The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

APPROXIMATELY PARTIAL TERNARY QUADRATIC DERIVATIONS ON BANACH TERNARY ALGEBRAS

A. JAVADIAN¹, M. ESHAGHI GORDJI^{2,*} AND M. BAVAND SAVADKOUHI³

Dedicated to Themistocles M. Rassias on the occasion of his sixtieth birthday

ABSTRACT. Let $A_1, A_2, ..., A_n$ be normed ternary algebras over the complex field $\mathbb C$ and let B be a Banach ternary algebra over $\mathbb C$. A mapping δ_k from $A_1 \times \cdots \times A_n$ into B is called a k-th partial ternary quadratic derivation if there exists a mapping $g_k : A_k \to B$ such that

$$\delta_{k}(x_{1}, \dots, [a_{k}b_{k}c_{k}], \dots, x_{n}) = [g_{k}(a_{k})g_{k}(b_{k})\delta_{k}(x_{1}, \dots, c_{k}, \dots, x_{n})]
+ [g_{k}(a_{k})\delta_{k}(x_{1}, \dots, b_{k}, \dots, x_{n})g_{k}(c_{k})]
+ [\delta_{k}(x_{1}, \dots, a_{k}, \dots, x_{n})g_{k}(b_{k})g_{k}(c_{k})]$$

and

$$\delta_k(x_1, \dots, a_k + b_k, \dots, x_n) + \delta_k(x_1, \dots, a_k - b_k, \dots, x_n)$$

$$= 2\delta_k(x_1, \dots, a_k, \dots, x_n) + 2\delta_k(x_1, \dots, b_k, \dots, x_n)$$

for all $a_k, b_k, c_k \in A_k$ and all $x_i \in A_i$ $(i \neq k)$. We prove the Hyers-Ulam-Rassias stability of the partial ternary quadratic derivations in Banach ternary algebras.

1. Introduction

The stability of functional equations was first introduced by Ulam [41] in 1940. More precisely, he proposed the following problem: given a group G_1 , a metric group (G_2, d) , and a positive number ϵ , does there exists a $\delta > 0$ such that if a function $f: G_1 \to G_2$ satisfies the inequality $d(f(xy), f(x)f(y)) < \delta$

Date: Received: September 28, 2010; Revised: November 22, 2010.

^{© 2010} N.A.G

^{*}Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46K05, 39B82, 39B52, 47B47.

Key words and phrases. Hyers-Ulam-Rassias stability; Banach ternary algebra; Partial ternary quadratic derivation.

for all $x, y \in G_1$, then there exists a homomorphism $T: G_1 \to G_2$ such that $d(f(x), T(x)) < \epsilon$ for all $x \in G_1$? As mentioned above, when this problem has a solution, we say that the homomorphisms from G_1 to G_2 are stable. In 1941, Hyers [31] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G_1 and G_2 are Banach spaces. In 1978, Rassias [39] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability that was introduced by Rassias [39] is called the Hyers-Ulam-Rassias stability. The following is according to Rassias' theorem.

Theorem 1.1. Let $f: E \to E'$ be a mapping from a norm vector space E into a Banach space E' subject to the inequality

$$||f(x+y) - f(x) - f(y)|| < \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon > 0$ and p < 1. Then there exists a unique additive mapping $T : E \to E'$ such that for all $x \in E$,

$$||f(x) - T(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p.$$

This new concept is known as Hyers-Ulam-Rassias stability of functional equations (see [27],[28],[30],[32],[35],[36] and [38]). The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
(1.1)

is related to symmetric bi-additive function. It is natural that this equation is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is said to be a quadratic function. It is well known that a function f between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive function B such that f(x) = B(x, x) for all x (see [34]). The bi-additive function B is given by

$$B(x,y) = \frac{1}{4}(f(x+y) - f(x-y))$$

Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.1) was proved by Skof for functions $f: A \longrightarrow B$, where A is normed space and B Banach space (see [4],[6],[29] and [40]). For more detailed definitions of such terminologies, we can refer to [1],[7]-[14],[16],[19]-[22] and [24].

A ternary (associative) algebra $(A, [\])$ is a linear space A over a scalar field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} equipped with a linear mapping, the so-called ternary product, $[\]: A \times A \times A \to A$ such that [[abc]de] = [a[bcd]e] = [ab[cde]] for all $a,b,c,d,e \in A$. This notion is a natural generalization of the binary case. Indeed if (A, \odot) is a usual (binary) algebra then $[abc] := (a \odot b) \odot c$ induced a ternary product making A in to a ternary algebra which will be called trivial. By a Banach ternary algebra we mean a ternary algebra equipped with a complete norm $\|.\|$ such that $\|[abc]\| \le \|a\| \|b\| \|c\|$ for all $a,b,c \in A$. It seems that approximate derivations were first investigated by Jun and Park [33]. Recently, the stability of derivations has been investigated by some authors; see [2, 5, 23, 26] and references therein. For more detailed definitions of such terminologies, we can refer to [3],[15],[17],[18],[25]

and [37].

2. Main results

Let $A_1, A_2, ..., A_n$ be normed ternary algebras over the complex field \mathbb{C} and let B be a Banach ternary algebra over \mathbb{C} . A mapping δ_k from $A_1 \times \cdots \times A_n$ into B is called a k-th partial ternary quadratic derivation if there exists a mapping $g_k : A_k \to B$ such that

$$\delta_k(x_1, \cdots, [a_k b_k c_k], \cdots, x_n) = [g_k(a_k)g_k(b_k)\delta_k(x_1, \cdots, c_k, \cdots, x_n)]$$

$$+ [g_k(a_k)\delta_k(x_1, \cdots, b_k, \cdots, x_n)g_k(c_k)]$$

$$+ [\delta_k(x_1, \cdots, a_k, \cdots, x_n)g_k(b_k)g_k(c_k)]$$

and

$$\delta_k(x_1, \dots, a_k + b_k, \dots, x_n) + \delta_k(x_1, \dots, a_k - b_k, \dots, x_n)$$

= $2\delta_k(x_1, \dots, a_k, \dots, x_n) + 2\delta_k(x_1, \dots, b_k, \dots, x_n)$

for all $a_k, b_k, c_k \in A_k$ and all $x_i \in A_i$ $(i \neq k)$. We denote that $0_k, 0_B$ are zero elements of A_k, B , respectively.

Theorem 2.1. Let $p \geq 0$ be given with p < 2 and let θ be nonnegative real numbers. Let $F_k : A_1 \times \cdots \times A_n \to B$ be a mapping with $F_k(x_1, \cdots, 0_k, \cdots, x_n) = 0_B$. Suppose that there exists a quadratic mapping $g_k : A_k \to B$ such that

$$||F_{k}(x_{1}, \dots, a_{k} + b_{k}, \dots, x_{n}) + F_{k}(x_{1}, \dots, a_{k} - b_{k}, \dots, x_{n}) - 2F_{k}(x_{1}, \dots, a_{k}, \dots, x_{n}) - 2F_{k}(x_{1}, \dots, b_{k}, \dots, x_{n})||$$

$$\leq \theta(||a_{k}||^{p} + ||b_{k}||^{p})$$
(2.1)

$$||F_{k}(x_{1}, \dots, [a_{k}b_{k}c_{k}], \dots, x_{n}) - [g_{k}(a_{k})g_{k}(b_{k})F_{k}(x_{1}, \dots, c_{k}, \dots, x_{n})]$$

$$-[g_{k}(a_{k})F_{k}(x_{1}, \dots, b_{k}, \dots, x_{n})g_{k}(c_{k})] - [F_{k}(x_{1}, \dots, a_{k}, \dots, x_{n})g_{k}(b_{k})g_{k}(c_{k})]||$$

$$\leq \theta(||a_{k}||^{p} + ||b_{k}||^{p} + ||c_{k}||^{p})$$
(2.2)

for all $a_k, b_k, c_k \in A_k$, $x_i \in A_i$ $(i \neq k)$. Then there exists a unique k-th partial ternary quadratic derivation $\delta_k : A_1 \times \cdots \times A_n \to B$ such that

$$||F_k(x_1,\dots,x_n) - \delta_k(x_1,\dots,x_n)|| \le \frac{2\theta}{4-2p} ||x_k||^p$$
 (2.3)

holds for all $x_i \in A_i$ $(i = 1, 2, \dots, n)$.

Proof. In (2.1), putting $a_k = b_k = x_k$, we have

$$||F_k(x_1,\dots,2x_k,\dots,x_n) - 4F_k(x_1,\dots,x_k,\dots,x_n)|| \le 2\theta ||x_k||^p,$$
 (2.4)

that is.

$$||F_k(x_1,\dots,x_k,\dots,x_n) - \frac{1}{4}F_k(x_1,\dots,2x_k,\dots,x_n)|| \le \frac{\theta}{2}||x_k||^p$$
 (2.5)

for all $x_i \in A_i$ $(i = 1, 2, \dots, n)$. One can use induction on m to show that

$$||F_k(x_1, \dots, x_k, \dots, x_n) - \frac{1}{2^{2m}} F_k(x_1, \dots, 2^m x_k, \dots, x_n)||$$

$$\leq \frac{\theta}{2} \sum_{i=0}^{m-1} 2^{i(p-2)} ||x_k||^p$$
(2.6)

for all $x_i \in A_i$ $(i = 1, 2, \dots, n)$ and all non-negative integers m. Hence

$$\|\frac{1}{2^{2j}}F_k(x_1,\dots,2^jx_k,\dots,x_n) - \frac{1}{2^{2(m+j)}}F_k(x_1,\dots,2^{(m+j)}x_k,\dots,x_n)\|$$

$$\leq \frac{\theta}{2}\sum_{i=j}^{m+j-1} 2^{i(p-2)}\|x_k\|^p$$
(2.7)

for all non-negative integers m and j with $m \geq j$ and all $x_i \in A_i$ $(i = 1, 2, \dots, n)$. It follows from p < 2 that the sequence $\{\frac{1}{2^{2m}}F_k(x_1, \dots, 2^m x_k, \dots, x_n)\}$ is Cauchy. Due to the completeness of B, this sequence is convergent. So one can define the mapping $\delta_k : A_1 \times \dots \times A_n \to B$ given by

$$\delta_k(x_1, \dots, x_n) = \lim_{m \to \infty} \frac{1}{2^{2m}} F_k(x_1, \dots, 2^m x_k, \dots, x_n)$$
 (2.8)

for all $x_i \in A_i$ $(i = 1, \dots, n)$. In (2.1), replacing a_k, b_k with $2^m a_k, 2^m b_k$, respectively, we obtain that

$$\|\frac{1}{2^{2m}}F_k(x_1,\dots,2^m(a_k+b_k),\dots,x_n) + \frac{1}{2^{2m}}F_k(x_1,\dots,2^m(a_k-b_k),\dots,x_n) - \frac{2}{2^{2m}}F_k(x_1,\dots,2^ma_k,\dots,x_n) - \frac{2}{2^{2m}}F_k(x_1,\dots,2^mb_k,\dots,x_n)\|$$

$$\leq \theta \cdot 2^{m(p-2)}(\|a_k\|^p + \|b_k\|^p)$$

which tends to zero as $m \to \infty$. Thus we obtain

$$\delta_k(x_1, \dots, a_k + b_k, \dots, x_n) + \delta_k(x_1, \dots, a_k - b_k, \dots, x_n)$$

$$= 2\delta_k(x_1, \dots, a_k, \dots, x_n) + 2\delta_k(x_1, \dots, b_k, \dots, x_n)$$
(2.9)

for all $a_k, b_k \in A_k$ and all $x_i \in A_i (i \neq k)$. Hence δ_k is quadratic with respect to the k-th variable. It follows from (2.7) that

$$||F_k(x_1,\dots,x_k,\dots,x_n) - \delta_k(x_1,\dots,x_k,\dots,x_n)|| \le \frac{2\theta}{4-2^p} ||x_k||^p$$

for all $x_i \in A_i \ (i = 1, 2, \dots, n)$.

Replacing a_k, b_k, c_k with $2^m a_k, 2^m b_k, 2^m c_k$, respectively, in (2.2), we obtain

$$||F_{k}(x_{1}, \cdots, 2^{3m}[a_{k}b_{k}c_{k}], \cdots, x_{n}) - [2^{2m}g_{k}(a_{k})2^{2m}g_{k}(b_{k})F_{k}(x_{1}, \cdots, 2^{m}c_{k}, \cdots, x_{n})] - [2^{2m}g_{k}(a_{k})F_{k}(x_{1}, \cdots, 2^{m}b_{k}, \cdots, x_{n})2^{2m}g_{k}(c_{k})] - [F_{k}(x_{1}, \cdots, 2^{m}a_{k}, \cdots, x_{n})2^{2m}g_{k}(b_{k})2^{2m}g_{k}(c_{k})]||$$

$$< 2^{mp}.\theta(||a_{k}||^{p} + ||b_{k}||^{p} + ||c_{k}||^{p}).$$

Then we have

$$\frac{1}{2^{6m}}F_k(x_1,\dots,2^{3m}[a_kb_kc_k],\dots,x_n)
-\frac{1}{2^{6m}}[2^{2m}g_k(a_k)2^{2m}g_k(b_k)F_k(x_1,\dots,2^mc_k,\dots,x_n)]
-\frac{1}{2^{6m}}[2^{2m}g_k(a_k)F_k(x_1,\dots,2^mb_k,\dots,x_n)2^{2m}g_k(c_k)]
-\frac{1}{2^{6m}}[F_k(x_1,\dots,2^ma_k,\dots,x_n)2^{2m}g_k(b_k)2^{2m}g_k(c_k)]\|
\leq 2^{m(p-6)}.\theta(\|a_k\|^p + \|b_k\|^p + \|c_k\|^p).$$

for all $a_k, b_k, c_k \in A_k$. Passing the limit $m \to \infty$ in above inequality, we obtain

$$\delta_k(x_1, \dots, [a_k b_k c_k], \dots, x_n) = [g_k(a_k) g_k(b_k) \delta_k(x_1, \dots, c_k, \dots, x_n)]$$

$$+ [g_k(a_k) \delta_k(x_1, \dots, b_k, \dots, x_n) g_k(c_k)]$$

$$+ [\delta_k(x_1, \dots, a_k, \dots, x_n) g_k(b_k) g_k(c_k)]$$

for all $a_k, b_k, c_k \in A_k$ and all $x_i \in A_i \ (i \neq k)$.

Finally, to prove the uniqueness of δ_k , let $\delta'_k : A_1 \times \cdots \times A_n \to B$ be another k-th partial ternary quadratic derivation satisfying (2.3). Then we have

$$\|\delta_{k}(x_{1}, \dots, x_{n}) - \delta'_{k}(x_{1}, \dots, x_{n})\|$$

$$= \frac{1}{2^{2m}} \|\delta_{k}(x_{1}, \dots, 2^{m}x_{k}, \dots, x_{n}) - \delta'_{k}(x_{1}, \dots, 2^{m}x_{k}, \dots, x_{n})\|$$

$$\leq \frac{1}{2^{2m}} (\|\delta_{k}(x_{1}, \dots, 2^{m}x_{k}, \dots, x_{n}) - F_{k}(x_{1}, \dots, 2^{m}x_{k}, \dots, x_{n})\|$$

$$+ \|F_{k}(x_{1}, \dots, 2^{m}x_{k}, \dots, x_{n}) - \delta'_{k}(x_{1}, \dots, 2^{m}x_{k}, \dots, x_{n})\|)$$

$$\leq \theta \sum_{i=m}^{\infty} 2^{i(p-2)} \|x_{k}\|^{p}.$$

which tends to zero as $m \to \infty$ for all $x_i \in A_i$ $(i = 1, 2, \dots, n)$. So we can conclude that $\delta_k(x_1, \dots, x_n) = \delta'_k(x_1, \dots, x_n)$. This proves the uniqueness of δ .

Theorem 2.2. Let p > 2 be and let θ be nonnegative real numbers. Let F_k : $A_1 \times \cdots \times A_n \to B$ be a mapping with $F_k(x_1, \cdots, 0_k, \cdots, x_n) = 0_B$. Suppose that there exists a quadratic mapping $g_k : A_k \to B$ such that satisfying (2.1) and (2.2) for all $a_k, b_k, c_k \in A_k$, $x_i \in A_i$ ($i \neq k$). Then there exists a unique k-th partial ternary quadratic derivation $\delta_k : A_1 \times \cdots \times A_n \to B$ such that

$$||F_k(x_1,\dots,x_n) - \delta_k(x_1,\dots,x_n)|| \le \frac{2\theta}{2^p - 4} ||x_k||^p$$
 (2.10)

holds for all $x_i \in A_i \ (i = 1, 2, \cdots, n)$.

Proof. In (2.1), putting $a_k = b_k = \frac{x_k}{2}$, we have

$$||F_k(x_1,\dots,x_k,\dots,x_n) - 4F_k(x_1,\dots,\frac{x_k}{2},\dots,x_n)|| \le \frac{2\theta}{2^p} ||x_k||^p,$$
 (2.11)

for all $x_i \in A_i$ $(i = 1, 2, \dots, n)$. One can use induction on m to show that

$$||F_k(x_1, \dots, x_k, \dots, x_n) - 2^{2m} F_k(x_1, \dots, \frac{x_k}{2^m}, \dots, x_n)||$$

$$\leq \frac{2\theta}{2^p} \sum_{i=0}^{m-1} 2^{i(2-p)} ||x_k||^p$$
(2.12)

for all $x_i \in A_i$ $(i = 1, 2, \dots, n)$ and all non-negative integers m. Hence

$$\|2^{2j}F_k(x_1,\dots,\frac{x_k}{2^j},\dots,x_n) - 2^{2(m+j)}F_k(x_1,\dots,\frac{x_k}{2^{(m+j)}},\dots,x_n)\|$$

$$\leq \frac{2\theta}{2^p}\sum_{i=j}^{m+j-1} 2^{i(2-p)}\|x_k\|^p$$
(2.13)

for all non-negative integers m and j with $m \geq j$ and all $x_i \in A_i$ $(i = 1, 2, \dots, n)$. It follows from p > 2 that the sequence $\{2^{2m}F_k(x_1, \dots, \frac{x_k}{2^m}, \dots, x_n)\}$ is Cauchy. Due to the completeness of B, this sequence is convergent. So one can define the mapping $\delta_k : A_1 \times \dots \times A_n \to B$ given by

$$\delta_k(x_1, \dots, x_n) = \lim_{m \to \infty} 2^{2m} F_k(x_1, \dots, \frac{x_k}{2^m}, \dots, x_n)$$
 (2.14)

for all $x_i \in A_i$ $(i = 1, \dots, n)$. In (2.1), replacing a_k, b_k with $\frac{a_k}{2^m}, \frac{b_k}{2^m}$, respectively, we obtain that

$$\|2^{2m}F_k(x_1,\dots,\frac{a_k+b_k}{2^m},\dots,x_n) + 2^{2m}F_k(x_1,\dots,\frac{a_k-b_k}{2^m},\dots,x_n) - 2 \cdot 2^{2m}F_k(x_1,\dots,\frac{b_k}{2^m},\dots,x_n)\|$$

$$\leq \theta \cdot 2^{m(2-p)}(\|a_k\|^p + \|b_k\|^p)$$

which tends to zero as $m \to \infty$. Thus we obtain

$$\delta_k(x_1, \dots, a_k + b_k, \dots, x_n) + \delta_k(x_1, \dots, a_k - b_k, \dots, x_n)$$

$$= 2\delta_k(x_1, \dots, a_k, \dots, x_n) + 2\delta_k(x_1, \dots, b_k, \dots, x_n)$$

$$(2.15)$$

for all $a_k, b_k \in A_k$ and all $x_i \in A_i (i \neq k)$. Hence δ_k is quadratic with respect to the k-th variable. It follows from (2.12) that

$$||F_k(x_1,\dots,x_k,\dots,x_n) - \delta_k(x_1,\dots,x_k,\dots,x_n)|| \le \frac{2\theta}{2p-4} ||x_k||^p$$

for all $x_i \in A_i \ (i = 1, 2, \dots, n)$.

Replacing a_k, b_k, c_k with $\frac{a_k}{2^m}, \frac{b_k}{2^m}, \frac{c_k}{2^m}$, respectively, in (2.2), we obtain

$$||F_{k}(x_{1}, \dots, \frac{[a_{k}b_{k}c_{k}]}{2^{3m}}, \dots, x_{n}) - [\frac{g_{k}(a_{k})}{2^{2m}} \frac{g_{k}(b_{k})}{2^{2m}} F_{k}(x_{1}, \dots, \frac{c_{k}}{2^{m}}, \dots, x_{n})]$$

$$- [\frac{g_{k}(a_{k})}{2^{2m}} F_{k}(x_{1}, \dots, \frac{b_{k}}{2^{m}}, \dots, x_{n}) \frac{g_{k}(c_{k})}{2^{2m}}]$$

$$- [F_{k}(x_{1}, \dots, \frac{a_{k}}{2^{m}}, \dots, x_{n}) \frac{g_{k}(b_{k})}{2^{2m}} \frac{g_{k}(c_{k})}{2^{2m}}]||$$

$$\leq \frac{\theta}{2^{mn}} (||a_{k}||^{p} + ||b_{k}||^{p} + ||c_{k}||^{p}).$$

Then we have

$$||2^{6m}F_{k}(x_{1},\cdots,\frac{[a_{k}b_{k}c_{k}]}{2^{3m}},\cdots,x_{n}) - 2^{6m}\left[\frac{g_{k}(a_{k})}{2^{2m}}\frac{g_{k}(b_{k})}{2^{2m}}F_{k}(x_{1},\cdots,\frac{c_{k}}{2^{m}},\cdots,x_{n})\right]$$

$$-2^{6m}\left[\frac{g_{k}(a_{k})}{2^{2m}}F_{k}(x_{1},\cdots,\frac{b_{k}}{2^{m}},\cdots,x_{n})\frac{g_{k}(c_{k})}{2^{2m}}\right]$$

$$-2^{6m}\left[F_{k}(x_{1},\cdots,\frac{a_{k}}{2^{m}},\cdots,x_{n})\frac{g_{k}(b_{k})}{2^{2m}}\frac{g_{k}(c_{k})}{2^{2m}}\right]||$$

$$<2^{m(6-p)}.\theta(||a_{k}||^{p}+||b_{k}||^{p}+||c_{k}||^{p}).$$

for all $a_k, b_k, c_k \in A_k$. Passing the limit $m \to \infty$ in above inequality, we obtain

$$\delta_{k}(x_{1}, \dots, [a_{k}b_{k}c_{k}], \dots, x_{n}) = [g_{k}(a_{k})g_{k}(b_{k})\delta_{k}(x_{1}, \dots, c_{k}, \dots, x_{n})]$$

$$+ [g_{k}(a_{k})\delta_{k}(x_{1}, \dots, b_{k}, \dots, x_{n})g_{k}(c_{k})]$$

$$+ [\delta_{k}(x_{1}, \dots, a_{k}, \dots, x_{n})g_{k}(b_{k})g_{k}(c_{k})]$$

for all $a_k, b_k, c_k \in A_k$ and all $x_i \in A_i \ (i \neq k)$.

Finally, to prove the uniqueness of δ_k , let $\delta'_k : A_1 \times \cdots \times A_n \to B$ be another k-th partial ternary quadratic derivation satisfying (2.10). Then we have

$$\|\delta_{k}(x_{1}, \dots, x_{n}) - \delta'_{k}(x_{1}, \dots, x_{n})\|$$

$$= 2^{2m} \|\delta_{k}(x_{1}, \dots, \frac{x_{k}}{2^{m}}, \dots, x_{n}) - \delta'_{k}(x_{1}, \dots, \frac{x_{k}}{2^{m}}, \dots, x_{n})\|$$

$$\leq 2^{2m} (\|\delta_{k}(x_{1}, \dots, \frac{x_{k}}{2^{m}}, \dots, x_{n}) - F_{k}(x_{1}, \dots, \frac{x_{k}}{2^{m}}, \dots, x_{n})\|$$

$$+ \|F_{k}(x_{1}, \dots, \frac{x_{k}}{2^{m}}, \dots, x_{n}) - \delta'_{k}(x_{1}, \dots, \frac{x_{k}}{2^{m}}, \dots, x_{n})\|)$$

$$\leq \theta \sum_{k=1}^{\infty} 2^{i(2-p)} \|x_{k}\|^{p}.$$

which tends to zero as $m \to \infty$ for all $x_i \in A_i$ $(i = 1, 2, \dots, n)$. So we can conclude that $\delta_k(x_1, \dots, x_n) = \delta'_k(x_1, \dots, x_n)$. This proves the uniqueness of δ .

By Theorems 2.1 and 2.2 we solve the following Hyers-Ulam-Rassias stability problem.

Theorem 2.3. Let ϵ be nonnegative real numbers and let $F_k: A_1 \times \cdots \times A_n \to B$ be a mapping with $F_k(x_1, \cdots, 0_k, \cdots, x_n) = 0_B$. Assume that there exist a quadratic mapping $g_k: A_k \to B$ such that

$$||F_k(x_1, \dots, a_k + b_k, \dots, x_n) + F_k(x_1, \dots, a_k - b_k, \dots, x_n) - 2F_k(x_1, \dots, a_k, \dots, x_n) - 2F_k(x_1, \dots, b_k, \dots, x_n)|| \le \epsilon$$
 (2.16)

$$||F_{k}(x_{1}, \dots, [a_{k}b_{k}c_{k}], \dots, x_{n}) - [g_{k}(a_{k})g_{k}(b_{k})F_{k}(x_{1}, \dots, c_{k}, \dots, x_{n})] - [g_{k}(a_{k})F_{k}(x_{1}, \dots, b_{k}, \dots, x_{n})g_{k}(c_{k})] - [F_{k}(x_{1}, \dots, a_{k}, \dots, x_{n})g_{k}(b_{k})g_{k}(c_{k})]|| \leq \epsilon$$
(2.17)

for all $a_k, b_k, c_k \in A_k$, $x_i \in A_i$ $(i \neq k)$. Then there exists a unique k-th partial ternary quadratic derivation $\delta_k : A_1 \times \cdots \times A_n \to B$ such that

$$||F_k(x_1,\dots,x_n) - \delta_k(x_1,\dots,x_n)|| \le \frac{\epsilon}{3}$$
 (2.18)

holds for all $x_i \in A_i \ (i = 1, 2, \dots, n)$.

Proof. In Theorem 2.1, by putting p := 0 and $\theta := \frac{\epsilon}{2}$, we obtain the conclusion of the theorem.

References

- [1] S. Abbaszadeh, Intuitionistic fuzzy stability of a quadratic and quartic functional equation, Int. J. Nonlinear Anal. Appl. 1 (2010),2, 100–124.
- [2] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), 167–173.
- [3] M. Bavand Savadkouhi, M. Eshaghi Gordji, J. M. Rassias and N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys, 50 (2009), 9 pages.
- [4] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.
- [5] H. Chu, S. Koo and J. Park, Partial stabilities and partial derivations of *n*-variable functions, Nonlinear Anal.–TMA (to appear).
- [6] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64.
- [7] A. Ebadian, A. Najati, M. E. Gordji, On approximate additive—quartic and quadratic—cubic functional equations in two variables on abelian groups, Results Math. DOI 10.1007/s00025-010-0018-4 (2010).
- [8] M. Eshaghi Gordji, Stability of a functional equation deriving from quartic and additive functions, Bull. Korean Math. Soc. Vol. 47, No.3, (2010), 491–502.
- [9] M. Eshaghi Gordji, Stability of an additive—quadratic functional equation of two variables in F–spaces, Journal of Nonlinear Sciences and Applications, Vol 2, No 4,(2009) pp. 251–259.
- [10] M. Eshaghi Gordji, S. Abbaszadeh and C. Park, On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces, J. Ineq. Appl. (2009), Article ID 153084, 26 pages.
- [11] M. Eshaghi Gordji, M. Bavand Savadkouhi and C. Park, Quadratic-quartic functional equations in RN-spaces, *J. Ineq. Appl.* (2009), Article ID 868423, 14 pages.
- [12] M. Eshaghi Gordji, M. Bavand Savadkouhi and M. Bidkham, Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces, Journal of Computational Analysis and Applications. VOL. 12, No. 2, (2010), 454–462.
- [13] M. Eshaghi Gordji and A. Bodaghi, On the Hyers–Ulam–Rasias Stability problem for quadratic functional equations, East Journal On Approximations. Vol. 16, No. 2 (2010), 123–130.
- [14] M. Eshaghi Gordji and A. Bodaghi, On the stability of quadratic double centralizers on Banach algebras, J. Comput. Anal. Appl. (in press).
- [15] M. Eshaghi Gordji, M. B. Ghaemi, S. Kaboli Gharetapeh, S. Shams, A. Ebadian, On the stability of J*-derivations, Journal of Geometry and Physics. 60(3) (2010), 454–459.
- [16] M. Eshaghi Gordji, M. Ghanifard, H. Khodaei and C. Park, A fixed point approach to the random stability of a functional equation driving from quartic and quadratic mappings, Discrete Dynamics in Nature and Society. (2010), Article ID: 670542.
- [17] M. Eshaghi Gordji, N. Ghobadipour, Stability of (α, β, γ) —derivations on Lie C^* —algebras, To appear in International Journal of Geometric Methods in Modern Physics (IJGMMP).

- [18] M. Eshaghi Gordji, S. Kaboli Gharetapeh, T. Karimi, E. Rashidi and M. Aghaei, Ternary Jordan derivations on C*-ternary algebras, Journal of Computational Analysis and Applications, VOL.12, No.2, 2010, 463–470.
- [19] M. Eshaghi Gordji, S. Kaboli-Gharetapeh, C. Park and S. Zolfaghri, Stability of an additive-cubic-quartic functional equation, Advances in Difference Equations. (2009), Article ID 395693, 20 pages.
- [20] M. Eshaghi Gordji, S. Kaboli Gharetapeh, J. M. Rassias and S. Zolfaghari, Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advances in difference equations. Volume 2009, Article ID 826130, 17 pages, doi:10.1155/2009/826130.
- [21] M. Eshaghi Gordji, H. Khodaei, On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abs. Appl. Anal. Volume 2009, Article ID 923476, 11 pages.
- [22] M. Eshaghi Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis— TMA 71 (2009), 5629–5643.
- [23] M. Eshaghi Gordji and M. S. Moslehian, A trick for investigation of approximate derivations, Math. Commun. 15 (2010), no. 1, 99–105.
- [24] M. Eshaghi Gordji, M. Ramezani, A. Ebadian and C. Park, Quadratic double centralizers and quadratic multipliers, Advances in Difference Equations (in press).
- [25] M. Eshaghi Gordji, J. M. Rassias, N. Ghobadipour, Generalized Hyers-Ulam stability of the generalized (n, k)-derivations, Abs. Appl. Anal., Volume 2009, Article ID 437931, 8 pages.
- [26] R. Farokhzad and S. A. R. Hosseinioun, Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Internat. J. Nonlinear Anal. Appl. 1 (2010), 1, 42–53.
- [27] Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci. 14 (1991), 431–434.
- [28] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl, 184 (1994), 431–436.
- [29] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen. 48 (1996), 217–235.
- [30] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, *Birkhaĕr*, *Basel*, (1998).
- [31] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci, 27 (1941), 222–224.
- [32] G. Isac and Th. M. Rassias, On the Hyers–Ulam stability of ψ -additive mappings, J. Approx. Theory, 72 (1993), 131–137.
- [33] K. Jun and D. Park, Almost derivations on the Banach algebra $C^n[0,1]$, Bull. Korean Math. Soc. 33 (1996), 359–366.
- [34] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math, 27 (1995), 368–372.
- [35] H. Khodaei and M. Kamyar, Fuzzy approximately additive mappings, Int. J. Nonlinear Anal. Appl. 1 (2010), 2, 44–53.
- [36] H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010),1, 22–41.
- [37] C. Park and M. Eshaghi Gordji, Comment on Approximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)], J. Math. Phys. 51, 044102 (2010) (7 pages).
- [38] C. Park and A. Najati, Generalized additive functional inequalities in Banach algebras, Int. J. Nonlinear Anal. Appl. 1 (2010),2, 54–62.
- [39] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. **72** (1978), 297–300.
- [40] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.

[41] S. M. Ulam, Problems in modern mathematics, Chapter VI, science ed., Wiley, New York, (1940).

 $^{1}\mathrm{Department}$ of Physics, Semnan University, P. O. Box 35195-363, Semnan, Iran

 $^{2,3}\mathrm{Department}$ of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran

 $E\text{-}mail\ address: \verb|madjid.eshaghi@gmail.com|; bavand.m@gmail.com|}$