] + (λ− α)∇f(ū) = 0. (36)

Let λ = 0. Then, from (35), we have β = αū, and therefore (36) yields

(λ− α)∇ȳtg(ū) = 0,

which on using assumption (iii) gives α = λ = 0, and therefore, we have β = 0.
Thus, (α, β, λ) = 0, a contradiction to (33). Hence, λ > 0.

Letting y = 0 and y = 2ȳ, simultaneously in (29), we get

λ[ȳtg(ū)− 1

2
p̄t∇2ȳtg(ū)p̄] + (β − αū)t[∇ȳtg(ū) +∇2ȳtg(ū)p̄] = 0. (37)

Subtracting (32) from (37) to get

(β − αū)t[∇ȳtg(ū) +∇2ȳtg(ū)p̄] = 0,

which on using (35) along with λ > 0 yields

p̄t[∇ȳtg(ū) +∇2ȳtg(ū)p̄] = 0. (38)
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We claim that p̄ = 0. Otherwise, either (a) or (b) of assumption (i) implies

p̄t[∇ȳtg(ū) +∇2ȳtg(ū)p̄] 6= 0,

contradicting (38). Hence p̄ = 0. So (34) and (35) give

β = αū. (39)

This together with (36), λ > 0 and using hypothesis (iii) yields α = λ > 0.
Therefore, it follows from (39) that

ū =
β

α
∈ C1. (40)

Using (39) in (29) with λ > 0 and p̄ = 0, we get

[g(ū)]t(y − ȳ) ≤ 0, ∀ y ∈ C2. (41)

Let y ∈ C2. Then y + ȳ ∈ C2, as C2 is a closed convex cone and so (41) shows
that for every y ∈ C2, ytg(ū) ≤ 0, which implies

g(ū) ∈ C∗
2 . (42)

Thus, from (40) and (42), it follows that ū is feasible for (P). Also, from (31),
(39), α > 0 and p̄ = 0, we have

f(ū) = f(ū)− 1

2
p̄t∇2f(ū)p̄− ūt[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄].

That is, the objective values of (P) and (ND3) are equal. Optimality of ū for (P)
thus follows from weak duality (Theorem 3 in [4]).

Theorem 4 (Converse duality). Let (ū, ȳ) be a local or global optimal solution
of (ND4). Let

(i) either (a) ∇2(f(ū)+ȳtg(ū)) is positive definite and p̄t∇(f(ū)+ȳtg(ū)) ≥ 0
or (b) ∇2(f(ū) + ȳtg(ū)) is negative definite and p̄t∇(f(ū) + ȳtg(ū)) ≤ 0,
and

(ii) ∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄ 6= 0.

Then ū is a feasible solution of (P) and the objective values of (P) and (ND4) are
equal.

Also, if the hypotheses of weak duality (Theorem 4 in [4]) are satisfied for
all feasible solutions of (P) and (ND4), then ū is an optimal solution of (P).

Proof. Since (ū, ȳ) is a local or global optimal solution of (ND2), then by the
Fritz John conditions [1], there exist α ∈ R+, β ∈ C1 and λ ∈ R+ such that for
each y ∈ C2

(β − λū)t[∇2f(ū) + ∇2ȳtg(ū) + ∇(∇2f(ū)p̄ + ∇2ȳtg(ū)p̄)] − 1
2
αp̄t∇(∇2f(ū)p̄ +

∇2ȳtg(ū)p̄)

−λp̄t[∇2f(ū) +∇2ȳtg(ū)] + (α− λ)[∇f(ū) +∇ȳtg(ū)] = 0, (43)
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[α(g(ū)− 1
2
p̄t∇2g(ū)p̄)+ (β−λū)t[∇g(ū)+∇2g(ū)p̄]]t(y− ȳ) ≤ 0, ∀ y ∈ C2, (44)

(β − λū− αp̄)t[∇2f(ū) +∇2ȳtg(ū)] = 0, (45)

βt[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0, (46)

λūt[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0, (47)

(α, β, λ) 6= 0. (48)

By assumption (i),∇2(f(ū) + ȳtg(ū)) is obviously nonsingular, and so (45) gives

β = λū + αp̄, (49)

We laim that α 6= 0. Indeed , if α = 0, we have

β = λū

which along with (43) implies

λ[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0.

On using assumption (ii), we have λ = 0, and therefore β = 0. Thus, (α, β, λ) = 0,
a contradiction to (48). Hence, α > 0.

From (46) and (47), we have

(β − λū)t[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0,

which on using (49) along with α > 0 yields

pt[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0. (50)

We claim that p̄ = 0. Otherwise, either (a) or (b) of assumption (i) implies

pt[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] 6= 0,

contradicting (50). Hence p̄ = 0. So (49)gives

β = λū (51)

Equation (43) together with (51) and p̄ = 0 implies

(α− λ)[∇f(ū) +∇ȳtg(ū) +∇2f(ū)p̄ +∇2ȳtg(ū)p̄] = 0,

which on using assumption (ii) implies λ = α > 0. Therefore, it follows from (51)
that

ū =
β

λ
∈ C1. (52)

Using (51) in (44) with α > 0 and p̄ = 0, we have

[g(ū)]t(y − ȳ) ≤ 0, ∀ y ∈ C2. (53)

Let y ∈ C2. Then y + ȳ ∈ C2, as C2 is a closed convex cone and so (53) shows
that for every y ∈ C2, ytg(ū) ≤ 0, which implies

g(ū) ∈ C∗
2 . (54)
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Thus, from (52) and (54), it follows that ū is feasible for (P). Also, by letting
y = 0 and y = 2ȳ, simultaneously in (53), we get

ȳtg(ū) = 0. (55)

From (55) and p̄ = 0, it follows

f(ū) = f(ū) + ȳtg(ū)− 1

2
p̄t(∇2f(ū) +∇2ȳtg(ū))p̄.

That is, the objective values of (P) and (ND4) are equal. Optimality of ū for (P)
thus follows from weak duality (Theorem 4 in [4]).

Conclusion

From the applications point of view of second order duality that it provides
tighter bounds than first order duality, the second order weak and strong duality
results for more general problems with cone constraints discussed in [4] are very
useful, but the converse duality theorems, which are the important part of duality
relationships between primal and dual problems, are missing there. In this paper,
we are intended to fill this gap by establishing converse duality theorems for four
types of second order duals formulated in [4], however, we invoke the weak duality
theorems proved therein.
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