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APPROXIMATELY PARTIAL TERNARY QUADRATIC
DERIVATIONS ON BANACH TERNARY ALGEBRAS

A. JAVADIAN!, M. ESHAGHI GORDJI>* AND M. BAVAND SAVADKOUHI?

Dedicated to Themistocles M. Rassias on the occasion of his sixtieth birthday

ABSTRACT. Let Ay, A, ..., A, be normed ternary algebras over the complex
field C and let B be a Banach ternary algebra over C. A mapping d; from
Ay x -+ x A, into B is called a k-th partial ternary quadratic derivation if
there exists a mapping g : Ax — B such that

01, lakbrer), -+ yxn) = [gk(ar)gr(br)ok (@1, -+ ey 2]
+  lgr(an)on (1, bk, 20) gr(ck)]
+ Or(zr, o ak, 5 0)gr(br)gr(cr)]
and
5k($17"‘ ,ak+bk,"' 7$n)+5k($17"' 7ak—bk,"' ’xn)
:Qék(l‘l;"' Qs ,xn)+26k($1;"' ’bk7... ;mn)
for all ay,bg,cr € A and all z; € A; (i # k). We prove the Hyers-Ulam-

Rassias stability of the partial ternary quadratic derivations in Banach ternary
algebras.

1. INTRODUCTION

The stability of functional equations was first introduced by Ulam [41] in 1940.
More precisely, he proposed the following problem: given a group G, a met-
ric group (Go,d), and a positive number €, does there exists a § > 0 such
that if a function f : G; — Gy satisfies the inequality d(f(zy), f(x)f(y)) < ¢
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for all x,y € G, then there exists a homomorphism T : G; — G5 such that
d(f(z),T(z)) < € for all x € G1?7 As mentioned above, when this problem has
a solution, we say that the homomorphisms from G; to Gy are stable. In 1941,
Hyers [31] gave a partial solution of Ulam’s problem for the case of approximate
additive mappings under the assumption that G; and G5 are Banach spaces. In
1978, Rassias [39] generalized the theorem of Hyers by considering the stability
problem with unbounded Cauchy differences. This phenomenon of stability that
was introduced by Rassias [39] is called the Hyers-Ulam-Rassias stability. The
following is according to Rassias’ theorem.

Theorem 1.1. Let f : E — E' be a mapping from a norm vector space E into a
Banach space E' subject to the inequality

1@z +y) = fl) = F)ll < e(ll=]]” + [lyl")

for all x,y € E, where € and p are constants with € > 0 and p < 1. Then there
exists a unique additive mapping T : E — E' such that for all x € E,

2¢
1) - Tl < 5=

This new concept is known as Hyers-Ulam-Rassias stability of functional equa-
tions (see [27],[28],[30],[32],[35],[36] and [38]). The functional equation

fla+y) + flx—y)=2f(x) +2f(y) (1.1)

is related to symmetric bi-additive function. It is natural that this equation
is called a quadratic functional equation. In particular, every solution of the
quadratic equation (1.1) is said to be a quadratic function. It is well known that
a function f between real vector spaces is quadratic if and only if there exists a
unique symmetric bi-additive function B such that f(x) = B(xz,x) for all x (see
[34]). The bi-additive function B is given by

Ble.y) = ([ +y) ~ (e~ )

Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.1)
was proved by Skof for functions f : A — B, where A is normed space and
B Banach space (see [4],[6],]29] and [40]). For more detailed definitions of such
terminologies, we can refer to [1],[7]-[14],[16],[19]-[22] and [24].

A ternary (associative) algebra (A,[ ]) is a linear space A over a scalar field
F = R or C equipped with a linear mapping, the so-called ternary product,
[]: AxAx A — A such that [[abc|de] = [albed]e] = [ablcde]] for all a, b, ¢, d, e € A.
This notion is a natural generalization of the binary case. Indeed if (A, ®) is a
usual (binary) algebra then [abc] := (a ® b) ® ¢ induced a ternary product mak-
ing A in to a ternary algebra which will be called trivial. By a Banach ternary
algebra we mean a ternary algebra equipped with a complete norm ||.|| such that
Ilabc]|| < ||all||b]|]|c]| for all a, b, c € A. It seems that approximate derivations were
first investigated by Jun and Park [33]. Recently, the stability of derivations has
been investigated by some authors; see [2, 5, 23] 26] and references therein. For
more detailed definitions of such terminologies, we can refer to [3],[15],[17],[18],[25]
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and [37].

2. Main results

Let Ay, Ao, ..., A, be normed ternary algebras over the complex field C and let
B be a Banach ternary algebra over C. A mapping d; from A; x --- x A,, into
B is called a k-th partial ternary quadratic derivation if there exists a mapping
g : Ay — B such that

5k(x17 T [akbkck]v T >xn) = [gk(ak)gk(bk>6k($1’ Gyt 7xn)]
+ lgr(ar)on(w1, -+ g, -+ 00) gr(cr)]
+ [0y, ak, o wn) gr(br) gr(cr)]

and

5k($17"' 7a/k‘+bk7”' ,I’n)+5k(l‘1,“' 7ak‘_bk7”' ,fL‘n>
:26141(1:17 y Afy * * 7xn>+25k(xla 7bk7"' 7‘7;11)

for all ay,by,cp € A and all z; € A; (i # k). We denote that Oy, 0p are zero
elements of Ay, B, respectively.

Theorem 2.1. Let p > 0 be given with p < 2 and let 8 be nonnegative real
numbers. Let Fy : Ay X ---x A, — B be a mapping with Fy,(xy,-++ 0k, -+ ,T,) =
0. Suppose that there exists a quadratic mapping gy : A — B such that
HFk(xla ,Gk+bk,"' wxn)—i_Fk(ml;'“ 7ak_bk7"' 7$n) (21)
SO, Bn) — 2B, b )]
< Olaell” + el

[ Fe(@1, - s lanbic]s -+ wn) — [gk(an) gr(br) Fr (21, - -+ chy o oo )] (2.2)
—lgk(ar) Fi(zr, -+ by, wn)g(cn)] — [F(zr, - aw, -+ @) g (br) e (cn)] |
< O([|axl[” + [1oe]l” + llcel”)
for all ay, by, cx € Ag, x; € A; (i # k). Then there ezists a unique k-th partial
ternary quadratic derivation oy : Ay X -+ x A, — B such that

20
4 —2p

[Er(xr, - @n) = Oplar, -+ o) | < [l ” (2.3)
holds for all z; € A; (i =1,2,--- ,n).
Proof. In (2.1), putting ar = by, = z, we have

| F(x1, - v ) 20k, -+ ) — AF (21, - gy -0 @) || < 20]|zk]|P,  (2.4)
that is,

1 0
”Fk(mlv y Ly *t ,l’n) - ZFk(mh 722:16’"' ,l’n)” S §||‘Tkl|p (25)
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for all z; € A; (i =1,2,--- ,n). One can use induction on m to show that
1
B, g o) = gy Filn, o 2%, )|
0 m—1
< 03 20D (2.
i=0
for all z; € A; (i =1,2,--- ,n) and all non-negative integers m. Hence
1 j 1 (m+9)
HQT]Fk(II’ 72 Ty« 7xn) - WFIC(J:M 72 Ly o 7xn)||
9 m+4j—1
Z i(p—2) P
<3 Z 207 || (2.7)
i=j
for all non-negative integers m and j with m > jand allz; € A; (i =1,2,--- | n).
It follows from p < 2 that the sequence { g Fy (21, - - , 2™y, -+, x,)} is Cauchy.

Due to the completeness of B, this sequence is convergent. So one can define the
mapping oy : Ay X --- x A, — B given by

: 1 m
ok(x1,+ -+ ,x,) = lim 22—ka(x1,--- 2" Xy ) (2.8)

forall z; € A; (i = 1,--- ,n). In (2.1), replacing ay, by, with 2™ay, 2™by, respec-
tively, we obtain that

1 1
||22_ka($17 72m(ak‘+bk‘)7 7'Tn) + 22_ka<1;1; 72m(ak _bk)a 7'1777,)
2 2
—22—ka<1‘1, 72ma‘k7"' 7‘rn) - 22—ka<1'1, 72mbk7"' 7In)H

<027 (Jlag || + [0k 7
which tends to zero as m — oo. Thus we obtain
5k($17"' 7ak‘+bk7”' 7wn)+5k‘(l‘17”' 7ak‘_bk7”' axn> (29)
=20k (@1, -, Qky -, ) + 205 (21, -0 by L Ty)

for all ag, by, € Ay and all x; € A;(i # k). Hence §j is quadratic with respect to
the k-th variable. It follows from (2.7) that
20

||Fk<x17 y Lhy * " ,xn>—5k(ﬂf1,"‘ y Ty ® ot 7‘1:71)” S 4_ 9

[E7alis
forall z; € A; (1 =1,2,--- ,n).
Replacing ay, by, ¢, with 2™ay, 2™by,, 2™ ¢y, respectively, in (2.2), we obtain
[ Fr(zy, -, 2% [abrer], -+ wn) — (22" gr(ar) 22 g (bi) Fio(21, - -+ 2™y -+ )]
—[2*" g (ar) Fro(z1, -+ 2™ bg, -+, 20) 2% gi ()]

_[Fk(mla T 72ma'k7 T 7$n)22mgk(bk)22mgk(ck)”|
< 2.0 (lla[|” + [[0x[]” + llcx[”)-
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Then we have
1 3m
HQG—ka(xb s 2 agbrer], o an)
1
—26—m[22m9k(ak)22m9k(bk)Fk($1, c 2T )]
1
—%—m[Qngk(ak)Fk(ml, e 2y 20) 27 g )]

_26_m[Fk<I17 e 2™y, 7xn)22mgk<bk)22mgk<ck>]”
< 27®09([lag [P + |07 + [lex”).
for all ay, by, cp € Ag. Passing the limit m — oo in above inequality, we obtain
Or(@r, -+, lawbrer], - 2n) = [gr(ar) gr bk )0k (z1, -+ Cry oo+, )]
+ [gr(ar)ox (1, - -+ by 20) (k)]
+ [0k(@1, s ak, ) gk (br) gk (k)]

for all ag, by, cx € A and all x; € A; (i # k).
Finally, to prove the uniqueness of d, let 5; Ay x---x A, — B be another k-th
partial ternary quadratic derivation satisfying (2.3). Then we have

16621, -+ s 20) = Glan, )|
1 /
= 22_m||5k;(l’1, e 72mxk’a e 7xn) - 5k(x17 T ’mek’ e 7xn)||
§22_m<’|5k(x17 72mxk7"' 7‘TTL>_Fk<‘T17”' 72mxk7“' 7«rn>||

+ HFk(I‘l, 72mxk7"' an) _5;g<x17 72m$k7"' 7In)H)
<0 20|z,

which tends to zero asm — oo forall z; € A; (i = 1,2,--- ,n). So we can conclude
that 0y (1, ,2,) = 6, (21, ,2,). This proves the uniqueness of 4. O

Theorem 2.2. Let p > 2 be and let 6 be nonnegative real numbers. Let Fy, :
Ay X -+ x A, — B be a mapping with Fy(xy,--+ 0k, ,x,) = 0p. Suppose that
there exists a quadratic mapping gi : Ax — B such that satisfying (2.1) and (2.2)
for all ay, by, cx € Ag, x; € A; (i # k). Then there ezists a unique k-th partial
ternary quadratic derivation 6y : A1 X --- X A, — B such that

20
2r — 4

[E (@, - s an) = Ok (@, - ) || < [k [|” (2.10)

holds for all z; € A; (i =1,2,--- ,n).
Proof. In (2.1), putting a; = b, = %, we have

2

||Fk(x1a y Ly o al‘n) —4Fk($1, a%a"' rrn)H S §—g||$k||pa (211)
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for all z; € A; (i =1,2,--- ,n). One can use induction on m to show that
1Fu(zr, - Ty @) — 22" Fy(ay, - - ’23:_:1"“ )l
20 < io_
T (212)
i=0
for all z; € A; (i = 1,2,--- ,n) and all non-negative integers m. Hence
122 By (1, - - - 7%’... 1) — 2D By Q(i’ij)?... J2)||
m+j—1
<25 g (2.13)
i=j

for all non-negative integers m and j with m > jand allz; € A; (i =1,2,--- | n).
It follows from p > 2 that the sequence {2*"Fy(xq, -+, 3%, ,x,)} is Cauchy.

Due to the completeness of B, this sequence is convergent. So one can define the
mapping oy : Ay X --- x A, — B given by

Sp(as,+ ay) = lim 22 Fy(ay, - ;C—:L  T) (2.14)
forall z;; € A; (i =1,---,n). In (2.1), replacing ay, by with &
we obtain that

o QbJ; , respectively,

b —b
||22ka(xl7"' 7ak2_i—n ka"' ’an)—i—22ka(.§U1,”' 7ak2m k7"' 71;11)
b
—2. 22" Fy (2, - - 7;_7’;7... ) — 2+ 22" F(xy, - 72_:17... Lz

<0 2" P)([[ag|[P + [|bk]|)

which tends to zero as m — oo. Thus we obtain

Op(T1, -+ yap + by, xn) + 0p(x1, -+ ap — b, -+, ) (2.15)

:2(5k(fﬂ1,“' Syt ;Cn)_|_25k(x1’... ,bk’... 7xn>
for all ag, b, € Ay and all z; € A;(i # k). Hence J, is quadratic with respect to
the k-th variable. It follows from (2.12) that
20

20 — 4

||Fk(x17 s Lyt axn) _5]6(1’17”' y Lky* 7$n>|| S ||xk||p
for all z; € A; (i—1,2,--- M),

Replacing ay, by, ¢, with &, Qbﬁ” 7%, respectively, in (2.2), we obtain

[akbrc] gr(ar) gr(by) Ck
1P, ) — (BRI By, )]
gr(ar) by, gr(cr)
B R, g ) ]
Qg 9k (br) gr(cr)
_[Fk(xl7... 72_m7... 9 n) 22m 22m ]H

0
< G Ulawll” = 1Bell” + [lexl).
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Then we have

m [axbrcy] mr9k(ar) gr(br) Cr
”26 Fk(Ila"' o e 71'”)_26 [ S o k(xla"' ’2_m’... ’xn)]
omr Ik (k) by, gr(ck)
_9 [_22m Fi(zy, - T ) o ]
- ag gk(bk) gk(ck)
_26 [Fk;(xla 72_m’... 71’”) 22m 22m ]H

< 27O 0([lag || + [[6&]1” + llew]”).
for all ag, by, ¢, € A. Passing the limit m — oo in above inequality, we obtain

Ok(1, -+ s lagbrer), - 2n) = [gr(ar) gr(bk) Ok (T1, -+ cy oo )]
+ [gk<ak)5k(x17 U 7bk7 o 7xn)gk<ck)]
+ [5k(x17 Ty Ayt 7$n)gk(bk)gk<ck)]
for all ay, by, cx € Ay and all x; € A; (i # k).
Finally, to prove the uniqueness of dy, let 5; Ay x---x A, — B be another k-th
partial ternary quadratic derivation satisfying (2.10). Then we have

||6k3(x17 e al‘n) - 6;43(1‘17 e 71'71)”
Xz ’ T
:22mH5k<x17"' 72_:27"' 7xn)_5k(xla 72_:“ 73:77,)”
x x
< 2([0e(wr, ey ) = Flwn o o2
T ’ Xz
N Flan, g s an) = Gy, o))
<0 2P|z,
i=m
which tends to zero asm — oo forall x; € A; (i =1,2,--- ,n). So we can conclude
that 0 (1, ,2,) = 0, (1, ,2,). This proves the uniqueness of 4. O

By Theorems 2.1 and 2.2 we solve the following Hyers-Ulam-Rassias stability
problem.

Theorem 2.3. Let € be nonnegative real numbers and let Fy, : Ayx---xA,, — B be
a mapping with Fy(xq,--- ,0g, -+ ,x,) = 0g. Assume that there exist a quadratic
mapping g : A — B such that

||Fk<l’1, 7ak+bk‘7"' ,xn)+Fk(I1,"' ,U,k—bk,"' 73771)
_2Fk(x1> y Ay = - 7‘rn)_2Fk<x17"' 7bk7"' 71:”)” <e€ (216)

HFk(xlv T [akbkck]v T >$n) - [9k<ak)gk(bk)Fk($lﬂ Ty Gyt 7xn)]
—[gx(ar) Fi(z1, -+ bk, - -+ ) grlen)] (2.17)
_[Fk('rlv N (7 TR axn)gka)k)gk(ck)]n <e
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for all ay, by, cx € Ag, x; € A; (i # k). Then there exists a unique k-th partial
ternary quadratic derivation 6y : A1 X --- X A, — B such that

|Fu(an, -+, 2a) = Su(ar, - za)ll < (2.18)

Wl ™

holds for all z; € A; (i=1,2,--- ,n).

Proof. In Theorem 2.1, by putting p := 0 and 6 := §, we obtain the conclusion
of the theorem. O
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