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GLOBAL EXISTENCE AND L* ESTIMATES OF SOLUTIONS
FOR A QUASILINEAR PARABOLIC SYSTEM

JUN ZHOU *

ABSTRACT. In this paper, we study the global existence, L estimates and
decay estimates of solutions for the quasilinear parabolic system u; = V -
(IVu|"™Vu)+ f(u,v), vy = V- (|Vo|"Vv) 4 g(u, v) with zero Dirichlet boundary
condition in a bounded domain Q C RY.

1. INTRODUCTION

In this paper, we are concerned with the global existence, L> estimates and
decay estimates of solutions for the quasilinear parabolic system

up =V - (|Vul|"Vu) + f(u,v), reQ, t>0,
vy =V - (|Vu|"Vo) + g(u,v), reQ, t>0, (1.1)
u(z,0) = ug(x), v(x,0)=wvy(z), x €,
u(z,t) =v(x,t) =0, x € 0f),

where € is a bounded domain in RY(N > 1) with smooth boundary 9Q and
m,n > 0.

For m =n = 0, f(u,v) = u*?, g(u,v) = ul? and ug(x), vo(z) > 0, the prob-
lem (1.1) has been investigated extensively and the existence and nonexistence
of solutions for (1.1) are well understood (see [3, /5, 6, 13] and the references
cited there). We summarize some of the results. Suppose that the initial data
up(z), vo(x) > 0 and ug, vy € L>*(Q2). Then
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(Al)letaw>1or B> 1orsy=(l—a)(l—0)—pg<0. Problem (L.1) admits
a global solution for small initial data and the solution for (1.1) must blow up in
finite time for large initial data;

(A2) all solutions of (1.1) are global if o, 5 < 1 and sq > 0.

The case m > 0 for the single equation

u =V - (|Vu|"Vu) + f(z,u), reQ, t>0,
u(z,0) = ug(x), x € €, (1.2)
u(x,t) =0, x € 0N}

has been widely investigated in [1} 2, [4, [7, 9, 11, 12] and the references therein.
But the problem (1.1) is not considered sufficiently and there seems to be little
results on global existence, L estimates and blow-up of solutions for (1.1).

In this paper we are interested in extending the previous results A1 and A2 for
m =n =0 tom,n > 0. We consider problem (I.I) for general initial data (try
to be more specific here) and obtain sufficient conditions for the global existence
of solutions. Furthermore, we obtain L*° and decay estimates for solutions of
(1.1), that give the behavior of solutions as ¢ — 0 and ¢t — oo. Our method,
very different from that on the basis of comparison principle used in [3] 5, 6, 13|
14 15, 16], is based on a priori estimates and an improved Moser’s technique
as in [2, 10]. In contrast with other results (which results [2, 4, 7, 9, 11]), our
initial data ug, vy is neither restricted to be bounded nor nonnegative. To drive
the L™ estimates for solutions of (1.1), we must treat carefully the parameters
m,n,p,q, and ﬁ

Definition 1.1. A pair of functions (u(z,t),v(z,t)) is a global weak solution
of (L) if (u(z, 1), v(a, 1)) € (LFS ((0,00), W () 1 LI (R, WE(9))

loc
x (L2, ((0, 00), Wy ™ Q) N Lt (R, W, "*1(Q))) and the following equalities

/ot /Q {—uer + [Vu["VuVe — f(u,v)p} drdt
= [ tualorpte.0) — utr.O1p(o, 1))

(Aié{—“%+¢VUPVUV¢_QQM@¢}@ﬂt
= [ folepte.0) - ute, (a0} o

are valid for any t > 0 and ¢ € C* (RT,Cj(Q)), where R = [0, 00).
Our results read as follows.

Theorem 1.2. Suppose that
(Hy) The functions f(u,v),g(u,v) € C°(R?) N C*(R*\(0,0)) and

[f(u, )l < Kalul* o, Jg(u,v)| < Falul?v]?,  (u,v) € R?, (1.3)
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where the parameters o, 3,p, q satisfy
0<a<l+m, 0<B<1+n; mn,pq>0; (1.4)
s=(m+1—a)n+1—-03)—pg>0.
(Hy) uo(z) € LP(Q), vo(x) € L®(Q) with
po > max{l,¢g+1—a}, ¢ >max{l,p+1-—/7}.
Then problem (1.1) admits a global weak solution u(x,t),v(x,t) which satisfies
we L® (RY, I7(Q)), wve L™ (R, LY(Q))
and the following estimates hold for any T > 0
lulle <t ol <CE°, 0<t<T, (15)

a3 + [ol|its < C (#7177 ¢t 20rede g =2athley g <t < T, (1.6)

where € = C(T, |l [V]), & = min { o Y )

po(m+2)+mN’ go(n+2)+nN

Theorem 1.3. Suppose s < 0. Then there exist py,qo > 1, dg > 0 such that
if up(z) € LP(QQ), vo(z) € LL(Q) and ||uollp, + llvollgy < do the problem (1.1)
admits a global weak solution (u(x,t),v(x,t)) that

u(z,t) € L, ((0,00), Wy ™ () N L (RY, Wy ™ (Q)) (1.7)

loc

v(z,t) € Ly, ((0,00), W™ H(Q)) N Lt (BT, Wy ™))
satisfying
lullpy < CU+77, oy < CU+1)77, 20, (18)
where ¥ = min{m/py,n/qo}-
To derive Theorem [1.2/ and [1.3, we will use the following lemmas.

Lemma 1.4. [9] Let 3 > 0, N >p > 1, +1 < q,and 1 < r < q <
+1)Np/(N = p). Then for |ul’u € WHP(Q), we have
(8+1)Np/(N —p) ;
lullg < D |20 [Juf P 57,

with 0 = (B+1)(r ' —¢ 1)/(N"P=pt+ (B4 1)r 1), where C is a constant
depending only on N,p and r.

Lemma 1.5. [11] Let y(t) be a nonnegative differentiable function on (0,T] sat-
1sfying
Y'(t) + ATy (t) < BtRy(t) + O
with A,0 >0,\0>1, B,C >0, k<1. Then we have
y(t) < AV92A 4 2BTVMYVor2 L 20N+ BTV F)" 119 0<t<T

This paper is organized as follows. In Section 2, we apply Lemmas [1.4/ and 1.5
to establish L> estimates for solutions of problem (1.I). The proof of Theorem
1.3 will be given in Section 3.
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2. PROOF OF THEOREM /1.2

For j = 1,2,... , we choose fj(u,v),g;(u,v) € C* in such a way f;(u,v) =
f(u,v),gi(u,v) = g(u,v) when u? +v* > 572, | f;(u,v)| < n,]g;(u,v)] < n when
u? +v? < j72 with some n > 0 and (f;(u,v),g;(u,v)) — (f(u,v),g(u,v)) uni-
formly in R? as j — oo.

Let (ugj,v0;) € C3(Q) and ug; — ug in LF2(), v ; — v in LP(Q) as j — oo.
We consider the approximate problem of (1.1)

up =V - ((|Vul? + 57)™2Vu) + f;(u,v), e, t>0,
vy =V - (V]2 4+ 57H2V0) + g;(u,v), req, t>0, (2.1)
u(z,0) = upj(z), v(z,0)=1;(z), x €,
u(z,t) =v(x,t) =0, x € 01,

The problem (2.1) is a standard quasilinear parabolic system and admits a unique
smooth solution (u;(z,t),v;(z,t)) on [0,T) for each j = 1,2, ..., see [7, §]. Fur-
thermore, if T' < 0o, then

tmsup (- £) o+ 03, B)llc) = +00.

In the sequel, we will always write (u,v) instead of (u;,v;) and (u”,vP) for
(JulP~tu, |v|P~tv) where p > 0. Also, let C' and C; be the generic constants
independent of j and p changeable from line to line.

Lemma 2.1. Let (Hy) and (Hs) hold. If (u(x,t),v(x,t)) is the solution of problem
(2.1). Then u € L™ (R™,L*(Q)), v € L>® (RT, LY(Q)).

Proof. Let py,qo > 1. Multiplying the first equation in (2.1) by |u[Po~2u, we
obtain that

(po — 1)(m +2) 2 2t 5 < / -2
Vo mre |2 < (u, v) | ude. (2.2
(po + m)m+2 | [ o fi(u,v)ul (2.2)

1d
= 21110
Sl +
Notice that
[ fitw ol ude < ng P19]+ € [ fuf o, (2.3
0 Q

Similarly, we have

(go — 1)(n + 2)"+? atn
(@ + )+ | Vo iz ||t (2.4)

< pj' |0 + O, / o]0 ufod,
Q

1d
_ q0
et e

with Cl, Cy > 0.
By Young’s inequality, we obtain

) pp1 U P27y U q91 v Pq2
jaPop + Juleop < 17 LT L™ o™ (25)
D1 D2 q1 q2
where y =a+py—1,p=0+q — 1, to = vp —pqg > 0 and
to to to to
m=—-1P=—F— (1= F——, 2= —F—— (2.6)
p(y—q) v(p—p) q(p —p) p(y —q)
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The assumption (Hs) on pg, qo and (1.4) imply that pp; < qo + 1,90 < po + m.
Thus we have from (2.2)-(2.5) and a Sobolev’s inequality that

d —m m —n n
= (el + vlE) + Cs (po ™ 7o + a0 "INl ) (2.7)

< n|Q| (pojlfpo + QOjlqu) + 04/ (Jul? + |[v[FPr) dx.
Q

Using Young’s inequality and letting j — oo in (2.7), we conclude that

d m n
(Il + o) +Cs (el + lilars) < © 29
and
d Po q0 Po qo)1te
— (NullB + (lvll©) + C6 (Jlullbe + [[v]|&) ™ < C (2.9)

dt

with ¢ = min{m/pg,n/qo}. Thus (2.9) implies that u(t) € L*(R*, L (Q)),
v(t) € L*®(R", L*(Q)) if ug € LP(Q2) and vy € L®(2). The proof is completed.
0

Lemma 2.2. Under the assumptions of Lemma 2.1 and for any T > 0, the
solution (u(t),v(t)) also satisfies

Julloo <Ct7% ol <Ct°, 0<t<T, (2.10)

lullms + lollnfs < O (#7177 4 172007 L 1220 07) g <t < T, (2.11)

where the constant C depends on T, |[uo|lpys [0l and a = N/(po(m + 2) +
mN), b= N/(qy(n +2) +nN), 0 = min{a, b}.

Proof. We only consider N > max{m + 2,n + 2} and the other cases can be
treated in a similar way.

Multiplying the first equation and the second equation in (2.1) by |u
|v|#~1v respectively, we obtain

|*~2u and

d _ Mmoo _ +n
Ll 1ol + 0 (AT s 4 v ) (1)
< Gy + p) (1 + [l o+ |u|Q|v|f6’+“-1) dr.

9]

By the Young’s inequality, we have

v peL u Y1€2 U qm v Y2M2
o + fuftfos < 17 Rl o (2.13)
5] Ui Uy
with i =a+A—1,7 = f+p—1and pey = yomp, 162 = g, 61 +65' =1,
—1 -1 _
n+ny =1
The direct computation shows that
T T T T
m=——,p=————, 6 =—F——, g = ——,
q(2 —p) Yo(11 — q) p(r—q) (2 —p)
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where 7 = v179 — pq > 0. A\, p are chosen properly so that 0 < pe; < p+ n and
0 < gm < A+ m. We take two sequences of {\;} and {u} as follows

At =po, A= = by + b RM (2.14)
1= qo, jt=pk =Dby+ bR k=273 .

where by =g+ 1—a, big = (by +m)/s, bo =p+1— 0, byg = (by+n)/s and R is
chosen so that R > 1, Ay > pg, po > qo. Notice that Ay v uy as k — oo.

We now derive the estimates for the integrals [, [v|["**dx and [, [u|""dz. If
per < p and gn; < A, then we have

/ v[rde < C (1+/ Ivl”dﬂf) : /IUIqmdm <C (1 +/ |u|>‘dx) . (2.15)
Q Q Q Q

Without loss of generality, we suppose y < pey < p+n, A < qn < A+ m and
r=1/(y1—q)—p>0,h=17/(72—p)—A > 0. Then from (2.12) and (2.13), we
have

d —m Atm m —-n ptm n
= (ull + oll) + 20y (A9 g3 + [ VoS5 3) - (2.16)
< oA (1+ [ull 38 + Cop (14 [oll247)

where the constants C7,Cy are independent of A and p. Furthermore, we have
following by Holder’s and Sobolev’s inequalities

[ <l ol o

A+m
< OO I VumE (|2 4 G )

Atm | (m+2)03

S Ol Vs || 5 (2.17)

with
o NOm) hN g __hwo(m+2)
T N-m-2 ' po(m+2)+mN ) 2 po(m+2)+mN’
AN\ +m) . _(m+1)(p0(m+2)+N(m—h))>0
ST pm+2)+mN T hN '
Similarly, we can derive that
ptn o
[ oo < 010 T + ool (218)
Q

with 09 = (n 4+ 1)(go(n +2) + N(n — r))/(rN) > 0. Hence it follows from
(2.16)-(2.18) that

d —-m Admo g -n atn g
Ll o) + €5 (A9 2 4 v sE)  (219)
< O3 (1+ A7 ||u||§) + Cap (14 ,LLU2HUHZ) :

Now we employ an improved Moser’s technique as in[2, [10]. Let {A¢}, {wx}be
two sequences as defined in (2.14). From Lemma [1.4, we see that

< Ol T 2.20
Iipe Ellully S I V=] (2.20)
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("+2)9k

2
[lle < CF o] 1P| W0 5 ) (2.21)

where the constant C' is independent of Ay and uy, and

g Metm (1 1) (1 L Mtm -
"Tmr2 et M\ mt2 T m+ 2
g_uk—l—n(l _1)(1_ L mtn >1
T2 \eer o) N 2 (nt )

Let tj, = 265 — N, 5 = “” — pt. Then (2.20) and (2.21)) give

k

_ M

AV |2 > 07 | |, (2.22)
+

p [V 2 > O ([t ]|, (2.23)

Denote

y(t) = llullys + llollse, > 0.

Then inserting (2.22)-(2.23)) into (2.19) (A=A, b = ,uk) we find that
(1) + CLO™ B Jul Yl 4+ GO o

< O(Ae + ) + CXTHull e+ Cuge ™ o]
We claim that there exist the bounded sequence {&}, {nx}, {mk}, {rx} such that

||u||>\k < gkt_mk7 ||U||Hk < nkt_Tk7 0<t<T. (2'25)

e ol (2:24)

Hk—1

Without loss of generality, we suppose that &, np > 1. By Lemma 2.1, (2.25)
holds for k = 0 if we take mo = 79 = 0 and & = sup;> ||v||py, M0 = sUpPs>g [|0]l¢-
If (2.25) is true for £ — 1, then we have from (2.24) that

Yo(t) + Csl[ull N (Geort™™ )" 4 Cylfo]|ltr (mogt™-1)" "™ (2.26)
< OO+ ) (A7l +umwn).

We take ¢ = max{oy, 02}, 7x = min{tg/ g, Si/px}, oo = min{m — tx,n — s}
and Ay = max{&_1,Mm_1}, B = max{(tx — m)my_1, (s — n)rr_1}. Then we
have from (2.26) that

Y (t) + O3 A% Pyl (1) < O\ 4+ CAP Ty (t) + CA TP 0 < t < T(2.27)
Applying Lemma 1.5 to (2.27), we get

Ye(t) < Bt ~UH8)/me 0 <t < T, (2.28)
where
= -1
a1 1 = 1
Bi =2 (C’?,Agﬁl) o <C3)\Zo+l + +_ﬁk) * 120\, (C’)\Zo+1 I + ﬁk)
Tk Tk

Moreover, (2.28) implies that

L 148

i _% Pr m Tk
lully, < B¥ 455, ||l < Bt A, 0<t<T. (2.29)
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We take

< L 1 1
kaB;:'“, 771<:=B;5’“, my, = )\"’ﬁk . +ﬁk
Tk Mok

By a similar argument in [2} [10], we know that {&}, {nx} are bounded and there
exist two subsequences {my} C {m — k} and {ry} C {ry} such that
N N

b= l .
po(m+2) +mN’ Tk qgo(n+2)+nN’ (as I = o)

mg — a4 =

Therefore, letting [ — oo in (2.28), we obtain
Julloe <CE, o[l CtP, 0<t<T, (2.30)

This yields (2.10).

It remains to prove the estimate (2.11). In order to derive (2.11), we use a
similar argument in [10]. We first choose 1 > max{o,2(p+a)o —2,2(q+ ()0 —2}
and h(t) € C([0,00) N C(0,00) such that h(t) = t, 0 <t < 1;h(t) = 2,t > 2
and h(t),h'(t) > 0 in (0,00). Then multiplying the first equation by h(t)u and
the second equation by h(t)v in (2.1), and letting j — oo, we obtain

| ssateyds + 5u(e) [ (uf + oy 231

< 2/ /h’ Y(Juf? + [of?) d:cds+0// V([ ol + w7 o]+ dzds

with g(t) = [Vull2t3 + Vo3 ¢ 0.
By Young’s inequality and the assumption (1.4), we obtain

C [ (el selol + fulto )de < [ (uf +o)de (232)
0 Q
6/(|U|m+2 + "P)dz + C|Q| < C(IVullnis + [IVullh) + ClQ
Q

forany ¢ > 0 and 71 = (@ +1)(B+1) —pg)/(B+1—-p) <m+2, 7 =

((a+1)(B+1) —pg)/(a+1—¢q) <n+ 2. Furthermore, we take ¢ = 1/2. Then
(2.31)-(2.32)) yields
t

/ h(s)g(s)ds + h(t)([[ull3 + [|v]3) < C##77. (2.33)
0

Next, let p(t fo s)ds, t > 0. Similarly, multiplying the first equation in

(2.1) by p(t )ut and the second equation by p(t)v; , and letting j — oo, we have
from (2.30) and (2.31)) that

t
/<><||ut||2+||vt|| s + p(t)g(t) < C / / (P2 [0+ [ul2|oP?)deds
0

/ ds<C’/ Aatp)o 4 ¢—2(B+a)o )ds+C’t“”

<C (t“ R e L N S (2.34)
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Thus (2.34) implies
g(t) < O (¢ ¢t 2wtele L 1=2@th)o) g <t < T, (2.35)
and (2.11) is proved. The proof is completed. O

Proof of Theorem [1.2. We notice that the estimate constant C' in (2.30) and
(2.35) is independent of j , we may obtain the desired solution (u,v) as limit of
{(uj,v;)} (or asubsequence ) by the standard compact argument as in [6], 8,9, [10].
The solution (u,v) of problem (1.1) also satisfies (1.5)-(1.6). The proof is com-
pleted. O

Remark:

e From the proof of Theorem (1.2, we see that if the assumption (1.3)) is
replaced by

[flu0)] < Ki(L+[u|*of?),  |g(u, )] < Ka(1+[u|?|v]?),

the conclusions in Theorem 1.2 still hold.

3. PROOF OF THEOREM /1.3

By the standard compact argument as in [2, 7, 9 [10], we only consider the esti-
mate (1.8) and show that (u,v) € L™ (RY, W™ (Q))nL, 0 (RY, Wy H(Q))
for the solution of (2.1)).

Proof of Theorem |1.3. Suppose that s < 0 holds. Let
p0:b1+1)12€> 1, q0:b2+622€> 1, (31>

with by = g+1—a, by = p+1—0,b1s = —(¢+m+1—a)/s, bys = —(p+n+1-73)/s.
Since s < 0, we can take ¢ > 0 such that py > max{4q, 4,2 + 2a}, ¢ >
max{4p, 43,2 +28}, So = (a+po—1)(B+qo—1) —pg > 0. Then it follows from
(2.5) and (2.7) that

+ +
TSIV ) 62)

d
= (lully + lollz) + €1 (Ivu

SC/(|U|qq1+|U|pp1)dl’,
Q
where g1 = So/(q0 + 8 —1—p) > po+ m,pp1 = So/(a+po—q—1) > g + n.

We now estimate the right-hand side of (3.2). Let gq1 = po + 0, pp1 = qo + 7 and
60 > m,7 >n. Then

0 _ pot+m
bt de =l < Calll, 9 3 (33)
_ qotn
[ bl = ol < Calllly, 190 323 (3.9
Denote
pot+m qot+n
8(t) = [l +oll2,  £() = [ Va5 |2+ Vo5 2,
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then (3.2) becomes

PO +m

/ m TN a0+n n
&' () + C1f (1) < G (Ilullfy ™ Va5 |33 + ol "I Vo™ [233)  (3.5)

< Oy (Jull%™ + |vl|l7 ™) f(8) < Cse%(8) £(2),

with ag = min{(6 —m)/po, (T —n)/qo} > 0.
(3.5) implies that there is Cy > 0 such that

¢/<t) + Cof(t) S 0 if ngbao( ) Cg (HU()l + H’Uo| q0>a0 < Cl (36>

Furthermore, we have from Sobolev embedding theorems that

I a0+
IV 3 > i > dallullnt™, (Vo ™E (243 > dallol 2,

for some do > 0. Hence,
F(t) = d (Jullpo™™ + [[o]|©0*™) > dap™*”, 9 = min{m/po,n/qo}.
Now (3.6) gives
¢ (t) + dyp' ™ <0, t>0. (3.7)
This implies that
pt) < C(1+1)7. (3.8)
Next, we show that (u,v) € L™ (RY, W™ ) n L0 (RT, Wy™™). By the

loc loc

definition of py and ¢y, we have from (3.8) that for any ¢ > 0,
e opds < Clalnly, < G [ ol < Clal ol < G
Here C} is a constant independent of ¢. Thus (2.31) yields that
/t h(s)g(s)ds < C (h(t) + /tg(s)ds> < C(h(t) + p(t)),t > 0. (3.9)
0 0
Similarly, we have
[ et < ulglol < o [ o < el < Ca

Then from (2.34) and (3.9), we obtain

(0 < Ca | ols)ds + / t gl ) < ca ([ ' ols)ds + h(t) + p(0) J3.10)

It implies

g(t) <Cyt+t7'+1), 0<t<T, (3.11)
and (u,v) € L™ (R, Wy m+1) NL! (RT, Wy ”H) This completes the proof
of Theorem 1.2. The proof is completed. O
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