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GENERALIZED HYERS-ULAM STABILITY OF AN
AQCQ-FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN BANACH
SPACES

CHOONKIL PARK!, MADJID ESHAGHI GORDJI?* AND ABBAS NAJATT?

ABSTRACT. In this paper, we prove the generalized Hyers—Ulam stability of the following
additive-quadratic-cubic-quartic functional equation

flx+2y) + flx —2y) =4f(x+y) +4f(x —y) — 6f(x) + f(2y) + f(—2y) — 4f(y) — 4f(—y)

in non-Archimedean Banach spaces.

1. INTRODUCTION AND PRELIMINARY

A waluation is a function | - | from a field K into [0, 00) such that 0 is the unique element
having the 0 valuation, |rs| = |r| - |s| and the triangle inequality holds, i.e.,
I+ s| < |r|+|s]|, Vr,s € K.

A field K is called a valued field if K carries a valuation. The usual absolute values of R and
C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality.
If the triangle inequality is replaced by

I+ s| < max{|r|, |s|}, Vr,s € K,
then the function | - | is called a non-Archimedean valuation, and the field is called a non-
Archimedean field. Clearly |[1| =] —1] =1 and |n| <1 for all n € N. A trivial example of
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a non-Archimedean valuation is the function | - | taking everything except for 0 into 1 and
|0] = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence
call it simply a field.

Definition 1.1. [18] Let X be a vector space over a field K with a non-Archimedean valuation
| - |. A function || - || : X — [0,00) is said to be a non-Archimedean norm if it satisfies
the following conditions:
(i) ||z|| = 0 if and only if x = 0;
(@) [[rall = [zl (re K zeX)
(1ii) the strong triangle inequality ||z + y|| < max{||z||, ||y||} holds for all x,y € X.
Then (X,|| - ||) is called a non-Archimedean normed space.

Definition 1.2. (1) Let {x,} be a sequence in a non-Archimedean normed space X.
Then the sequence {x,} is called Cauchy if for a given € > 0 there is a positive
integer N such that

[0 — @l < €
for alln,m > N.
(17) Let {x,} be a sequence in a non-Archimedean normed space X. Then the sequence
{z,} is called convergent if for a given € > 0 there are a positive integer N and an
x € X such that
lan — =zl < e
for alln > N. Then we call x € X a limit of the sequence {x,}, and denote by
lim,, oo T,, = .
(131) If every Cauchy sequence in X converges, then the non-Archimedean normed space
X s called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [37]
concerning the stability of group homomorphisms. Hyers [10] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by
Aoki [1] for additive mappings and by Th.M. Rassias [27] for linear mappings by considering
an unbounded Cauchy difference. The paper of Th.M. Rassias [27] has provided a lot of
influence in the development of what we call the generalized Hyers—Ulam stability or the
Hyers—Ulam—Rassias stability of functional equations. A generalization of the Th.M. Rassias
theorem was obtained by Gavruta [9] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Th.M. Rassias’ approach.

The functional equation

flet+y) + fl@—y) =2f(z) +2f(y)
is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. A generalized Hyers—Ulam stability
problem for the quadratic functional equation was proved by Skof [36] for mappings f :
X — Y, where X is a normed space and Y is a Banach space. Cholewa [2] noticed that
the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group.
Czerwik [3] proved the generalized Hyers—Ulam stability of the quadratic functional equation.
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The stability problems of several functional equations have been extensively investigated by
a number of authors and there are many interesting results concerning this problem (see [4],
In [12], Jun and Kim considered the following cubic functional equation

fQRx+y)+ f2r —y) =2f(z +y) +2f(z —y) +12f(x),

which is called a cubic functional equation and every solution of the cubic functional equation
is said to be a cubic mapping.
In [15], Lee et al. considered the following quartic functional equation

fQRr+y)+ f2r —y) =4f(x+y) +4f(x —y) +24f(x) - 6f(y),

which is called a quartic functional equation and every solution of the quartic functional
equation is said to be a quartic mapping.

M. S. Moslehian and Th. M. Rassias [17] proved the Hyers—Ulam-Rassias stability of
the Cauchy functional equation and the quadratic functional equation in non-Archimedean
spaces.

Recently, M. Eshaghi Gordji and M. Bavand Savadkouhi [6] proved the generalized Hyers—
Ulam stability of cubic and quartic functional equations in non-Archimedean spaces.

In this paper, we prove the generalized Hyers—Ulam stability of the additive-quadratic-
cubic-quartic functional equation (0.1) in non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y
is a non-Archimedean Banach space. Let |[16] = [4|> = |2|* # 1 and [8] = |2>.

2. GENERALIZED HYERS-ULAM STABILITY OF THE FUNCTIONAL EQUATION (0.1)

One can easily show that an odd mapping f : X — Y satisfies (0.1) if and only if the odd

mapping mapping f : X — Y is an additive-cubic mapping, i.e.,
fle+2y) + fle—2y) =4f (@ +y) +4f(x —y) — 6/ (x).

It was shown in Lemma 2.2 of [7] that g(z) := f(2x) — 2f(x) and h(x) := f(2z) — 8f(z) are
cubic and additive, respectively, and that f(z) = $g(x) — §h(x).

One can easily show that an even mapping f : X — Y satisfies (0.1) if and only if the
even mapping f : X — Y is a quadratic-quartic mapping, i.e.,

fle+2y) + fe = 2y) = 4f(x +y) + 4f (x —y) — 6f(x) + 2/ (2y) — 8 (y).

It was shown in Lemma 2.1 of [5] that g(z) := f(2z) — 4f(z) and h(z) := f(2z) — 16f(z)
are quartic and quadratic, respectively, and that f(z) = 5g(z) — 5h(x).

For a given mapping f : X — Y, we define

Df(z,y): = fle+2y) + flz —2y) —4f(z +y) —4f(x —y) + 6f(x)
— fQ2y) = f(=2y) +4f (y) + 4/ (=y)

for all z,y € X.

We prove the generalized Hyers—Ulam stability of the functional equation D f(z,y) =0 in
non-Archimedean Banach spaces: an odd case.
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Theorem 2.1. Let 6 and p be positive real numbers with p < 3. Let f : X — Y be an odd
mapping satisfying

D5l < 600l + ) 2.)
for all x,y € X. Then there exists a unique cubic mapping C : X — 'Y such that
0
1f(22) = 2f(z) — C(z)|| < max{2-[4], [2]" + HWH%H” (2.2)
forallz € X.
Proof. Letting x = y in (2.1), we get
1FBy) —4f(2y) + 5 ()l < 20]y[l” (2.3)
for all y € X.
Replacing z by 2y in (2.1), we get
1/ (4y) —4f(3y) +6/(2y) —4f W)l < (12" + )0l ly” (2.4)
for all y € X.
By (2.3) and (2.4),
1/ (4y) —10f(2y) + 16/ ()] (2.5)

< max {[[4(f(3y) —4f(2y) + 5 W), [/ (4y) — 4/ By) + 6/ (2y) — 4f (W)}
< max {|4] - [|f(3y) —4f (2y) +5F (W)l [/ (4y) — 4f(3y) + 6./ (2y) — 4f (W)}
< max{2 - [4, |2]" + 1}0]jy[|”

for all y € X. Letting y := § and g(z) := f(2z) — 2f(x) for all z € X, we get

Jot) =8 (3)] < maxt2- 41127 + 1) g el (2.6)
for all z € X. Hence
¥ () =57 (55 @7)
< max {8 (1) =8 () |-+ o9 (=) =579 ()}

; x x i x x
<max {18l o () =80 (g7 8m |o () =39 (5[}
v 8" 8! v
< max{2 - [4], 2| + 1} - max e gjpm AT ol x|l

= max{2- [4], [2|" + 1} - [2/®7P 19 x|
for all nonnegative integers m and [ with m > [ and all z € X. It follows from (2.7) that the
sequence {8%g(Z)} is Cauchy for all z € X. Since Y is a non-Archimedean Banach space,
the sequence {8* g(57)} converges. So one can define the mapping C': X — Y by
. x
C(x) := lim 8%g (2—k)

k—oo

for all z € X.
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By (2.1),
. r y
IDC ) = jim 809 (5. 5)]
1217 - 181" p o ey, 2L B e e
< max{wwuxn + 191, S0 lell + 1)

= Jim max{|2] [21}[20®PH0( ] + ly]") = 0

for all z,y € X. So DC(z,y) = 0. Since g : X — Y isodd, C : X — Y is odd. So the
mapping C' : X — Y is cubic. Moreover, letting [ = 0 and passing the limit m — oo in
(2.7), we get (2.2). So there exists a cubic mapping C': X — Y satisfying (2.2).

Now, let C’ : X — Y be another cubic mapping satisfying (2.2). Then we have

- = ||8¢ 1) — 81 /(£> ‘
1C(x) — C'(x)]| = ‘ 8 C<2q 8¢ (5
' (5) =9 ()| [ () == ()]}
§max{’80<2q 89g 54 , |181C 57 8¢ 57
2P

< max(2- 4}, 12 + 1ol
which tends to zero as ¢ — oo for all z € X. So we can conclude that C(z) = C'(z) for all
x € X. This proves the uniqueness of C'. U

Theorem 2.2. Let 6 and p be positive real numbers with p > 3. Let f : X — Y be an odd
mapping satisfying (2.1). Then there ezists a unique cubic mapping C : X — Y such that

1f(22) = 2f(x) — C(z)|| < max{2-[4], [2]" + H‘%llxllp
forallx € X.
Proof. 1t follows from (2.6) that
Joto) ~ 5o (20)] < maxtz-a) 120 + 11 el
for all z € X.
The rest of the proof is similar to the proof of Theorem 2.1. O

Theorem 2.3. Let 6 and p be positive real numbers with p < 1. Let f : X — Y be an odd
mapping satisfying (2.1). Then there exists a unique additive mapping A : X — 'Y such that

0
1f(22) = 8f(x) — Az)|| < max{2-[4], 2] + HWHHCHP

forallz € X.
Proof. Letting y := § and g(z) := f(2z) — 8f(z) in (2.5), we get

0
Jote) =29 (5) | < max(2 41, 207 + 15 e (2.8)
for all z € X.

The rest of the proof is similar to the proof of Theorem 2.1. OJ
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Theorem 2.4. Let 6 and p be positive real numbers with p > 1. Let f : X — Y be an odd
mapping satisfying (2.1). Then there ezists a unique additive mapping A : X — 'Y such that

0
1/ (2x) — 8f(x) — Az)| < max{2-|4],[2]" + HEHJEHP
forall z € X.

Proof. It follows from (2.8) that
0

[Ed

Joto) - 3a(20)

for all z € X.
The rest of the proof is similar to the proof of Theorem 2.1. O

Now we prove the generalized Hyers—Ulam stability of the functional equation D f(x,y) = 0
in non-Archimedean Banach spaces: an even case.

Theorem 2.5. Let 6 and p be positive real numbers with p < 4. Let f : X — Y be an
even mapping satisfying f(0) = 0 and (2.1). Then there exists a unique quartic mapping
Q: X —Y such that

0
1f(22) = 4f(x) = Q(2)|| < max{2 - [4], [2" + HWH%HP

forallz € X.
Proof. Letting x = y in (2.1), we get
1/ (3y) — 6 (2y) + 15/ (y) || < 20]ly[|” (2.9)
for all y € X.
Replacing = by 2y in (2.1), we get
1/ (4y) —4fBy) + 4 2y) +4f W)l < (12" + DOyl (2.10)
for all y € X.
By (2.9) and (2.10),
If (42) — 20 (2z) 4 64 (=) (2.11)

< max{|[[4(f(3z) — 6./ (22) + 15 (x))[|, || f (42) — 4f (3z) + 4f (2x) + 4f ()|}
< max{[4||f(3z) — 6/ (2x) + 15f ()|, [ f(4x) — 4f (3z) + 4f (2x) + 4 ()|}
< max{2 - |4], |2]" + 1}0]|y[|”
for all z € X. Letting g(z) := f(2x) — 4f(x) for all z € X, we get
r P 0 p
Jot) =169 (3)| < maastz-jal o+ 1) el (2.12)

for all z € X.
The rest of the proof is similar to the proof of Theorem 2.1. O
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Theorem 2.6. Let 6 and p be positive real numbers with p > 4. Let f : X — Y be an
even mapping satisfying f(0) = 0 and (2.1). Then there ezists a unique quartic mapping

Q: X —Y such that
0
1f(22) — 4f(x) — Q(z)|| < max{2-[4], |2]" + H’MHxH”

forallz € X.
Proof. 1t follows from (2.12) that

@) — 559 (2

0
< max{2 - [4], 2] + HMHOL’HP

for all z € X.
The rest of the proof is similar to the proof of Theorem 2.1.

O

Theorem 2.7. Let 6 and p be positive real numbers with p < 2. Let f : X — Y be an
even mapping satisfying f(0) = 0 and (2.1). Then there exists a unique quadratic mapping

T:X —Y such that

[f(22) = 16/ (2) = T()[| < max{2-[4], |2|p+1}

[l]]?
2P

forallz € X.
Proof. Letting g(x) := f(2x) — 16f(z) in (2.11), we get
_ < P p
o) = 49 (5)]| < maxi2- 141,12 + 1},2|p||x||

for all z € X.
The rest of the proof is similar to the proof of Theorem 2.1.

(2.13)

O

Theorem 2.8. Let 0 and p be positive real numbers with p > 2. Let f : X — Y be an
even mapping satisfying f(0) = 0 and (2.1). Then there exists a unique quadratic mapping

T:X —Y such that

0
1f(22) = 16 (x) — T()[| < max{2-[4],[2]" + U’mllxllp

forallx € X.
Proof. 1t follows from (2.13) that

Jot) - Jo20)

0
< max{2 - [4], [2]" + HWHIHP

for all z € X.
The rest of the proof is similar to the proof of Theorem 2.1.

O

Let f,(x) := (x)—f and f.(z) := M Then f, is odd and f, is even. f,, f. satisfy
the functional equatlon (0.1). Let go(z) := fo(22) — 2f,(z) and h,(x) = f,(22) — 8f,(x).
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Then fo(x) 6go(x) (lah ( ) Let ge( ) = fe(Q‘r) - 4fe(x) and he(m> = fe(2x) - 16fe(x)
Then f.(z) = 159.(z) — 55he(z). Thus
ihe(azr).

1 1 1
flw) = >

- —Zh it _
Theorem 2.9. Let 6 and p be positive real numbers withp < 1. Let f : X — 'Y be a mapping
satisfying f(0) = 0 and (2.1). Then there exist an additive mapping A : X — 'Y, a quadratic
mapping T : X —'Y, a cubic mapping C : X — 'Y and a quartic mapping Q) : X — Y such
that

1 1

|10) - §0) - 570 - 5 - oW

1 1
< max{2- [4],]2" + 1} - max{ } |7
6" 121 S J2f

= 24,127 +1

forallz € X.

Theorem 2.10. Let 6 and p be positive real numbers with p > 4. Let f : X — Y be a
mapping satisfying f(0) = 0 and (2.1). Then there exist an additive mapping A : X — Y,
a quadratic mapping T : X — Y, a cubic mapping C' : X — Y and a quartic mapping
Q: X —Y such that

1 1 1 1
— CA(z) — —T(x) — = _ =
J10) - §4(0) - 157 - 500 - 500
< max{2- [4] yz|p+1}.max{ ! ! }GHpr
- ’ 6] - [8]" [12] - [16]
— max{2 - [4], [2]7 + 1} - ——[|z||”
ma(2- 4 2P+ 1} o]
forallx € X.
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