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Abstract

The aim of this paper, is to introduce and study the modified Noor iterative algorithm with errors for
approximating common fixed points of three asymptotically nonexpansive nonself-mappings. Several strong
and weak convergence results on this algorithm are established under certain conditions in a uniformly
convex Banach space. The results obtained in this paper improve and generalize the recent ones announced
by Khan and Hussain [S. H. Khan, N. Hussain, Comput. Math. Appl. 55 (2008), 2544-2553.], Nammanee,
et. al., [K. Nammanee, M.A. Noor and S. Suantai, J. Math. Anal. Appl. 314 (2006), 320-334.], Suantai
[S. Suantai, J. Math. Anal. Appl. 311 (2005), 506-517.], Cho et. al., [Y. J. Cho, H. Y. Zhou and G. Guo,
Comput. Math. Appl. 47 (2004), 707-717.], Xu and Noor [B. L. Xu and M.A. Noor, J. Math. Anal. Appl.
267 (2002), 444-453.] and many others.
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1. Introduction

Let C be a nonempty closed convex subset of real normed linear space X. A self-mapping 7' : C — C
is said to be asymptotically nonerpansive if there exists a sequence {k,} C [1,00), k, — 1 as n — oo such
that

[T7"(x) =TIl < Enllz =yl (1.1)

for all z,y € C'and n > 1.
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If k, = 1, then T is known as a nonexpansive mapping. A self-mapping T is called uniformly L—
Lipschitzian if there exists a constant L > 0 such that

77" (x) =TIl < Lz -yl (1.2)

for all z,y € C and n > 1.

It is easy to see that if T" is an asymptotically nonexpansive, then it is uniformly L—Lipschitzian with
the uniform Lipschitz constant L = sup{k, : n > 1}.

Iterative methods for approximating fixed points of certain mappings have been studied by various
authors, using the Mann iterative (a one-step) and the Ishikawa iterative (a two-step) processes. For example,
see [3], [, [9], [I1], [15-19]. Goebel and Kirk [7] introduced the class of asymptotically nonexpansive self-
mappings, who proved that if C' is a nonempty closed convex subset of a real uniformly convex Banach space
and T is an asymptotically nonexpansive self-mapping on C, then T has a fixed point.

Glowinski and Le Tallec [6] used three-step iterative schemes to find the approximate solutions of the
elastoviscoplasticity problem, liquid crystal theory, and eigenvalue computation. It has been shown in [0] that
the three-step iterative scheme gives better numerical results than the two-step and one-step approximate
iterations. In 1998, Haubruge, Nguyen and Strodiot [8] studied the convergence analysis of three-step
schemes of Glowinski and Le Tallec [6] and applied these schemes to obtain new splitting-type algorithms
for solving variation inequalities, separable convex programming and minimization of a sum of convex
functions. They also proved that three-step iterations lead to highly parallelized algorithms under certain
conditions. Thus we conclude that three-step scheme plays an important and significant part in solving
various problems, which arise in pure and applied sciences.

The concept of asymptotically nonexpansive nonself-mappings was introduced in [I] in 2003 as the
generalization of asymptotically nonexpansive self-mappings. The asymptotically nonexpansive nonself-
mapping is defined as follows:

Definition 1.1 ([1]). Let C' be a nonempty subset of real normed linear space X. Let P : X — C be a
nonexpansive retraction of X onto C. A nonself-mapping T : C — X is called asymptotically nonexpansive
if there exists a sequence {ky} C [1,00), k;, — 1 as n — oo such that

IT(PT)" ' = T(PT)" 'yl < kallz -y (1.3)
for all x,y € C and n > 1. T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such
that

IT(PT)" 2 = T(PT)" 'y < Lllz —yl| (1.4)
for all z,y € C and n > 1.

By studying the following iteration process:
r1€C, zpr1 = P((1—ap)zn +a,T(PT)" x,),

Chidume, Ofoedu and Zegeye [I] gave some strong and weak convergence theorems for asymptotically
nonexpansive nonself-mapping in a uniformly convex Banach space.
If T is a self-mapping, then P becomes the identity mapping so that ([1.3)) and (1.4) reduce to (1.1} and

(1.2)), respectively.

Recently, Khan and Hussain [10] introduced the following three-step iterative process and used it for the
weak and strong convergence of fixed points of asymptotically nonexpansive nonself-mappings in a uniformly
convex Banach space. For an arbitrary z; € C, compute the sequences {z,}, {y,} and {z,} by the iterative
scheme

Zn = P(an,T(PT)" tay 4+ (1 — ay)xy),
Yn = Pb,T(PT)" L2y + c, T(PT)" 1z 4+ (1 — by — cn)n), (1.5)
Tnt1 = PlayT(PT)" Yy + BuT(PT)" zp + (1 — a — Bn)wn), n>1,
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where {a,}, {bn}, {cn}, {an}, {Bn} are appropriate sequences in [0, 1] satisfy certain conditions.

Obviously the above process deals with one self mapping only. Note that approximating the common
fixed points, has its own importance as it has a direct link with the minimization problem, see for example
Takahashi [21].

Inspired and motivated by these facts, a three-step iterative scheme with errors for approximating com-
mon fixed points of three asymptotically nonexpansive nonself-mappings is introduced and studied in this
paper. The scheme is defined as follows.

Let X be a normed space, C' a nonempty convex subset of X, P: X — C a nonexpansive retraction of
X onto C' and T1,T5,T5 : C — X given mappings. Then for an arbitrary x; € C, the following iteration
scheme is studied:

Zn = P(anTl(PTl)”_I:L‘n + (1 —an — Y)Tn + Ynln),
Yn = P(bnTg(PTz)”_lzn + chl(PTl)”_lxn + (1 = by — cp — fin)Tn + fntn),
Tptl = P(anTg(PTg)”_lyn + /BnTQ(PTQ)n_IZn + (1 —apn — Bn — An)xn + Awy),
n>1, (1.6)

where {a, }, {bn}, {cn}, {an}, {Bn}: {m}, {ttn}, {\n} are appropriate sequences in [0, 1] and {u,}, {v,}, {wn}
are bounded sequences in C.

It reduces to the Khan and Hussain iterative process (1.5) for 73 = 1o = T3 = T : ¢ — X and
Yo = pn = An = 0.

IfTy =T, =T3 =T :C — C, then the iterative schemes (1.6 reduces to the modified Noor iterations
with errors defined by Nammanee, Noor and Suantai [12]

Zn = anTnxn + (1 — Qp — ’Yn)xn + Ynln,
Yn = bnTnZn + CnTnxn + (]- - bn — Cp — Nn)xn + HnUn, (17)
Tn+l = anTnyn + /BnTnzn + (1 — Op — /Bn - )\n>xn + Anwnv n 2 17

where {an}, {bn}, {cn}, {an}, {Bn}, {}, {tn}, {\n} are appropriate sequences in [0, 1] and {u,}, {vn}, {wn}
are bounded sequences in C.

It =T,=T3=T:C — C and v, = up = A, =0, then reduces to the modified Noor iterations
defined by Suantai [20]

zn = apT"xn + (1 —ap)zp,
Yn = bT"zp + T xn 4+ (1 — by — )y, (1.8)
Tn+l = anTnyn + /BnTnzn + (1 — Op — 577,)5(;717 n Z 17

where {an},{bn},{cn},{an}, {Bn} are appropriate sequences in [0, 1].
U =T,=T3=T:C — C and ¢, = 8, = 0, then ([1.6) reduces to the three-step iterations with
errors defined by Cho, Zhou and Guo [2]

Zn = anTnxn + (1 — Qp — ’Yn)mn + Ynln,
Yn = bpT"zp + (1 — by — fn) Ty + finUn, (1.9)
Tnt1 = Ty + (1 —ap — A\p)zn + Awn, n>1,

where {an }, {bn}, {an}, {1}, {ttn}, { n} are appropriate sequences in [0, 1] and {u, }, {vn}, {w,} are bounded
sequences in C.

IlezTg:ngT:C%Candcn:ﬁn:’yn:,un:)\nEO,thenreducestotheNoor
iterations defined by Xu and Noor [23]

zn = ayT"xn + (1 — ap)zn,
Yn = bpyT"zp + (1 —bp)zp, (1.10)
Tn4+1 = anTnyn + (1 - O‘n)xm n>1,
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where {a,}, {bn}, {an} are appropriate sequences in [0, 1].

We note that the usual Ishikawa and Mann iterations are special cases of . The convexity of C' then
ensures that the sequences {z,}, {yn} and {2, } generated by (L.7)-(L.10) are well defined. If, however, C
is a proper subset of the real Banach space X and T maps C into X (as is the case in many applications),
then the sequences given by — may not be well defined. Clearly, we can obtain the corresponding
nonself versions of f . We shall obtain the strong and weak convergence theorems using ([1.5)—
for three asymptotically nonexpansive nonself-mappings in a uniformly convex Banach space. Our
results will thus improve and generalize corresponding results of Khan and Hussain [10], Nammanee, Noor
and Suantai [12], Suantai [20], Cho, Zhou and Guo [2], Xu and Noor [23] and many others.

2. Preliminaries

Let X be a Banach space with dimension X > 2. The modulus of X is the function dx : (0,2] — [0, 1]

defined by
dx(€) = inf{l — \I%(ﬂery)H Hlefl =1, [lyll = 1, e = flz =y}
Banach space X is uniformly convex if and only if dx(¢) > 0 for all € € (0, 2].

A subset C of X is said to be retract if there exists continuous mapping P : X — C such that Px = x
for all x € C. Every closed convex subset of a uniformly convex Banach space is a retract. A mapping
P : X — X is said to be a retraction if P? = P. It follows that if a mapping P is a retraction, then Pz = z
for every z € R(P), the range of P. A set C' is optimal if each point outside C' can be moved to be closer to
all points of C. It is well known (see [5]) that

(1) If X is a separable, strictly convex, smooth, reflexive Banach space, and if C' CX is an optimal set
with interior, then C' is a nonexpansive retract of X.

(2) A subset of [P, with 1 < p < 00, is a nonexpansive retract if and only if it is optimal.

Note that every nonexpansive retract is optimal. In strictly convex Banach spaces, optimal sets are closed
and convex. Moreover, every closed convex subset of a Hilbert space is optimal and also a nonexpansive
retract.

Recall that a Banach space X is said to satisfy Opial’s condition [14] if x, — = weakly as n — oo and
x # y implying that

limsup ||z, — z|| < limsup ||z, — y||.
n—oo n—oo

A mapping T : C — X is said to be demicompact if, for any sequence {z,,} in C such that ||z, —Tzy| — 0
as n — oo, there exists a subsequence {z,} of {x,} such that {x,;} converges strongly to z* € C.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.1 ([22], Lemma 1 ). Let {a,},{bn} and {0,} be sequences of nonnegative real numbers satisfying
the inequality
ant1 < (14 0p)an + by, ¥n=1,2,....

If Y00 0p < 00 and Yo7 by < 00, then
(1) limy, 500 ay, exists .
(2) lim,, o0 ay, = 0 whenever liminf,,_, a, = 0.

Lemma 2.2 ([I3], Lemma 4 ). Let X be a uniformly convexr Banach space and r > 0. Then there ezists a
continuous strictly increasing convex function g :[0,1) — [0,1) with g(0) =0 such that

Iha + py + €2+ dwl* < Al2l® + plly ] + €ll2]* + 9]|w]?
1
—390g(llz —wll) + ng(ly — wl) + &g(llz = wll)),

forallx,y,z,we B ={x € X :|z|| <r} and \,u, &,V € [0,1] with A\ +pu+E+9 =1
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Lemma 2.3 ([I], Theorem 3.4 ). Let X be a uniformly convex Banach space and C a nonempty closed convex
subset of X. Let T : C — X be an asymptotically nonexpansive mapping with a sequence {k,} C [1,00) and
kn = 1 asn — oco. Then I —T is demiclosed at zero, i.e., if v, — x weakly and x, — Tx, — 0 strongly,
then x € F(T), where F(T) is the set of fived points of T.

Lemma 2.4 ([20], Lemma 2.7 ). Let X be a Banach space which satisfies Opial’s condition and let {x,}
be a sequence in X . Let u,v € X be such that lim, o ||y, — || and lim, o ||z, — v|| ezist. If {zy,} and
{xm, } are subsequences of {xy,} which converge weakly to u and v, respectively, then u = v.

3. Main results

In this section, we prove strong and weak convergence theorems for the three-step iterative scheme with
errors given in ((1.6) to a common fixed point for three asymptotically nonexpansive nonself-mappings in a
uniformly convex Banach space. In order to prove our main results, the following lemmas are needed.

Lemma 3.1. Let X be a uniformly convexr Banach space and C a nonempty closed convexr nonexpansive
retract of X with P a nonexpansive retraction. Let Ty, T5,T5 : C — X be three asymptotically nonerpansive
nonself-mappings of C with sequences {kn},{ln},{mn} C [1,00) such that > 7 (k, —1) < 00, Yo (I, —
1) < o0, Y0l (mp —1) < 00, ky = 1, 1, = 1, my — 1 as n — oo, respectively and F := F(T1) N
F(Ty) N F(T3) # 0. Let {an}, {bn},{cn}, {an}, {Bn}, {1}, {n} and {\,} be real sequences in [0,1] such
that an + Yn, by + cn + pn and oy + Bn + Ay are in [0,1] for alln > 1, and Y 07 Y < 00, D 00y fn <
00, Y02 An < 00, and let {un}, {vn} and{wy} be the bounded sequences in C. From an arbitrary z; € C,
define the sequences {xy}, {yn} and {z,} using (1.6).

(i) If q is a fixved point of T1,To and Ts , then lim, oo ||z, — q|| exists.

(i) If liminf, o a, > 0, liminf, ;o b, > 0 and 0 < liminf,, . a, < limsup,,_,. (an + v,) < 1, then
limy, o0 |71 (PTY)" 12y — 2] = 0.

(#3) If iminf, o a, > 0 and 0 < liminf, o ¢, < limsup,,_, . (bn + cn + pn) < 1, then
limy, o0 |71 (PTy)" 12, — 2] = 0.

() If liminf,,_, B, > 0 and 0 < liminf,,_, a, < limsup,,_,(an + ) < 1, then
iy, o0 |71 (PTY)" @ — 20| = 0.

(v) If liminf, o ay, > 0 and 0 < liminf, o b, < limsup,, (b, + ¢y + pn) < 1, then
limy o0 | To(PT2)" 2y — || = 0.

(vi) If 0 < iminf, o0 By < limsup,, o (@n + Bn + An) < 1, then limy, oo | T2(PT2)" 12, — 2yl = 0.

(vii) If 0 < liminf, o0 oy < limsup,,_, oo (an + Bn + An) < 1, then limy, o0 | T5(PT3)" Ly, — 2] = 0.

Proof. Let q € F, by boundedness of the sequences {u,},{v,} and {w,}, we can put
M = max{sup [|un — ql[,sup [|vn — ql|, sup [|wn —q||}.
n>1 n>1 n>1
(i) Using (1.6]), we have

|znt1 = all = [ P(anT3(PT3)" yn + B To(PT2)" 2,
+ (1 — an — Bn — )T + Apwy) — P(q)||
< [lon (T5(PT3)" yn — ) + Bu(T2(PT2)" " 20 — q)
+ (1 —an = Bn = An)(@n — @) + An(wn — g
< || T3(PT3)" yn — gl + Bl To(PT2)" ' 2 — g
+ (1 —an =B — A)llzn — qll + Anllwn — 4|
< anmn|lyn — qll + Bulnllzn — qll + (1 — an — B — M) lzn — ql| + M A, (3.1)

and
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l2n —qll = ||P(anT1(PT1)”_1xn + (1 = an — ) Tn + Ynun) — P(q)]|
< Han(Tl(PTl)nilmn —q) + (1= an —v)(@n — q) + Yn(un — q)||
< an|| TV (PT)" = gl + (1 = an = yn)ll2n — all + v llun — gl
< anknllen = qll + (1 = an — n)llan — qll + Myn
< (ankn + (1 — an))l|lzn — qll + My,
= (an(kn — 1) + Dlzn — gl + My
< knllTn — qll + Myn. (3.2)

From , we have
lyn — qll = HP(bnTQ(PTﬁnilzn +CnT1(PT1)n71xn
+ (1= bn — o — pn)Tn + pinvn) — P(q)||
< bu(To(PT2)" 20 = q) + ea(T1(PT1)" 2y — q)
+ (1 =bp — cn — pn) (X0 — @) + pin(vn — 9|
< 0| Ta(PT2)" 2 — gl + ca | TV (PT)™ iy — g
+ (1 = by — e — pn)l|xn — gl + pnllvn — 4|
< bplpllzn — gl + cnknllzn — gll + (1 = b — e — pn) |20 — gl + Mpn
< bpln(knllzn — qll + M) + cpknl|zn — 4|
+ (1 — by —cp — Mn)”xn - QH + My
< bplkn||n — gl + Mbulnyn + cpknln — q||
+ (1= bn —cn)lln — qll + Mpun
= (bulnkn + cokin + (1= by — co))l|lzn — qll + €y
= (14 (cn +n)(kn — 1) + bpkn(ln — 1)z — gl + €y, (3.3)

where €fy = Mbnlypyn+M pin. Since oo I < 00, >0 i < 00 and {l,} is bounded, we have > "7 €l <

- By using , and , we have
[ = all < (14 (e + bk — 1) + byl — 1) — ] + €fy)
+ Buln(knllzn — qll + Myn) + (1 — an — Bn — An)llzn — gqll + M A,
= anmn(1 + (cn + bn) (kn — 1) + bukn(ln — 1) |20 — qll + cnmnepy)
+ Bulnknl|zn — qll + M Bplnyn + (1 — an — B — M) |70 — gl| + M A,
< apmn (14 (cp + b)) (kn — 1) + bpkn(ln — 1)) ||zn — ¢
+ Blnknl|zn —ql| + (1 = an — Bn) ||l 2n — ql| + 67(12)
= (M + anmy(cn, + b)) (kn — 1) + anmpbpkn (I, — 1) + Bulnkny
1= an = Bo)llen — gl + b,
= (an(mn — 1) + apmp(cn + bn) (kn — 1) + anmpbrkn (1, — 1)
+ Bnlkn — 1) + Brkn(ln — 1) + 1)|lzn — qll + €3
< (14 (mp—1)+ (my+1)(k, — 1)
+ (Mnkn + k) (ln = 1))[|zn — gl + €y, (3.4)
where 6?2) = anmne?l) + MBplyyn + M A, and we note here that > 7, 6?2) < oo since » o7, 6?1) < 00,
Yot Y <00, >0 A < 00 and {my}, {l,} are bounded. Since Y 7 (k, —1) < oo, Y 7 (I, — 1) < oo,
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Yol i(mp —1) <ooand > 00, € < 00 we obtained from 1} and Lemma (1) that limy, 00 ||2n — ¢/|
exists.

(79) First, we assume that liminf,,_, o, > 0, liminf,, . b, > 0 and 0 < liminf, _,~ a, < limsup,,_,
(an+7m) < 1. By (i), we have lim,, .« ||z, —q|| exists for any ¢ € F. Tt follows that {x, —q}, {T1(PT1)" ‘2, —
a}, {zn — ¢}, {To(PT2)" 'z, — ¢}, {yn — ¢} and {T3(PT3)" 'y, —q} are bounded sequences. We may assume
that such sequences belong to B, where r > 0. By using Lemma we have

l|2n — ‘I||2 = ||P(anT1(PT1)"_1xn + (1= an — )Tn + Yntn) — P(‘])HQ
< lan(TL(PTY)™ ' @n — q) + (1 — an — W) (@0 — @) + Y (un — @) |?
< an|TH(PT)"  2n — gl + (1 = an — o) l2n — al” + Yallun — gl

1 _
= 3(1=an = 1) (@ng(ITL(PT)" 20 = ) + mg(lun = zall))
< ankyllzn = ql* + (1 = an — )llzn — glf* +7a M?

1 .
= gan(l = an = )g(IT1(PT}) Yy — )

< ankinn - qH2 + (1 = an)l|zn — qH2 + ’YnM2

1 _
- 7an(1 — an — 'Yn)g(HTl(PTl)n 1l'n - J5n||)

3
= (L+ an(kp — D)l|lzn — qll* + yaM>
1 .
= 3an(1 = an = )g(IT1(PT1) Yy — ) (3.5)

and

lyn — gl = |P(onTo(PT2)" ' 2 + cu Ty (PT1)" 'y
+ (1= bp — cn — fin)Tn + pnUn) — P(Q)H2
< bn(T2(PT2)" ' 20 — q) + cn(Ti(PTY)" 'y — q)
+ (1= by —cn — pn)(@n — @) + pin(vn — Q)H2
< || To(PT2)" ' 20 = q||* + enl| TL(PTY)" e — g

+ (1 = by —cn — pin)|| 20 — Q||2 + pin|lvn — (.7”2

1 n—
- g(l — by — cn — pin) (bng (|| T2(PT3) lzn — znl))

+eng(IT1(PT)" 2 = 2al) + pmg(lon — 2nl))
< bulp |z = all® + cakillen — gl + (1= by — eo)l|zn — glf* + pn M

1 _
- gbn(l —bn — cn — pn) g(|| T2 (PT2)" lzn — znl))
1

— genl1 = by = 0 = ) g ITL(PTL)" = 2]
— gtin(1 = b = a = i)l — z0l))
< b2z — 0l enk o — gl + (L= b = ca)llan — gl + i M2
— a1 = b — e — g (IT(PT2)" 20 = 2]
— genll = ba = e = p)g (T (PTL" i — ) (3.

By (3.5) and (3.6)), we also have
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[Znt1 — qll* = | P(anT3(PT3)" 'yn + BuTo(PT2)" ' 2y,

+ (1 —ap = Bn — An)Tn + Apwy,) — P(Q)H2
< Nan(T3(PT3)"  yn — q) + Bu(To(PT2)" 20 — q)
+ (1= an = B — M) (@n — @) + An(wn — )7
< an||T3(PT3)"  yn — q||* + Bul| To(PT2)" 20 — q|?
+ (1 —ap—Bn—Ap)|lxn — ‘I||2 + Anllwn — Q||2
1 n
- 5(1 — an = B — An) (ang (| T3(PT3)" yy — n|)
+ Bng (| To(PT2)" ' 20 — 2all) + Ang(|lwn — znl]))
< anmi”.@n - qH2 + ﬁnl?w“zn - qH2
+ (1= an = B = Ao)llzn — gl + A M?

1 e
= 3ol = an = B = A)g(IT5(PT3) Yyn — xnl))

1

- gﬂn(l — Op — Bn - )‘n)g(HT2<PT2)nilzn - an)

1
- §>\n(1 —an = Bn — An)g(lwn — znl])
< anm%(bnli”'zn - qH2 + aninL‘n - qH2 + (1 = bn — cn)l|wn — qH2

1 _
+ ,unMQ - gbn(l — by — cn — pn) g(|| T2 (PT2)" lzn — znl])

1 _
= 56l =bn = cn — pn)g(| T2 (PT1)" tan — ) + Bulyllzn — all?
+ (1 — Qp — /Bn - )\n)Hxn - QHQ + )\an

1 _
- gan(l —py — B — )‘n)g(HTS(PTii)n 1yn — )

1 _
- gﬁn(l — Op — /Bn - An)g(HTQ(PTZ)n lzn - éEnH)
< anmibnlillzn - QH2 + anmicnkZHxn - QH2 + anmi(l —bp —cp)|lTn — C.IH2

1
+ anm?z,u/nMQ - ganbnmi(l —bp —cp — ,U/n)g(HTQ(PTQ)nilzn - .CCnH)

1 _
- gancnmi(l —bn — cn — ) g (|| L (PTY)" 13771 — xn|) + 57%1721”% - qH2

+ (1 — Qp — /Bn - )‘n)Hxn - QHQ + )‘nM2

1 .
- gan(l — an — Bn— M) g(|T3(PT3) lyn — )

1 _
- 7ﬁn(1 — Op — Bn - )‘n)g(HTZ(PTQ)n 1Zn - xn”)
3
= (O‘nbnmilz + ﬁnli)nzn - QHQ + anmicnkiﬂxn - QHQ
+ apm2(1 = by — c)||lzn — ql|* + anm? p, M>
+ (1 — Op — Bn - >\n)||xn - QHQ + )‘nMQ
1

- ganbnmi(l —bp —cn — Nn)9(||T2(PT2)nilzn — znl))

1
- gancnmi(l —bp —cn — Nn)g(HTI(PTl)nilxn — Zn)

— zan(1 = an — Bn — A)g(|| T5(PT3)" Ly — a4]|)

1

- gﬁn(l —ap — By — )\n)g(HT?(PTZ)n_lzn - an)
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< (anbumily + Bulp) (1 + an(ky = )|l — ql* + 707

1 _
= 3 (l = an = W)g(ITi(PT)" 2 = 2n])) + cnmyenkyl|zn — gl

+ aymZ (1 — by — c) |20 — ql|* + anm?2 p, M?
+ (1 —ap — Bp — )\n)Hmn - QHQ + )\nM2
1

- ganbnmi(l —bn — ¢ — pn)g(| T2(PT2)" " 20 — )
1

- gancnmi(l —bn —cn — pa)g([|T1 (PTl)n_lxn — zpl))
1 .

- gan(l — an = B — M) g(IT5(PT3)" gy — )

1 _

- gﬂn(l — Op — Bn - )‘n)g(HT2<PT2)n 1zn - an)

< (@nbnmili + Bnlz + (anbnm%l% + Bnlz)an(ki —-1)+ anm%cnkg

+ apm2(L—by, —cn) + 1 — an — Ba)llzn — q|?

+ (anbnmil% + Bnl%)'yan + anmiunMQ + A\, M?
1

- g(anbnm%li + Bnli)anO —Qp — 'Yn)9<HT1(PT1)n_1xn — znll)
1

- ganbnm%(l —bp —cn — Nn)g(||T2(PT2)n_1zn — znl|)

1 _
- gancnmi(l — b — cn — pin) g (| TL (PT1)" 2, — )

1 .
- gan(l — an — Bn— M) g(|T3(PT3) lyn — )

= 2Bn(1 = an = B = A)g (I T2(PT2)" 2 — aal]).

We note that (3.7)

nbpmZ12 4 Bul2 + (anbym212 + Bul2)an (k2 — 1) + apmic, k2 + apym2 (1 — by —cp) + 1 — ay, — By
= (Qpbpym2l2 — anbym?2) + (Bals — Br) + (ancpmiks — ancym?) + (apm? — ay,)
+ 1+ (anbnmili + Bnl?:,)an(kq%, - 1)
= anbymZ (12 — 1) + Bn(12 — 1) + ancym?2 (k2 — 1) + ap(m? — 1)
+ (anbnmil?m + Bnl%)an(ki -1)+1
= (O‘nbnmi + ﬁn)(li -1+ O‘n(m% -1)
+ (nenm? + an(anbym?i2 4 Bnl?)) (K2 — 1) + 1. (3.8)
Since {m,} and {l,} are bounded, there exists a constant K > 0 such that
(nbrmy + Ba) Iy = 1) + an(mi, — 1) + (ancami, + an(anbamily + Bals)) (ki — 1)z, — gl
< K((ky = 1)+ (I3 = 1) + (mp = 1)) (3.9)
for all n > 1. By using , and , we have
|41 — Q||2 < ((O‘nbnmi + 5n)(l72z -1+ an(mi -1+ (O‘ncnmi
+ an(anbamply + Baly)) (k7 — 1) + 1) |2y — q|?
+ Qb mA 2y, M? + Bol2y, M? 4 cym? i, M? + N, M?
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1 2 n—1
3(anbnm + Bulp)an(1 — an — ) g([|T1 (PT1)" ™ 2n — 24|)
1 _
3anbnm (1—0y — )9 (|| T2(PT2)" L2n — )
1 _
- gancnmi(l —bn — cn — pn) (| TL(PTL)™ 2y — )
1 e
= 3ol = an = By = Xa)g(|T5(PT5) Yo — znl))
1 n—
- gﬂn(l —an = Bn = An)g([|T2(PT3) 1Zn — znl|)
< lzn — ql* + K((k3 — 1) + (I = 1) + (m;, — 1))
+ (anbnm ann + Bnl?{'}/n + anmiﬂn + )\n)Mz
1 .
- ganbnan(l — Gp — 'Vn)g(HTl(PTl) 1$n - $nH)
1 e
= gPnan(l = an —m)g(|Ta(PT1) Yy — )
1 n—
- ganbn(l — by —cn — ) g([| T2 (PT3) 12n — znll)
1 _
- gancn(l —bp —cp — Mn)g(HTI<PT1)n 1$n - an)
1 _
- gan(l —ap — Bn — /\n)g(”T3(PT3)n 1yn - 3Un||)
1 _
- gﬁn(l — an — Bn — M) g(| To(PT2)" lzn — Znl])- (3.10)
From (3.10), we obtain the following six important inequalities:
1 n—
ganbnan(l —an — ) 9(|T1(PTY) 1$ - $nH) < Hxn - (IHQ —[|Znt1 — QHQ
+K((K2 =1)+ (12 = 1)+ (m2 = 1)) 4 (@nbpm2 P70 + Bal2vn + anm? i + \y) M? (3.11)
1 n—
30nCn(l = bn = cn — pn)g(| T2 (PT1) Yn — anl) < lon —ql* = g1 — gl?
+K((K2 =1)+ (12 = 1)+ (m2 = 1)) + (anbpym2 2, + Bul2n + anm? pin 4+ ) M2, (3.12)
1 n—
30nan(1l = an = 1)g(IT1(PT1) Yon — anl)) < on —qll* = |2ng1 — gl?
+K((E2 =1)+ (12 = 1)+ (m2 — 1)) 4 (@nbpm2 0 + Bal2vn + anm? i + \y) M? (3.13)
1 n—
ganbn(l —bn — ¢ — i) 9([| T2 (PT3) 12 —znll) < 7 — q”2 — |71 — qH2
+K((k721 - 1) =+ (l121 - 1) + (mi - 1)) + (anbnm n’Yn + /Bn nIn + anmnﬂn +A ) (3'14)
1 _
3An(l = an = Bn = Xa)g(IT2(PT2)" Y = 2all) < llon — qll* = llznss — ql?
K((kgz - 1) + (lgz - 1) ( 121 - 1)) + (anbnmil?ﬂ/n + Bnlgﬂ/n + Olnmgz/‘n + )\n)MQ (3'15)

and
1

3

+K<(k721 - 1) + <l721 - 1) + (m721 - 1)) + (anbnm?zlzf)/n + /Bnlgﬂ/n + anmi/ﬁn + /\n>M2

20n(1 = an = B = M)g(IT3(PT3)"  yn — zall) < llon — all* = lzns1 — gl

(3.16)
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By our assumption liminf, o ay, > 0, liminf,,_,o b, > 0 and 0 < liminf,, o a, < limsup,,_,., (a, +
Yn) < 1, there exists ng € N and 41, 2, 03,4 € (0,1) such that 0 < 61 < ay, 0 < d2 < by, 0 < 03 < a, and
an + vn < 94 < 1 for all n > ng. Hence, by (3.11]), we have

m m

1 _
3010203(1 — 04) Y 9T (PT)" ey —aal < Y (len — all® = leas — all?)

n=no n=no

+K i((kﬁ—l)ﬂli—l)ﬂmi—l))

n=ng

m
AM? Y (anbymilayn + Buliom + oM + An)

n=ng
= llzne —all> + K Y (k7 = 1) + (17 = 1) + (m}, = 1))
n=ng
+M? Z (nbrm2 12 + Bul2am 4 anm? iy + An). (3.17)
n=ng

Since 37071 v < 00, D07 pin < 00, 3opZy An < 00, 3007 (kf —1) <00, 307 (17— 1) < 0o, 3007 (m]; —
1) < oo and {my}, {l,,} are bounded sequences, we have KZZL:nO((kJ% —1)+ (2 -1)+ (m%2 —1)) < oo and
M2y (anbnmayn + Bulayn + anmi pin + An) < 0.

By letting m — oo in (3.17) we get Y07 g(| Ty (PTY)" 1z, — 24]|) < 00, and therefore

Tim_ g(| T3 (PT)™ = a]) = 0.

Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that lim,, .« |71 (PT1)" Yo, —2,| =
0. Thus (#%) is proved. By using a similar method as in (i7), together with inequalities (3.12)), (3.13]), (3.14]),

(3.15) and (3.16]), one can show that (i7i) — (vii) are satisfied, respectively. O

Lemma 3.2. Let X be a uniformly convex Banach space and C a nonempty closed convexr nonexpansive
retract of X with P a nonexpansive retraction. Let T1,T5,Ts : C'— X be three asymptotically nonexpansive
nonself-mappings of C' with sequences {ky},{ln}, {mn} C [1,00) such that Y 7 (kn, —1) <00, > .00 (ln —
1) <00, Y02 ((mp —1) <00, ky = 1, 1, = 1, my — 1 as n — oo, respectively and F := F(T1) N F(Ty) N
F(T5) # 0. Let {an}, {bn}, {cn}, {an}, {Bn}; {m}, {n} and {\,} be real sequences in [0,1] such that a, +
Yry bnFentpn and an+PBn+A, arein [0,1] for alln > 1, and Y 07 1 yn < 00, Yooy fin < 00, Yoy Ap < 00,
and let {uy},{vn} and{w,} be the bounded sequences in C. From an arbitrary x1 € C, define the sequences
{zn}, {yn} and {z,} using . Iflimy, o0 | TL (PTY) Yoy —2|| = 0, limy, o0 | T2 (PT2)" 2y —2y|| = 0 and
limy, o0 [|T3(PT3)" Yy —a,|| = 0, then limy, o0 | T1 20 —20|| = limy, o0 || 1220 — 20 || = limy, o0 [| 1320 — 20| =

0.

Proof. Suppose that
lim |70 (PT)" Yy, — 2|

n—oo
= JLI{.IOHTz(PTz)"’lzn — |
= lim | T3(PT3)" Ly, — x,| = 0. (3.18)

Using (1.6), we have
HZTL - .%'nH = ||P(anT1(PT1)”_1xn + (1 — an — 7n)xn + 7nun) - P(xn)H
< ||a’n(T1 (PTl)n_lmn - xn) + ’Vn(un - xn)”
< anHTl(PTl)nilxn - an + 7n||un - an
< ap | TV (PT)™  2n = x| + nllunll + valzall, (3.19)
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[Yn — 0|l = | P(0nTo(PT2)" L2y + ¢, T1 (PTY)" 'y,
+ (L= by — o — pn)Tn + pnn) — P(an)||
<o (To(PT2)" 2y — 2) 4 cn(TL(PTY)" 2 — ) + pn (U5 — ) |
< anT2(PT2)nilzn — | + CnHTl(PTI)nilxn — || + pnllvn — @
< bn||T2(PT2)n_lzn — x| + CnHTl(PTl)n_lxn — Zp| + pnllvnll + pall 2|l (3.20)
and
[ns1 — 2l = | P@nTs(PTo)"™ Yy + BaTo( PTo)" 20

+ (1 — an — Bn — An)Tn + Apwy) — P(zy)]]

< Han(T3(PT3)n_1?/n —xp) + 5n(T2(PT2)n_12n — ) + An(wn — ) ||

< an”T3(PT3)nilyn — || + ﬂn”T2(PT2)n712n = | + Anflwn — 24|

< an||T3(PT3)”_1yn — | + Bn||T2(PT2)n_1Zn = | + Anflwnll + Anll2nl]- (3.21)

Since Y 02 v < 00, Yont fn < 00, Doty Ap < 00, and {up}, {vn}, {w,}and {z,} are all bounded. It

follows from (3.18)), (3.19)), (3.20)) and (3.21)) that

lim ||z, — zn|| = Um |lyn — zn|| = lim ||z — z,]] = 0. (3.22)
n—oo n—oo n—oo
Using (3.18) and (3.22), we have
| To(PT)" ay — 2p|| = |To(PTo)" Lo, — To(PTo)" L2y + To(PT2)" 2y — 24|

<N To(PTo)" 'z — To(PTo)" tag|| 4 | T2(PT2)" 21 — 24|
<lpllzn — x| + ||T2(PT2)"_lzn —xzy|| = 0, as n — oo,

(3.23)
T3 (PT3)" ' ap — mnll = | T3(PTs)" ay — T3(PT3)" yn + T3(PT3)" 'y — |
< || T3(PT3)" yn — T3(PT3)" @ || + | T3(PT3)"  yn — 24|
< M|y — 2| + | T3(PT3)" Yyy — 2n]| =0, as n — oo
(3.24)
and
|Zns1 — TL(PTY)" 21l = |Zns1 — & + 20 — TV(PT)"
+T1(PT)" x, — Ty (PT)" Lo
< #ngs =zl + ITU(PT) 2 — Ti(PTY)" |
+|| Ty (PT) Ly, — 2|
< ensr = @l + Eallzass — 2ol + (1T (PT)" g — 20|
— 0, as n — oco. (3.25)
In addition,
[2nt1 — TL(PTY)" @il = Nps1 — @ + 20 — TL(PTL)" 22y,
+Ty(PTY)" @y — TL(PTL)" g1 |
< mpgr — 2|l + HTl(PTl)thxn — Zn |
T (PT)" g1 — T (PT1)" 2|
< lnpr = zall + [TUPT)" 220 — 2|l + Ll|zns1 — zall,
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where L = sup{k,, : n > 1}. It follows from (3.22)) and (3.25)) that

lim ||z — 71 (PT)" 2201 = O. (3.26)

n—oo

We denote as (PTy)!~! the identity maps from C onto itself. Thus by the inequality (3.25) and (3.26)),
we have

Znt1 — Tixng1] = |#ngr — TL(PTY)" ' pgr + T (PT) ' @ng1 — Thwns|

< anss = TU(PTY)"  zpll + 1TV (PTY)"  wpg1 — Tip |

= |@ns1r = T(PTY)" g || + | T (PT) ' H(PT)" 204
~Ty(PTy) |

< lzasr = Ti(PTY)™ @nga || + LI(PT)™ g — 2o |
201 = Ty (PT)™ 2 || + LI(PT)(PTY)" 22041 — P(zp41)]|

< lzpsr = Ti(PTO)"  @nga | + LITU(PT)" 2241 — 2o |

— 0, as n — oo,

which implies that lim, o ||T12, — || = 0. Similarly, by using (3.23) and (3.24]), we may show that
lim, 00 ||T2xy — zp|| = 0 and lim, o || 132, — 2, || = 0. The proof is completed. O

Theorem 3.3. Let X be a uniformly convex Banach space and C' a nonempty closed convex nonexpansive
retract of X with P a nonexpansive retraction. Let T1,T5,T5 : C' — X be three asymptotically nonexpansive
nonself-mappings of C' with sequences {ky},{ln}, {mn} C [1,00) such that Y 7 (kn —1) < o0, > o0 (ln —
1) < o0, Yorti(my —1) < 00, ky = 1, 1, = 1, my, — 1 as n — oo, respectively and F := F(T1) N
F(Ty) N F(T3) # 0. Let {an}, {bn},{cn}, {an}t, {Bn} {1}, {n} and {\,} be real sequences in [0,1] such
that an + Yn, by + o + pn and oy + B + Ay are in [0,1] for alln > 1,and Y 07 vn < 00, D07 fin <
00, D02 An < 00, and let {un}, {vn} and{w,} be the bounded sequences in C. From an arbitrary z1 € C,
define the sequences {xn},{yn} and {z,} using @ and the parameters satisfy one of the following control
conditions:

(C1) 0 < liminf, o o < limsup,,_,(an + Bn + An) < 1,

0 < liminf,, 00 by, < limsup,,_, o (bn + cn + 1) < 1, and

0 < liminf,, 00 ap < limsup,,_, . (an + ) < 1,

(C2) 0 < liminf, o ay, liminf, o 5, < limsup,,_,(an + Bn + A\n) < 1,
0 < liminf,, 00 by < limsup,,_ o (bn + cn + 1) < 1, and

0 < liminf,, o0 an < limsup,,_, . (an + ) < 1,

(C3) 0 < liminf, ,~ o, <limsup,_, . (, + Bn + An) < 1, and

0 < liminf,, 00 by, liminf,, o ¢ < limsup,,_, o (bn + cn + ) < 1,

(C4) 0 < liminf, o oy, liminf, o 5, < limsup,,_,(an + Bn + A\n) < 1,
0 < liminf,, 00 by, and liminf,,_, a, < limsup,,_, o (an + ) < 1,

(C5) 0 < liminf,, o oy, liminf, o 5, < limsup,,_,(an + Bn + An) < 1, and

0 < liminf,, 00 ap < limsup,,_, . (an + ) < 1,

(C6) 0 < liminf,, o oy, liminf, o 5, < limsup,,_,(an + Bn + A\n) < 1, and

0 < liminf,, 00 ¢ < limsup,,_, o (bn + cn + ) < 1.
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If one of Th, T and T is either completely continuous or demicompact, then {xy,}, {yn} and {z,} converge
strongly to a common fixed point of 11, T> and Tj.

Proof. Suppose that one of the conditions (C1) — (C6) is satisfied. By Lemma [3.1[i), {2y} is bounded. In
addition, by Lemma limy, o0 |11 — 20| = 0, limy, 00 || T2z, — 2] = 0 and limy, o0 | T32, — 2] = 0,
and then the sequences {Thz,}, {Tox,} and {T3x,} are also bounded. If T} is completely continuous,
there exists a subsequence {112y, } of {T1xy,} such that Tz, — q as j — oo. It follows from Lemma
that limj oo |T120; — @n, || = imj oo [[To2n; — ;|| = limj oo [|[ 7370, — T, || = 0. So by the continuity
of T} and Lemma we have lim; o [|7n; — ¢q|| = 0 and ¢ € F. Furthermore, by Lemma (i), we
get that lim,,_, [|zn — ¢ exists. Thus lim,_, ||z, — ¢|| = 0. From , we have lim,, o ||2n, — Zp|| =
lim, 00 ||yn — zn|| = 0 and it follows that
nh_{%o |2 — qll = nh—{%o lyn — qll = 0.

Next, assume that one of T1, Tz and T3 is demicompact, then there exists a subsequence {x,,} of {z,}
such that x,,, converges strongly to p. It follows from Lemma that p € F. Thus lim,,_, ||z, — p|| exists
by Lemma Since the subsequence {xy;} of {,} such that {z, } converges strongly to p, then {w,}
converges strongly to the common fixed point p € F. That is, lim,,—, ||z, — p|| = 0. From , we have

lim ||z, — zp|| = lim ||y, — zn| =0,
n—oo n—oo
it follows that lim,_,« ||z, — p|| = 0 and limy,_ ||yn — p|| = 0. This completes the proof. O

For v, = pn = A, = 0 with the control conditions (C'1) — (C6) in Theorem we obtain the following
result.

Theorem 3.4. Let X be a uniformly convex Banach space and C' a nonempty closed convexr nonerpansive
retract of X with P a nonexpansive retraction. Let Ty, T>,Ts : C'— X be three asymptotically nonerpansive
nonself-mappings of C' with sequences {ky},{ln}, {mn} C [1,00) such that Y 7 (kn, —1) < o0, > o0 (ln —
1) < o0, Y0 (my — 1) <00, ky = 1, 1, = 1, my = 1 as n — oo, respectively and F := F(T1) N F(T>2) N
F(T5) # 0. Let {an}, {bn},{cn},{an}, and {B,} be real sequences in [0,1] such that b, + ¢, and o, + By
are in [0,1] for all n > 1, and the control conditions (C1) — (C6) in Theorem[3.3 are satisfied. For a given
x1 € C, define

Zn = Pla,Ti(PT)" ‘2, + (1 — an)zy),
Yn = PnTa(PTy)" 1z, + e, TV (PT)" Lz, + (1 — by — cp)xn),
Tp+1 = P(anT3(PT3)n_1yn + 5nT2(PT2)n_1Zn + (1 — Op — Bn)xn)a n > 1.

If one of Th, To and Ty is either completely continuous or demicompact, then {x,},{yn} and {z,} converge
strongly to a common fixzed point of Ty, T> and Tj.

For ¢, = 3, = 0 with the control condition (C1) in Theorem we obtain the following result.

Theorem 3.5. Let X be a uniformly convexr Banach space and C a nonempty closed convex nonexpansive
retract of X with P a nonexpansive retraction. Let Ty, T5,T5 : C' — X be three asymptotically nonerpansive
nonself-mappings of C with sequences {kpn},{ln},{mn} C [1,00) such that > 7 (k, —1) < 00, > o0 (I, —
1) <00, Y02 ((mp —1) <00, kp = 1, 1, = 1, my, = 1 as n — oo, respectively and F := F(T1) N F(Ty) N
F(T5) # 0. Let {an},{bn}, {an}, {7}, {pn} and {\,} be real sequences in [0, 1] such that an + Yn, bp + pin
and oy, + Ay are in [0,1] for all n > 1, and the control condition (C1) in Theorem are satisfied. Let
{un}, {vn} and{w,} be the bounded sequences in C. From an arbitrary x; € C, define
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Zn = P(anTl(PTl)nill'n + (1 — Qp — ’Vn)xn + 'Ynun)’
Yn = P(bnTZ(PTQ)nilzn + (1 — by — ,U/n)xn + ann)a
Tnp1 = PlanT3(PT3)" tyn + (1 — o — M) + Apwy), n > 1.

If one of Th, Ty and Tj is either completely continuous or demicompact, then {x,},{yn} and {z,} converge
strongly to a common fixed point of T1,T> and T5.

For ¢, = B = Y = pn = A\ = 0 with the control condition (C1) in Theorem we obtain the
following result.

Theorem 3.6. Let X be a uniformly convex Banach space and C' a nonempty closed convex nonexpansive
retract of X with P a nonexpansive retraction. Let Ty, T5,T5 : C' — X be three asymptotically nonerpansive
nonself-mappings of C with sequences {kn},{ln},{mn} C [1,00) such that > 7 (k, —1) < 00, > (I, —
1) < oo, Y02 ((mp —1) <00, kp = 1, 1, = 1, my, = 1 as n — oo, respectively and F := F(T1) N F(Ty) N
F(T3) # 0. Let {an}, {bn} and {an} be real sequences in [0,1] satisfying the control conditions (C1) in
Theorem [3.3. From an arbitrary x1 € C, define

Zn = Pla,Ty(PTY)" tan 4+ (1 — an)zy),
Yn = P Ta(PTy)" Yz, + (1 —by)zy),
Tpyl = P(anTg(PTg)”_lyn + (1 —ap)zy), n>1.

If one of Th, T and Ty is either completely continuous or demicompact, then {x,}, {yn} and {z,} converge
strongly to a common fixzed point of Th,T> and Tj.

ForThy =T, =T3=T:C — X and v, = u, = A\, = 0, then the iterative scheme (|1.6)) reduces to that
of (1.5 and the following result is directly obtained by Theorem

Theorem 3.7. ([10], Theorem 1). Let X be a uniformly convexr Banach space and let C be its closed
and convex subset. Let T : C' — X be an asymptotically nonexpansive nonself-mapping with a sequence
{kn} C [1,00) and > "7 (kn — 1) < co. Suppose that the set F(T) of fized points of T is nonempty. Define
a sequence {xn} in C as in where {an},{bn},{cn},{an} and {B,} in [0,1] are such that b, + ¢,
and oy, + By remain in [0,1], and 0 < liminf, o by, < limsup,,_,.(bn + ¢) < 1, and 0 < liminf,, o o, <
limsup,, o (an+06n) < 1. If T' is either completely continuous or demicompact, then the sequences {xn}, {yn}
and {zn} converge strongly to a fized point of T.

Remark 3.8. If T is a self-mapping and 171 = Ts = T3 = T, then Theorem generalizes Theorem 2.3 of
Nammanee, Noor and Suantai [I2]. By the same argument, Theorem Theorem and Theorem
are generalization of Theorem 2.3 of Suantai [20], Corollary 2.5 of Cho, Zhou and Guo [2] and Theorem 2.1
of Xu and Noor [23], respectively.

In the remainder of this section, we deal with the weak convergence of the iterative scheme with errors
(1.6) for three asymptotically nonexpansive nonself-mappings in a uniformly convex Banach space satisfying
Opial’s condition.

Theorem 3.9. Let X be a uniformly convexr Banach space which satisfies Opial’s condition and C a
nonempty closed convex nonexpansive retract of X with P a nonexpansive retraction. Let Ty, Ts, T3 : C — X
be three asymptotically nonexpansive nonself-mappings of C with sequences {kn},{l,}, {mn} C [1,00) such
that Y 07 1 (kn — 1) < 00, Y07 1 (ln — 1) < o0, Y07 (my — 1) <00, ky = 1,1, = 1, my, = 1 as n — oo,
respectively and F := F(Th) N F(T2) N F(T3) # 0. Let {an}, {bn}, {cn}, {an}, {Bn}, {1}, {tn} and {\.} be
real sequences in [0,1] such that an, + Y, by + ¢ + i, and o, + Bn + Ay are in [0,1] for all n > 1, and
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Yot Y < 00, Yony i < 00, y o0 Ap < 00, and let {uy}, {vn} and{w,} be the bounded sequences in C.
From an arbitrary 1 € C, define the sequences {xyn},{yn} and {z,} using @ and the parameters satisfy
one of the control conditions (C1) — (C6). Then {zn}, {yn} and {z,} converge weakly to a common fized
point of Ty, Ty and Tj.

Proof. Suppose that one of the conditions (C1) — (C6) is satisfied. It follows from Lemma that
limy, oo [|[T12n — Zp|| = limpyeo [|[Toxn — x| = limpy—oo || 32, — @4|| = 0. Since X is uniformly convex
and {z,} is bounded, we may assume that z,, — u weakly as n — oo, without loss of generality. By Lemma
we have u € F. Suppose that subsequences {z,,} and {z,, } of {z,} converge weakly to u and v,
respectively. From Lemma[2.3] we have u,v € F. By Lemma[3.1] (i), im0 ||zn — u|| and limy, o0 [|zn — 0|
exist. It follows from Lemma that u = v. Therefore {x, } converges weakly to a common fixed point of
Ti,T» and T3. From , we have limy, o0 ||2n — Zn|| = limy 00 ||yn — 2y || = 0. Since z,, — u weakly as
n — oo, it follows that the sequences {y,} and {z,} converge weakly to a common fixed point u of T1,T5
and T3. This completes the proof. O

ForThy =T, =T3=T:C — X and 7, = u, = A, = 0, then the iterative scheme (|1.6)) reduces to that
of (1.5 and the following result is directly obtained by Theorem

Theorem 3.10. ([10], Theorem 6). Let X be a uniformly convex Banach space satisfying Opial’s condition
and let C be its closed and convex subset. Let T : C — X be an asymptotically nonexpansive nonself-
mapping with a sequence {k,} C [1,00) and Y .7 (k, — 1) < co. Let {an}, {bn},{cn},{an} and {B,} be in
[0,1] such that b, + ¢, and oy + By are in [0,1], and 0 < liminf,, . b, < limsup,,_, (b, + ¢,) < 1, and
0 < liminf, o0 ap < limsup,,_,o.(an + Bn) < 1. Define a sequence {x,} in C as in (1.5). If F(T) # 0, then
{zp} converges weakly to a fixed point of T.

Remark 3.11. (1) For ~,, = pp, = A, = 0 in Theorem [3.9| with one of the control conditions (C1) — (C6) in
Theorem [3.3] we obtain the sequence {x,} defined as in Theorem converges weakly to a common fixed
point of 17,75 and T3.

(2) For ¢, = By, = 0 in Theorem [3.9| with the control condition (C1) in Theorem (3.3, we obtain the sequence
{zy,} defined as in Theorem converges weakly to a common fixed point of 77,75 and T5.

(3) For ¢, = Bn, = Yn = tn = Ay = 0 in Theorem with the control condition (C1) in Theorem (3.3 we
obtain the sequence {z,} defined as in Theorem converges weakly to a common fixed point of 717,75 and
Ts.

(4) Theorem contains Theorem 2.8, Corollaries 2.9 and 2.10 of Nammanee, Noor and Suantai [I2] and
Theorem 2.1 of Cho, Zhou and Guo [2] as special cases when T; = Ty = T5 = T is a self-mapping.
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