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contractions defined on cyclic representations

Adrian Magdaş
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1. Introduction

One of the consistent generalizations of the Banach Contraction Principle was given in 2003 by Kirk,
Srinivasan and Veeramani [2], using the concept of cyclic operator. More precisely, they proved the following
result.

Theorem 1.1 ([2]). Let {Ai}mi=1 be nonempty subsets of a complete metric space and suppose f :

m⋃
i=1

Ai →

m⋃
i=1

Ai satisfies the following conditions (where Am+1 = A1):

(i) f(Ai) ⊆ Ai+1 for 1 ≤ i ≤ m;

(ii) d(f(x), f(y)) ≤ ψ(d(x, y)), ∀x ∈ Ai, ∀y ∈ Ai+1, for 1 ≤ i ≤ m, where ψ : R+ → R+ is upper
semi-continuous from the right and satisfies 0 ≤ ϕ(t) < t for all t > 0.

Then f has a unique fixed point.

Our results generalize some similar theorems regarding Banach, Kannan, Bianchini, Reich, Sehgal, Chat-
terjea and Zamfirescu type operators (see [5], [6]), in the case of a cyclic condition (see [4]). Also, the main
result is a generalization of Theorem 2.1 given by Păcurar and Rus in [3].
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2. Preliminaries

We present here some notions and results which will be used in our main section.
There are several conditions upon comparison functions that have been considered in literature. In order

to study the convergence of the Picard iteration {xn}n≥0 defined by

xn = f(xn−1), n ≥ 1 (2.1)

in this paper we shall refer to:

Definition 2.1 ([10]). A function ϕ : R+ → R+ is called a comparison function if it satisfies:

(i)ϕ ϕ is increasing;

(ii)ϕ {ϕn(t)}n∈N converges to 0 as n→∞, for all t ∈ R+.

If the condition (ii)ϕ is replaced by:

(iii)ϕ

∞∑
k=0

ϕk(t) <∞, for any t > 0,

then ϕ is called a strong comparison function.

Lemma 2.2 ([9]). If ϕ : R+ → R+ is a comparison function, then the following hold:

(i) ϕ(t) < t, for any t > 0;

(ii) ϕ(0) = 0;

(iii) ϕ is continuous at 0.

Lemma 2.3 ([3], [10]). If ϕ : R+ → R+ is a strong comparison function, then the following hold:

(i) ϕ is a comparison function;

(ii) the function s : R+ → R+, defined by

s(t) =
∞∑
k=0

ϕk(t), t ∈ R+, (2.2)

is increasing and continuous at 0;

(iii) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞∑
k=1

vk such that

ϕk+1(t) ≤ aϕk(t) + vk, for k ≥ k0 and any t ∈ R+.

Remark 2.4. Some authors use the notion of (c)-comparison function defined by the conditions (i) and (iii)
from Lemma 2.3. Actually, the concept of (c)-comparison function coincides with that of strong comparison
function.

Example 2.5. (1) ϕ : R+ → R+, ϕ(t) = at, where a ∈ [0, 1[, is a strong comparison function.

(2) ϕ : R+ → R+, ϕ(t) =
t

1 + t
is a comparison function, but is not a strong comparison function.

(3) ϕ : R+ → R+, ϕ(t) =


t

2
, t ∈ [0, 1]

t− 1

2
, t > 1

is a strong comparison function.

(4) ϕ : R+ → R+, ϕ(t) = at+
[t]

2
, where a ∈

]
0, 12
[

is a strong comparison function.
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For more considerations on comparison functions see [7], [9] and the references therein.
Now, let (X, d) be a metric space. P (X) denotes the collection of nonempty subsets of X, and Pcl(X)

denotes the collection of nonempty and closed subsets of X. We recall the following notion, introduced in
[8], suggested by the considerations in [2].

Definition 2.6. Let X be a nonempty set, m a positive integer and f : X → X an operator. By definition,
m⋃
i=1

Ai is a cyclic representation of X with respect to f if

(i) X =

m⋃
i=1

Ai, with Ai ∈ P (X), for 1 ≤ i ≤ m;

(ii) f(Ai) ⊆ Ai+1, for 1 ≤ i ≤ m, where Am+1 = A1.

3. Main results

We start this section by presenting the notion of cyclic ϕ-contraction of Ćirić type.

Definition 3.1. Let (X, d) be a metric space, m a positive integer, A1, . . . , Am ∈ Pcl(X), Y ∈ P (X) and
f : Y → Y an operator. If

(i)
m⋃
i=1

Ai is a cyclic representation of Y with respect to f ;

(ii) there exists a strong comparison function ϕ : R+ → R+ such that

d(f(x), f(y)) ≤ ϕ
{

max{d(x, y), d(x, f(x)), d(y), f(y)),
1

2
[d(x, f(y)) + d(y, f(x))]

}
,

for any x ∈ Ai, y ∈ Ai+1, where Am+1 = Ai,

then f is said to be a cyclic ϕ-contraction of Ćirić type.

The main result of this paper is the following.

Theorem 3.2. Let (X, d) be a complete metric space, m be a positive integer, A1, . . . , Am ∈ Pcl(X),
Y ∈ P (X), ϕ : R+ → R+ be a strong comparison function, and f : Y → Y be an operator. Assume
that f is a cyclic ϕ-contraction of Ćirić type.
Then:

(1) f has a unique fixed point x∗ ∈
m⋂
i=1

Ai and the Picard iteration {xn}n≥0 given by (2.1) converges to x∗

for any starting point x0 ∈ Y ;

(2) the following estimates hold:
d(xn, x

∗) ≤ s(ϕn(d(x0, x1))), n ≥ 1;

d(xn, x
∗) ≤ s(d(xn, xn+1)), n ≥ 1;

(3) for any x ∈ Y , d(x, x∗) ≤ s(d(x, f(x))), where s is given by (2.2) in Lemma 2.3;

(4)

∞∑
n=0

d(xn, xn+1) <∞, i.e. f is a good Picard operator;

(5)
∞∑
n=0

d(xn, x
∗) <∞, i.e. f is a special Picard operator.
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Proof. (1) Let x0 ∈ Y , and xn = f(xn−1), for n ≥ 1. Then we have

d(f(xn−1), f(xn))≤ϕ
(

max

{
d(xn−1, xn), d(xn, xn+1),

1

2
d(xn−1, xn+1)

})
. (3.1)

Using the triangle inequality,

1

2
d(xn−1, xn+1) ≤

1

2
[d(xn−1, xn) + d(xn, xn+1)] ≤ max{d(xn−1, xn), d(xn, xn+1)}

so (3.1) becomes
d(xn, xn+1) ≤ ϕ(max{d(xn−1, xn), d(xn, xn+1)}).

Supposing that there exists p ∈ N, p ≥ 1, such that d(xp−1, xp) ≤ d(xp, xp+1), and taking into consideration
that ϕ is a comparison function, from (3.1) we obtain

d(xp, xp+1) ≤ ϕ(d(xp, xp+1)) < d(xp, xp+1),

which is a contradiction.
It follows that d(xn−1, xn) > d(xn, xn+1), for any n ≥ 1, thus (3.1) becomes

d(xn, xn+1) ≤ ϕ(d(xn−1, xn)). (3.2)

Using the monotonicity of ϕ, we get

d(xn, xn+1) ≤ ϕn(d(x0, x1)), (3.3)

whence, for p ≥ 1,

d(xn, xn+p) ≤ ϕn(d(x0, x1)) + ϕn+1(d(x0, x1)) + . . .+ ϕn+p−1(d(x0, x1)). (3.4)

Denoting Sn :=

n∑
k=0

ϕk(d(x0, x1)), we obtain

d(xn, xn+p) ≤ Sn+p−1 − Sn−1. (3.5)

As ϕ is a strong comparison function,

∞∑
k=0

ϕk(d(x0, x1)) <∞,

so there exists S ∈ R+ such that lim
n→∞

Sn = S.

By (3.5), d(xn, xn+p) → 0 as n → ∞, which means that {xn}n≥0 is a Cauchy sequence in the complete
subspace Y , so it is convergent to some p ∈ Y .

The sequence {xn}n≥0 has an infinite number of terms in each Ai, i = 1,m, therefore from each Ai we
can extract a subsequence of {xn}n≥0 which converges to p = lim

n→∞
xn.

Because Ai are closed, it follows p ∈
m⋂
i=1

Ai, so
m⋂
i=1

Ai 6= ∅. We consider the restriction

f
∣∣∣ m⋂
i=1

Ai

:

m⋂
i=1

Ai →
m⋂
i=1

Ai.

m⋂
i=1

Ai is also complete. Using Theorem 1.5.1 from [1], f
∣∣∣ m⋂
i=1

Ai

has a unique fixed point x∗, which can be

obtained by means of the Picard iteration starting from any initial point.
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We still have to prove that the Picard iteration converges to x∗ for any initial guess x ∈ Y . Note that

d(xn+1, x
∗) = d(f(xn), f(x∗)) ≤ϕ

(
max

{
d(xn, x

∗), d(xn, xn+1), d(x∗, f(x∗)),
1

2
[d(xn, f(x∗))+d(x∗, xn+1)]

})
.

If we denote an = d(xn, x
∗) for all n ∈ N, the above relation becomes

an+1 ≤ ϕ
(

max

{
an, d(xn, xn+1), 0,

1

2
(an + an+1)

})
.

Using the fact that
1

2
(an + an+1) ≤ max{an, an+1}, we get

an+1 ≤ ϕ(max{an, an+1, d(xn, xn+1)}).

But max{an, an+1, d(xn, xn+1)} 6= an+1, otherwise we would have an+1 ≤ ϕ(an+1), contradicting the as-
sumption that ϕ(t) < t, for any t > 0. Consequently,

an+1 ≤ ϕ(max{an, d(xn, xn+1)}), for any n ∈ N. (3.6)

The following cases need to be analysed:
a) There exists a positive integer k such that ak < d(xk, xk+1).

For n = k, inequality (3.6) becomes

ak+1 ≤ ϕ(d(xk, xk+1)).

For n = k + 1, using (3.2), inequality (3.6) becomes

ak+2 ≤ ϕ(max{ak+1, d(xk+1, xk+2)}) ≤ ϕ(max{ak+1, ϕ(d(xk, xk+1))}) ≤ ϕ2(d(xk, xk+1)).

By induction, we obtain
ak+p ≤ ϕp(d(xk, xk+1)) (3.7)

and by letting p→∞, the sequence {an}n≥0 converges to 0.
b) For any n ∈ N∗, an ≥ d(xn, xn+1). The inequality (3.6) becomes

an+1 ≤ ϕ(an), for any n ∈ N∗,

so an ≤ ϕn(a0), which implies again that an → 0, as n→∞.
(2) By letting p→∞ in (3.4), we obtain the a priori estimate

d(xn, x
∗) ≤ s(ϕn(d(x0, x1))), for any n ≥ 1.

Using (3.2) and the monotonicity of ϕ, we have

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xn+p−1, xn+p) ≤
p−1∑
k=0

ϕk(d(xn, xn+1)),

and letting p→∞,

d(xn, x
∗) ≤

∞∑
k=0

ϕk(d(xn, xn+1)), n ≥ 0. (3.8)

Considering the definition of s, this yields the a posteriori estimate

d(xn, x
∗) ≤ s(d(xn, xn+1)), for any n ≥ 1.



A. Magdaş, J. Nonlinear Sci. Appl. 8 (2015), 1257–1264 1262

(3) Let x ∈ Y . From (3.8), for x0 := x we have:

d(x, x∗) ≤
∞∑
k=0

ϕk(d(x, f(x))).

(4) Using the inequality (3.3),

∞∑
n=0

d(xn, xn+1) ≤
∞∑
n=0

ϕn(d(x0, x1)) = s(d(x0, x1)) <∞.

(5) We use the inequality (3.6), i.e.

an+1 ≤ ϕ(max{an, d(xn, xn+1)}),

for any n ∈ N, where an := d(xn, x
∗). We need to discuss two cases.

a) If there exists k ∈ N such that ak < d(xk, xk+1), then the inequality (3.7), i.e.

ak+p ≤ ϕp(d(xk, xk+1))

holds for any p ∈ N. Then
∞∑

n=k+1

ak ≤
∞∑
n=1

ϕn(d(xk, xk+1)) <∞,

so
∞∑
n=0

d(xn, x
∗) <∞.

b) If an ≥ d(xn, xn+1) for any n ∈ N, then (3.6) becomes

an+1 ≤ ϕ(an), for any n ∈ N

which implies an ≤ ϕn(a0). Then
∞∑
n=0

an ≤
∞∑
n=0

ϕn(a0) <∞,

so again
∞∑
n=0

d(xn, x
∗) <∞.

Theorem 3.3. Let f : Y → Y be as in Theorem 3.2. Then the fixed point problem for f is well posed, that
is, assuming there exist zn ∈ Y , n ∈ N such that

d(zn, f(zn))→ 0 as n→∞,

this implies that
zn → x∗ as n→∞,

where Ff = {x∗}.

Proof. Using the inequality d(x, x∗) ≤ s(d(x, f(x))) from Theorem 3.2, for x := zn, we have:

d(zn, x
∗) ≤ s(d(zn, f(zn))), n ∈ N,

and letting n→∞ we obtain
d(zn, x

∗)→ 0, n→∞.
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Theorem 3.4. Let f : Y → Y be as in Theorem 3.2, and g : Y → Y be such that:

(i) g has at least one fixed point x∗g ∈ Fg;

(ii) there exists η > 0 such that
d(f(x), g(x)) ≤ η, for any x ∈ Y.

Then d(x∗f , x
∗
g) ≤ s(η), where Ff = {x∗f} and s is defined in Lemma 2.3.

Proof. By letting x := x∗g in the inequality d(x, x∗) ≤ s(d(x, f(x))), we have

d(x∗f , x
∗
g) ≤ s(d(x∗g, f(x∗g))) = s(d(g(x∗g), f(x∗g))).

Using the monotonicity of s we obtain d(x∗f , x
∗
g) ≤ s(η).

Theorem 3.5. Let f : Y → Y be as in Theorem 3.2 and fn : Y → Y , n ∈ N, be such that:

(i) for each n ∈ N there exists x∗n ∈ Ffn;

(ii) {fn}n≥0 converges uniformly to f .

Then x∗n → x∗ as n→∞, where Ff = {x∗}.

Proof. As {fn}n≥0 converges uniformly to f , there exists ηn ∈ R+, n ∈ N, such that ηn → 0 as n→∞, and
d(fn(x), f(x)) ≤ ηn, for any x ∈ Y .

Using Theorem 3.4 for g := fn, n ∈ N, we have

d(x∗n, x
∗) ≤ s(ηn), n ∈ N.

By letting n→∞ above, we get d(xn, x
∗)→ 0.

The following theorem is a Maia type result regarding Ćirić type generalized contractions defined on
cyclic representations.

Theorem 3.6. Let X be a nonempty set, d and ρ be two metrics on X, m be a positive integer, A1, . . . , Am ∈
Pcl(X), Y ∈ P (X) and f : Y → Y be an operator. Suppose that:

(i) there exists c > 0 such that d(x, y) ≤ c · ρ(x, y), for any x, y ∈ Y ;

(ii) (Y, d) is a complete metric space;

(iii) f : (Y, d)→ (Y, d) is continuous;

(iv) f : (Y, ρ)→ (Y, ρ) is a cyclic ϕ-contraction of Ćirić type.

Then f has a unique fixed point x∗ ∈
m⋂
i=1

Ai and the Picard iteration {xn}n≥0 given by (2.1) converges

to x∗ for any starting point x0 ∈ Y .

Proof. By the same reasoning as in Theorem 3.2, using condition (iv), we obtain that {xn}n∈N is a Cauchy
sequence in (X, ρ).

Using condition (i) it follows that it is Cauchy in (X, d) as well.
By (ii) and (iii) it is easy to prove that {xn}n∈N converges in (X, d) to the unique fixed point of f .

Remark 3.7. It is an open problem to find conditions under which the operator f : Y → Y defined as in
Theorem 3.2 has the limit shadowing property, that is, assuming that there exist zn ∈ Y , n ∈ N, such that
d(zn+1, f(zn))→ 0 as n→∞, it follows that there exists x ∈ Y such that

d(zn, f
n(x))→ 0 as n→∞.
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