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Abstract. In this paper, based on a generalized projection, we introduce a
new modified Halpern-type iteration algorithm for finding a common element
of the set of solutions of an equilibrium problem and the set of a common fixed
point of an infinitely countable family of relatively quasi-nonexpansive map-
pings in the framework of Banach spaces. We establish the strong convergence
theorem and obtain some applications. Our main results improve and extend
the corresponding results announced by many authors.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of

H. Let T : C → C be a mapping. Recall that T is said to be nonexpansive if

‖Tx− Tx‖ ≤ ‖x− y‖ for all x, y ∈ H. Denote by F (T ) the set of fixed points of

T .

In 1967, Halpern [10] proposed a classical iterative process to approximate a

fixed point of a nonexpansive mapping T in a Hilbert space H. The following

algorithm is known as Halpern’s iteration process:

xn+1 = αnu + (1− αn)Txn, ∀n ≥ 1, (1.1)
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where u ∈ C is a fixed point and {αn} is a sequence in [0,1]. Halpern [10] proved

that the following conditions:

(i) : lim
n→∞

αn = 0, (ii) :
∞∑

n=1

αn = ∞

are indeed necessary for the strong convergence of the algorithm (1.1) for all

closed convex subsets C of a Hilbert space H and for all nonexpansive mappings

T on C; see also [29].

However, due to the restriction of condition (ii), the convergence of {xn} is

believed to be slow. So to improve the rate of convergence of algorithm (1.1), one

has to perform some additional step of iteration.

Question 1. Can we construct algorithms for modifying the iterative process

(1.1) to have strong convergence under the condition (i) only ?

Recently, Martinez-Yanes and Xu [13] has adapted Nakajo and Takahashi’s

[16] idea to modify the process (1.1) for a nonexpansive mapping T in a Hilbert

space H:



x0 ∈ C chosen arbitrarily,
yn = αnx0 + (1− αn)Txn,

Cn =
{

z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + αn

(‖x0‖2 + 2〈xn − x0, z〉
)}

,

Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0 n ≥ 1,

(1.2)

where PK is the metric projection from H onto a closed convex subset K of H.

They proved that the sequence {xn} generated by above iterative scheme con-

verges strongly to PF (T )x0 provided the sequence {αn} ⊂ (0, 1) satisfies limn→∞ αn =

0.

Question 2. Can we extend the iterative process (1.2) from Hilbert spaces to

Banach spaces ?

Very recently, Qin et al. [19], introduced the following modification of the

process (1.2) for a closed relatively quasi-nonexpansive mapping T in a Banach

space E:



x0 ∈ E chosen arbitrarily,
C1 = C, x1 = ΠC1 x0,
yn = J−1

(
αnJx1 + (1− αn)JTxn

)
,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ αnφ(z, x1) + (1− αn)φ(z, xn)},
xn+1 = ΠCn+1 x1, ∀n ≥ 1,

(1.3)

where J is the duality mapping on E and ΠK is the generalized projection from

E onto K. They proved that the sequence {xn} converges strongly to ΠF (T )x1

provided limn→∞ αn = 0.

Question 3. Can we extend the above algorithm to finding a common element

of the set of solutions of an equilibrium problem and the set of a common fixed
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point of an infinitely countable family of relatively quasi-nonexpansive mappings

in the framework of Banach spaces ?

Let f be a bifunction from C×C to the set of real numbers R. The equilibrium

problem is to find x̂ ∈ C such that

f(x̂, y) ≥ 0, ∀y ∈ C. (1.4)

The set of solutions of (1.4) is denoted by EP (f).

For solving the equilibrium problem, let us assume that a bifunction f satisfies

the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C, lim supt↓0 f
(
tz + (1− t)x, y

) ≤ f(x, y);

(A4) for all x ∈ C, f(x, .) is convex and lower semicontinuous.

The problem of finding a common element of the set of fixed points of nonex-

pansive, relatively nonexpansive or relatively quasi-nonexpansive mappings and

the set of solutions of an equilibrium problem in the framework of Hilbert spaces

and Banach spaces has been intensively studied by many authors; for instance,

see [7, 9, 14, 15, 17, 22, 23, 25, 27, 28, 30] and the references cited therein.

Motivated and inspired by Martinez-Yanes and Xu [13], and Qin et al. [19], we

construct a new hybrid projection algorithm for finding a common element of the

set of solutions of an equilibrium problem and the set of a common fixed point

of a family of closed relatively quasi-nonexpansive mappings in the framework of

Banach spaces.

2. Preliminaries and lemmas

Let E be a real Banach space and let U = {x ∈ E : ‖x‖ = 1} be the unit

sphere of E. A Banach space E is said to be strictly convex if for any x, y ∈ U ,

x 6= y implies
∥∥∥x + y

2

∥∥∥ < 1.

It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such

that for any x, y ∈ U ,

‖x− y‖ ≥ ε implies
∥∥∥x + y

2

∥∥∥ < 1− δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex.

Define a function δ : [0, 2] → [0, 1] called the modulus of convexity of E as follows:

δ(ε) = inf
{

1−
∥∥∥x + y

2

∥∥∥ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε
}

.

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach

space E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)
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exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit (2.1) is

attained uniformly for x, y ∈ U . The normalized duality mapping J : E → 2E∗

is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for all x ∈ E. If E is a Hilbert space, then J = I, where I is the identity mapping.

It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm

continuous on each bounded subset of E; see [24] for more details.

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all x, y ∈ E. In a Hilbert space H, we have φ(x, y) = ‖x−y‖2 for all x, y ∈ H.

Let C be a closed convex subset of E, and let T be mapping from C into itself.

A point p in C is said to be an asymptotic fixed point of T [21] if C contains a

sequence {xn} which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0.

The set of asymptotic fixed point of T will be denoted by F̂ (T ). A mapping T

is said to be relatively nonexpansive [3, 4, 14] if F̂ (T ) = F (T ) and φ(p, Tx) ≤
φ(p, x) for all p ∈ F (T ) and x ∈ C. The asymptotic behavior of a relatively

nonexpansive mapping was studied in [3, 4]. T is said to be φ-nonexpansive, if

φ(Tx, Ty) ≤ φ(x, y) for x, y ∈ C. T is said to be relatively quasi-nonexpansive or

quasi-φ-nonexpansive if F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all p ∈ F (T ) and

x ∈ C. It is obvious that the class of relatively quasi-nonexpansive mappings

is more general than the class of relatively nonexpansive mappings [3, 4, 6, 14].

Recall that T is closed if

xn → x, Txn → y imply Tx = y.

We give some examples which are closed relatively quasi-nonexpansive; see [18].

Example 2.1. Let E be a uniformly smooth and strictly convex Banach space

and A ⊂ E×E∗ be a maximal monotone mapping such that its zero set A−10 6= ∅.
Then, Jr = (J + rA)−1J is a closed relatively quasi-nonexpansive mapping from

E onto D(A) and F (Jr) = A−10.

Example 2.2. Let ΠC be the generalized projection from a smooth, strictly

convex, and reflexive Banach space E onto a nonempty closed convex subset C of

E. Then, ΠC is a closed relatively quasi-nonexpansive mapping with F (ΠC ) = C.

Lemma 2.3 (Kamimura and Takahashi [11]). Let E be a uniformly convex and

smooth Banach space and let {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0

and either {xn} or {yn} is bounded, then ‖xn − yn‖ → 0 as n →∞.

Let E be a reflexive, strictly convex and smooth Banach space and let C be

a nonempty closed and convex subset of E. The generalized projection mapping,
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introduced by Alber [1], is a mapping ΠC : E → C , that assigns to an arbitrary

point x ∈ E the minimum point of the function φ(y, x), that is, ΠCx = x̄, where

x̄ is the solution to the minimization problem

φ(x̄, x) = min{φ(y, x) : y ∈ C}.
The existence and uniqueness of the operator ΠC follows from the properties of

the functional φ and strict monotonicity of the duality mapping J ; for instance,

see [1, 2, 8, 11, 24]. In a Hilbert space, ΠC is coincident with the metric projection.

Lemma 2.4 (Alber [1] and Kamimura and Takahashi [11]). Let C be a nonempty

closed convex subset of a smooth, strictly convex, and reflexive Banach space E,

let x ∈ E and let z ∈ C. Then z = ΠC x if and only if

〈y − z, Jx− Jz〉 ≤ 0, ∀y ∈ C.

Lemma 2.5 (Alber [1] and Kamimura and Takahashi [11]). Let C be a nonempty

closed convex subset of a smooth, strictly convex and reflexive Banach space E.

Then

φ(x,ΠCy) + φ(ΠCy , y) ≤ φ(x , y) ∀x ∈ C and y ∈ E .

Lemma 2.6 (Qin et al. [18]). Let E be a uniformly convex, smooth Banach

space, let C be a closed convex subset of E, let T be a closed and relatively quasi-

nonexpansive mapping from C into itself. Then F (T ) is a closed convex subset

of C.

Lemma 2.7 (Blum and Oettli [5]). Let C be a closed convex subset of a smooth,

strictly convex, and reflexive Banach space E, let f be a bifunction from C × C

to R satisfying (A1)-(A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C

such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 2.8 (Takahashi and Zembayashi [26]). Let C be a closed convex subset

of a uniformly smooth, strictly convex, and reflexive Banach space E, and let f

be a bifunction from C × C to R satisfying (A1)-(A4). For all r > 0 and x ∈ E,

define a mapping Tr : E → C as follows:

Trx = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping [12], i.e., for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;
(3) F (Tr) = EP (f);

(4) EP (f) is closed and convex.
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Lemma 2.9 (Takahashi and Zembayashi [26]). Let C be a closed convex subset

of a smooth, strictly, and reflexive Banach space E, let f be a bifucntion from

C×C to R satisfying (A1)− (A4), let r > 0. Then, for all x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

3. Main results

In this section, we prove the strong convergence theorem.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space,

let C be a nonempty closed convex subset of E. Let f be a bifunction from C×C

to R satisfying (A1)-(A4), and let {Ti}∞i=1 be an infinitely countable family of

closed relatively quasi-nonexpansive mappings from C into itself. Assume that

F :=
⋂∞

i=1 F (Ti) ∩ EP (f) 6= ∅. For an initial point x0 ∈ E with x1 = ΠC1 x0 and

C1 = C, define a sequence {xn} as follows:



yn,i = J−1
(
αnJx1 + (1− αn)JTixn

)
,

un,i ∈ C such that f(un,i, y) + 1
rn
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, un,i) ≤ αnφ(z, x1) + (1− αn)φ(z, xn)

}
,

xn+1 = ΠCn+1 x1, ∀n ≥ 1,

where J is the duality mapping on E. Assume that {αn} and {rn} are two se-

quences satisfying the restrictions:

(B1) {αn} ⊂ [0, 1] and limn→∞ αn = 0;

(B2) {rn} ⊂ [a,∞) for some a > 0.

Then, the sequence {xn} converges strongly to ΠFx1.

Proof. We split our proof into seven steps.

Step 1. Show that Cn is closed and convex for all n ≥ 1.

By Lemma 2.6, we know that F (Ti) is closed and convex for all i = 1, 2, ...

By Lemma 2.8 (4), we also know that EP (f) is closed and convex. Hence F :=⋂∞
i=1 F (Ti)∩EP (f) is a nonempty, closed and convex subset of C; consequently,

ΠFx1 is well-defined. Clearly, C1 = C is closed and convex. Suppose that Ck is

closed and convex for k ∈ N. For each z ∈ Ck and i = 1, 2, ..., we observe that

φ(z, uk,i) ≤ αkφ(z, x1) + (1− αk)φ(z, xk) is equivalent to

2αk〈z, Jx1〉+ 2(1−αk)〈z, Jxk〉− 2〈z, Juk,i〉 ≤ αk‖x1‖2 + (1−αk)‖xk‖2−‖uk,i‖2.

By the construction of the set Ck+1, we see that

Ck+1 =
{
z ∈ Ck : sup

i≥1
φ(z, uk,i) ≤ αkφ(z, x1) + (1− αk)φ(z, xk)

}

=
∞⋂
i=1

{
z ∈ Ck : φ(z, uk,i) ≤ αkφ(z, x1) + (1− αk)φ(z, xk)

}
.

Hence, Ck+1 is closed and convex. By induction, we get that Cn is closed and

convex for all n ≥ 1.
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Step 2. Show that F ⊂ Cn for all n ≥ 1.

F ⊂ C1 = C is obvious. Suppose that F ⊂ Ck for k ∈ N. We note that

uk,i = Trk
yk,i for i = 1, 2, ... Then, for each u ∈ F , we have

φ(u, uk,i) = φ(u, Trk
yk,i) ≤ φ(u, yk,i)

= φ
(
u, J−1

(
αkJx1 + (1− αk)JTixk

))

= ‖u‖2 − 2
〈
u, αkJx1 + (1− αk)JTixk

〉

+ ‖αkJx1 + (1− αk)JTixk‖2

≤ ‖u‖2 − 2αk

〈
u, Jx1〉 − 2(1− αk)

〈
u, JTixk〉

+ αk‖x1‖2 + (1− αk)‖Tixk‖2

≤ αkφ(u, x1) + (1− αk)φ(u, xk). (3.1)

Hence, F ⊂ Ck+1. By induction, we can conclude that F ⊂ Cn for all n ≥ 1.

Hence ΠCn+1x1 is well-defined.

Step 3. Show that limn→∞ φ(xn, x1) exists.

From xn = ΠCnx1 and xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x1) ≤ φ(xn+1, x1) ∀n ≥ 1. (3.2)

From Lemma 2.5, we have

φ(xn, x1) = φ(ΠCnx1, x1) ≤ φ(u, x1)− φ(u, xn) ≤ φ(u, x1). (3.3)

Combining (3.2) and (3.3), we get that limn→∞ φ(xn, x1) exists.

Step 4. Show that {xn} is a Cauchy sequence in C.

Since xm = ΠCmx1 ∈ Cm ⊂ Cn for m > n, by Lemma 2.5, we have

φ(xm, xn) = φ(xm,ΠCnx1) ≤ φ(xm, x1)− φ(ΠCnx1, x1)

= φ(xm, x1)− φ(xn, x1).

Taking m,n → ∞, we obtain that φ(xm, xn) → 0. From Lemma 2.3, we have

‖xm − xn‖ → 0 as m, n → ∞. Hence {xn} is a Cauchy sequence. By the

completeness of E and the closedness of C, we can assume that xn → q ∈ C as

n →∞. Further, we obtain

lim
n→∞

φ(xn+1, xn) = 0. (3.4)

Note that limn→∞ αn = 0. Since xn+1 = ΠCn+1x1 ∈ Cn+1, we have

φ(xn+1, un,i) ≤ αnφ(xn+1, x1) + (1− αn)φ(xn+1, xn) → 0, (3.5)

as n →∞. Applying Lemma 2.3 to (3.4) and (3.5), we get

lim
n→∞

‖un,i − xn‖ = 0 ∀i = 1, 2, ... (3.6)
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This shows that un,i → q as n → ∞ and i=1,2,... Since J is uniformly norm-to-

norm continuous on bounded subsets of E, we also obtain

lim
n→∞

‖Jun,i − Jxn‖ = 0 ∀i = 1, 2, ... (3.7)

Step 5. Show that q ∈ ⋂∞
i=1 F (Ti).

From (3.1), we observe that

φ(u, yn,i) ≤ αnφ(u, x1) + (1− αn)φ(u, xn). (3.8)

Note that un,i = Trnyn,i. Hence, it follows from (3.8) and Lemma 2.9 that

φ(un,i, yn,i) = φ(Trnyn,i, yn,i)

≤ φ(u, yn,i)− φ(u, Trnyn,i)

≤ αnφ(u, x1) + (1− αn)φ(u, xn)− φ(u, un,i)

= αn

(
φ(u, x1)− φ(u, xn)

)
+

(
φ(u, xn)− φ(u, un,i)

)
.

From (3.6) and (B1), we get limn→∞ φ(un,i, yn,i) = 0 for all i = 1, 2, ... By Lemma

2.3, we also obtain

lim
n→∞

‖un,i − yn,i‖ = 0 ∀i = 1, 2, ... (3.9)

Again, from (3.6) and (3.9), we have

lim
n→∞

‖xn − yn,i‖ = 0 ∀i = 1, 2, ...

and hence,

lim
n→∞

‖Jxn − Jyn,i‖ = 0 ∀i = 1, 2, ... (3.10)

Observing

‖Jyn,i − Jxn‖ = ‖αnJx1 + (1− αn)JTixn − Jxn‖
= ‖ − αn(JTixn − Jx1) + (JTixn − Jxn)‖
≥ −αn‖JTixn − Jx1‖+ ‖JTixn − Jxn‖,

we obtain, by (B1) and (3.10), that

‖JTixn − Jxn‖ ≤ ‖Jyn,i − Jxn‖+ αn‖JTixn − Jx1‖ → 0,

as n → ∞ and i = 1, 2, ... Since J−1 is also uniformly norm-to-norm continuous

on bounded sets, we have

lim
n→∞

‖Tixn − xn‖ = 0 ∀i = 1, 2, ...

Since Ti is closed for i = 1, 2, ... and xn → q, we can conclude that q ∈ ⋂∞
i=1 F (Ti).

Step 6. Show that q ∈ EP (f).

From (3.9) and rn ≥ a > 0, we have
‖Jun,i−Jyn,i‖

rn
→ 0. From un,i = Trnyn,i for

i = 1, 2, ..., we get

f(un,i, y) +
1

rn

〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C.
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By (A2), we have

‖y − un,i‖‖Jun,i − Jyn,i‖
rn

≥ 1

rn

〈y − un,i, Jun,i − Jyn,i〉
≥ −f(un,i, y) ≥ f(y, un,i), ∀y ∈ C.

From (A4) and un,i → q for i = 1, 2, ..., we get f(y, q) ≤ 0 for all y ∈ C. For

0 < t < 1 and y ∈ C, Define yt = ty + (1− t)q. Then yt ∈ C, which implies that

f(yt, q) ≤ 0. From (A1), we obtain that 0 = f(yt, yt) ≤ tf(yt, y)+(1−t)f(yt, q) ≤
tf(yt, y). Thus, f(yt, y) ≥ 0. From (A3), we have f(q, y) ≥ 0 for all y ∈ C. Hence

q ∈ EP (f)

Step 7. Show that q = ΠF x1.

From xn = ΠCnx1, we have
〈
Jx1 − Jxn, xn − z

〉 ≥ 0 ∀z ∈ Cn.

Since F ⊂ Cn, we also have
〈
Jx1 − Jxn, xn − u

〉 ≥ 0 ∀u ∈ F. (3.11)

By taking limit in (3.11), we obtain that
〈
Jx1 − Jq, q − u

〉 ≥ 0 ∀u ∈ F.

By Lemma 2.4, we can conclude that q = ΠF x1. This completes the proof. ¤

Remark 3.2. If we take f ≡ 0 and Ti = T for all i = 1, 2, ..., then Theorem 3.1

reduces to Theorem 3.1 of Qin et al. [19].

Remark 3.3. If we take f ≡ 0 and Ti = T for all i = 1, 2, ..., then Theorem

3.1 improves on Theorem 3.2 of Qin and Su [20] from the class of relatively

nonexpansive mappings to the class of relatively quasi-nonexpansive mappings;

that is, we relax the strong restriction: F̂ (T ) = F (T ). Moreover, this algorithm

is also simpler to compute than the one given in [20].

4. Applications

In this section, we give some applications of Theorem 3.1 in the framework of

Banach spaces.

Let A : C → E∗ be a nonlinear mapping. The classical variational inequality

problem is to find x̂ ∈ C such that

〈Ax̂, y − x̂〉 ≥ 0 ∀y ∈ C. (4.1)

The set of solutions of (4.1) is denoted by V I(C, A).

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space,

let C be a nonempty closed convex subset of E. Let A be a continuous mono-

tone mapping from C to E∗, and let {Ti}∞i=1 be an infinitely countable family

of closed relatively quasi-nonexpansive mappings from C into itself such that
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F :=
⋂∞

i=1 F (Ti) ∩ V I(C, A) 6= ∅. For an initial point x0 ∈ E with x1 = ΠC1 x0

and C1 = C, define a sequence {xn} as follows:




yn,i = J−1
(
αnJx1 + (1− αn)JTixn

)
,

un,i ∈ C such that 〈Aun,i, y − un,i〉+ 1
rn
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, un,i) ≤ αnφ(z, x1) + (1− αn)φ(z, xn)

}
,

xn+1 = ΠCn+1 x1, ∀n ≥ 1,

where J is the duality mapping on E. Assume that {αn} and {rn} are sequences

satisfying (B1) and (B2) of Theorem 3.1.

Then, the sequence {xn} converges strongly to ΠFx1.

Proof. Define f(x, y) = 〈Ax, y − x〉 for all x, y ∈ C. Then, by Theorem 3.1, we

obtain the desired result. ¤

Let ϕ : C → R be a real-valued function. The convex minimization problem is

to find x̂ ∈ C such that

ϕ(x̂) ≤ ϕ(y) ∀y ∈ C. (4.2)

The set of solutions of (4.2) is denoted by CMP (ϕ).

Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space,

let C be a nonempty closed convex subset of E. Let ϕ be a proper lower semi-

continuous and convex function from C to R, and let {Ti}∞i=1 be an infinitely

countable family of closed relatively quasi-nonexpansive mappings from C into it-

self such that F :=
⋂∞

i=1 F (Ti) ∩ CMP (ϕ) 6= ∅. For an initial point x0 ∈ E with

x1 = ΠC1 x0 and C1 = C, define a sequence {xn} as follows:




yn,i = J−1
(
αnJx1 + (1− αn)JTixn

)
,

un,i ∈ C such that ϕ(y) + 1
rn
〈y − un,i, Jun,i − Jyn,i〉 ≥ ϕ(un,i), ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, un,i) ≤ αnφ(z, x1) + (1− αn)φ(z, xn)

}
,

xn+1 = ΠCn+1 x1, ∀n ≥ 1,

where J is the duality mapping on E. Assume that {αn} and {rn} are sequences

satisfying (B1) and (B2) of Theorem 3.1.

Then, the sequence {xn} converges strongly to ΠFx1.

Proof. Define f(x, y) = ϕ(y) − ϕ(x) for all x, y ∈ C. Then, by Theorem 3.1, we

obtain the desired result. ¤

As a direct consequence of Theorem 3.1, we also obtain the following applica-

tion in a Hilbert space.

Theorem 4.3. Let C be a nonempty and closed convex subset of a real Hilbert

space H. Let f be a bifunction from C × C to R satisfying (A1)-(A4) and let

{Ti}∞i=1 be an infinitely countable family of closed quasi-nonexpansive mappings
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from C into itself such that F :=
⋂∞

i=1 F (Ti) ∩ EP (f) 6= ∅. For an initial point

x0 ∈ H with x1 = PC1x0 and C1 = C, define a sequence {xn} as follows:



un,i ∈ C such that f(un,i, y) + 1
rn
〈y − un,i, un,i − yn,i〉 ≥ 0, ∀y ∈ C,

yn,i = αnx1 + (1− αn)Tixn,
Cn+1 =

{
z ∈ Cn : supi≥1 ‖z − un,i‖2 ≤ αn‖z − x1‖2 + (1− αn)‖z − xn‖2

}
,

xn+1 = PCn+1x1, ∀n ≥ 1,

where P is a metric projection. Assume that {αn} and {rn} are sequences satis-

fying (B1) and (B2) of Theorem 3.1.

Then, the sequence {xn} converges strongly to PF x1.

Proof. By taking E = H in Theorem 3.1, we obtain the desired result. ¤

Remark 4.4. If we take f ≡ 0 and Ti = T for all i = 1, 2, ... in Theorem 4.3,

then Theorem 4.3 improves and extends Theorem 3.1 of Martinez-Yanes and Xu

[13].
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[31] C. Zǎlinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983) 344-374.

1 Department of Mathematics, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand.

E-mail address: prasitch2008@yahoo.com

2 Department of Mathematics, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand.

E-mail address: scmti005@chiangmai.ac.th


