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Abstract. In this paper we give existential results for nonlinear interface
problems with a singular interface. The solution is proved to exist for an IVP
satisfying matching interface conditions. The picards iterative technique is
used. We discuss the theory developed to a problem in the field of applied
elasticity.

1. Introduction

Solving boundary value problems with different types of singularities has re-
mained a challenge for mathematicians over the ages. While regular problems,
those over finite intervals with well-behaved coefficients pose no difficulties, there
are applications wherein either the domain of the problem is not well defined, or
the continuity and/or smoothness of the functions, coefficients involved are not
guaranteed in some parts of the domain, sometimes in the boundary or parts of
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the boundary. In all such cases the problem is considered to be a singular prob-
lem. The definition of the problem and therefore the description of the solution
becomes a highly difficult task.

In the literature we find a class of interface problems, termed as mixed pair of
equations, discussed in the papers [3],[8]–[12], [16]–[22] where two different differ-
ential equations are defined on two adjacent intervals and the solutions satisfy a
matching condition at the point of interface. These problems are called as match-
ing interface problems. If the boundary is well defined then we call the problem
to be a regular interface problem. These interface problems with singularities in
the domain are always of great interest.

We see that these interface problems for regular case has been discussed in
[16]–[22] and the problem of having singularity at the boundary is dealt in [3]. In
[3], authors discuss an application of the classical Weyl limit criterion to define
the coefficients with well-known Wronskian boundary conditions to tackle the
singularity at the boundary for this class of problems. Though this work is
specifically for Sturm–Liouville problems, it paves a way to study the problem of
singularity at the end boundary points.

The problem of having a singularity at the point of interface is a challenge.
Study of these problems using classical analytical tools is tedious. We term these
problems as singular interface problems [4]–[7],[13]–[14].

The singularity at the point of interface in the domain of definition of the mixed
pair of equations could be of the following three types satisfying certain matching
conditions at the singular interface.

To describe the singularities in the domain of definition we take help of the
terminology used on Time Scale [2]. The new framework of the dynamic equations
on time scale with facilities of the two jump operators with various definitions of
continuity and derivatives make one’s job simple to study the interface problems
with mixed operators along with a singular interface. Recently we have worked on
the linear singular interface problems as seen in [4]–[7],[13]–[14]. Here we discuss
the corresponding nonlinear problem.

In this paper we present existential results for a IVP associated with the nonlin-
ear singular interface problems. The singular interface problem is described using
a pair of dynamic equations on a time scale. The picards iterative technique is
used for proving the existential results for the IVP. Also the theory developed
will be applied to a problem in the branch of elasticity.

2. Mathematical Preliminaries

Definition 2.1. Let T be a time scale. For t ∈ T we define the forward jump
operator σ : T → T by

σ(t) := inf{s ∈ T : s > t},
while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.
If σ(t) > t, we say that t is right-scattered, while ρ(t) < t we say that t is left-
scattered. Points that are right-scattered and left-scattered at the same time are
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called isolated. Also, if t < supT and σ(t) = t, then t is called right-dense, and
if t > inf T and ρ(t) = t, then t is called left-dense. Points that are right-dense
and left-dense at the same time are called dense. Finally, the graininess function
µ : T → [0,∞) is defined by

µ(t) := σ(t)− t

Definition 2.2. Tκ =

{
T− {m} if sup T < ∞
T if sup T = ∞

}
, where m is the left scat-

tered maximum.

Definition 2.3. Let f be a function defined on T. We say that f is delta differ-
entiable at t ∈ Tκ provided there exists an α such that for all ϵ > 0 there is a
neighborhood N around t with

|f(σ(t)− f(s)− α(σ(t)− s)| ≤ ϵ |σ(t)− s| for all s ∈ N

Definition 2.4.

f∆(t) =

{
lims→t,s∈T

f(t)−f(s)
t−s

if µ(t) = 0
f(σ(t))−f(t)

µ(t)
if µ(t) > 0

Note 2.5. For a function f : T → R we shall talk about the second derivative

f∆∆ provided f∆ is differentiable on Tκ2 = (Tκ)κ with derivative f∆∆ = (f∆)
∆
:

Tκ2 → R. Similarly we define the higher order derivatives f∆n
: Tκn → R.

Definition 2.6. (Comparison Test for real series)
Let

∑
An and

∑
Bn be two real series. Let N ∈ N such that for all n >

N,An < Bn. Then if
∑

Bn converges,
∑

An converges as well.

3. Definition of the IVP

Let T1 = [0, ρ(a)]T, T2 = [σ(a), l]T, where 0 < ρ(a) < σ(a) < l < +∞. Also
let (f1, f2) be nonlinear function tuple in C(T1 × T1 × T1

κ)× C(T2 × T2 × T2
κ).

In this chapter we consider the following IVP associated with singular interface
problem(IVP-SIP).

y∆∆
1 (t) = f1(t, y

σ
1 , y1

∆σ), t ∈ Tκ2

1 (3.1)

y∆∆
2 (t) = f2(t, y

σ
2 , y2

∆σ), t ∈ Tκ2

2 (3.2)

with the initial conditions

y1(0) = 0 (3.3)

y∆1 (0) = 0 (3.4)

followed by the matching interface conditions

ρ1y1(a) = ρ2y2(σ(a)) (3.5)

ρ3y
∆
1 (a) = ρ4y

∆
2 (σ(a)), ρi > 0, i = 1, 2, 3, 4. (3.6)
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4. Existential Results for the IVP-SIP

In this section we prove the existence of solution for the IVP-SIP using Picard’s
Iterative Technique.

Theorem 4.1. If (f1, f2) is bounded, then there exists a bounded solution for the
IVP-SIP.

Proof. As shown in [15] it can be clearly seen that the IVP-SIP is equivalent to
the integral equation

T (y1, y2) =

(∫ t1

0

∫ m

0

f1(s, y
σ
1 , y

∆σ
1 )∆s∆m,

∫ t2

σ(a)

∫ m
′

σ(a)

f2(s, y
σ
2 , y

∆σ
2 )∆s∆m

′

+

∫ t2

σ(a)

ρ3
ρ4

(∫ ρ(a)

0

f1(s, y
σ
1 , y

∆σ
1 )∆s

)
∆m

′

+
ρ1
ρ2

(∫ ρ(a)

0

∫ m
′

0

f1(s, y
σ
1 , y

∆σ
1 )∆s∆m

′
))

where t1,m ∈ T1 and t2,m
′ ∈ T2.

We now show that there exists (y1, y2) satisfying the above integral equation
using the picard’s iterative technique.

Case I Let u0 = 0. We let

|f1(t, pσ11, qσ11)− f1(t, p
σ
12, q

σ
12)| ≤ Kσ

11(t)|pσ11 − pσ12|+Kσ
12(t)|qσ11 − qσ12|

where∫ t

0

∫ m

0

(Kσ
11(s) +Kσ

12(s))∆s∆m = B < 1, for some K11, K12 ∈ C(T1).

For t ∈ T1, we define

∥u∥ = maxt∈T1{|u(t)|, |u∆(t)|}

Now we let

un+1 =

∫ t

0

∫ m

0

f1(s, u
σ
n, un

∆σ)∆s∆m, ∀t ∈ T1

and

rp(t) = |up(t)− up−1(t)|.

So

|r1(t)| = |u1(t)− u0(t)| = |u1(t)− 0| = |u1(t)|
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|u1(t)| ≤
∫ t

0

∫ m

0

|f1(s, uσ
0 , u0

∆σ)∆s∆m− f1(s, p
σ
11, p11

∆σ)∆s∆m|

+

∫ t

0

∫ m

0

|f1(s, pσ11, p11∆σ)|∆s∆m

≤
∫ t

0

∫ m

0

(Kσ
11(s)|uσ

0 − pσ11|+Kσ
12(s)|u∆σ

0 − p∆σ
11 |)∆s∆m

+

∫ t

0

∫ m

0

|f1(s, pσ11, p11∆σ)|∆s∆m

≤ ∥u0 − p11∥
∫ t

0

∫ m

0

(Kσ
11(s) +Kσ

12(s))∆s∆m

+

∫ t

0

∫ m

0

|f1(s, pσ11, p11∆σ)|∆s∆m

= ∥u0 − p11∥B +

∫ t

0

∫ m

0

|f1(s, pσ11, p11∆σ)|∆s∆m

= A

Therefore |u1(t)− u0| ≤ A where A is finite. Let us assume that

rp−1(t) ≤ ABp−2 for 2 < p < n.

Now

rp(t) = |up(t)− up−1(t)|

= |
∫ t

0

∫ m

0

f1(s, u
σ
p−1, up−1

∆σ)∆s∆m

−
∫ t

0

∫ m

0

f2(s, u
σ
p−2, up−2

∆σ)∆s∆m|

≤
∫ t

0

∫ m

0

[Kσ
11(s)|uσ

p−1 − uσ
p−2|+Kσ

12(s)|up−1
∆σ − up−2

∆σ|]∆s∆m

≤ ∥up−1 − up−2∥
∫ t

0

∫ m

0

(Kσ
11(s) +Kσ

12(s))∆s∆m

≤ rp−1(t)

∫ t

0

∫ m

0

(Kσ
11(s) +Kσ

12(s))∆s∆m

≤ ABp−2B = ABp−1

Thus we have shown that

rp(t) ≤ ABp−1.

Therefore the infinite series,

∞∑
p=1

rp(t) ≤
∞∑
p=1

ABp−1



EXISTENTIAL RESULTS FOR NONLINEAR SINGULAR INTERFACE PROBLEMS 205

converges uniformly for all t ∈ T1 by the comparison test since B < 1. Let

limp→∞up(t) = u(t).

Now we will show that the sequence of functions up(t) converges uniformly to
u(t). We see that

|u(t)− up(t)| = |u0 +
∞∑
i=1

[ui(t)− ui−1(t)]− u0 −
p∑

i=1

[ui(t)− ui−1(t)]|

≤
∞∑

i=p+1

|[ui(t)− ui−1(t)]|

=
∞∑

i=p+1

ri(t)

≤
∞∑

i=p+1

ABi ≤ A
Bp+1

1−B

Therefore as p → ∞, we have up(t) → u(t)(as B < 1). Now we will show that
u(t) is a continuous function for t ∈ T1. Let ϵ > 0 be given.

|u(t+ h)− u(t)| = |u(t+ h)− up(t+ h) + up(t+ h)− up(t) + up(t)− u(t)|
≤ |u(t+ h)− up(t+ h)|
+ |up(t+ h)− up(t)|+ |up(t)− u(t)|

≤ 2
ABp+1

1−B
+ |up(t+ h)− up(t)|

For sufficiently large m and arbitrarily small h, we have

|u(t+ h)− u(t)| < ϵ, t ∈ T1.

The fact that u(t) is bounded follows from the fact that f1(s, y, y
′
) is bounded on

T1.

Case II Let v0 =
ρ1
ρ2

(∫ ρ(a)

0

∫ m
′

0
f1(s, u0, u0

′
)∆s∆m

′
)
. We let

|f2(t, pσ21, qσ21)− f2(t, p
σ
22, q

σ
22)| ≤ Kσ

21(t)|pσ21 − pσ22|+Kσ
22(t)|qσ21 − qσ22|

where∫ t

0

∫ m

0

(Kσ
21(s) +Kσ

22(s))∆s∆m = B
′
< 1, for some K21, K22 ∈ C(T2).

For t ∈ T2, we define

∥v∥ = maxt∈T2{|v(t)|, |v
′
(t)|}
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Now we let

vn+1 =

∫ t

σ(a)

∫ m
′

σ(a)

f2(s, v
σ
n, vn

∆σ)∆s∆m
′

+

∫ t

σ(a)

ρ3
ρ4

(∫ ρ(a)

0

f1(s, u
σ
n, un

∆σ)∆s

)
∆m

′

+
ρ1
ρ2

(∫ ρ(a)

0

∫ m
′

0

f1(s, u
σ
n, un

∆σ)∆s∆m
′
)

∀t ∈ T2

and
gp(t) = |vp(t)− vp−1(t)|

So
|g1(t)| = |v1(t)− v0(t)|

We see that∫ t

σ(a)

∫ m
′

σ(a)

f2(s, v
σ
0 , v0

∆σ)∆s∆m
′ −
∫ t

σ(a)

∫ m
′

σ(a)

f2(s, p
σ
21, p21

∆σ)∆s∆m
′

≤ ∥v0 − p21∥
∫ t

σ(a)

∫ m
′

σ(a)

(Kσ
21(s) +Kσ

22(s))∆s∆m

= ∥v0 − p21∥B
′

Now |g1(t)|
= |v1(t)− v0(t)|

= |
∫ t

σ(a)

∫ m
′

σ(a)

f2(s, v
σ
0 , v0

∆σ)∆s∆m
′
+

∫ t

σ(a)

ρ3
ρ4

(∫ ρ(a)

0

f1(s, u
σ
0 , u0

∆σ)∆s

)
∆m

′|

≤ |
∫ t

σ(a)

∫ m
′

σ(a)

f2(s, v
σ
0 , v0

∆σ)∆s∆m
′ −
∫ t

σ(a)

∫ m
′

σ(a)

f2(s, p
σ
21, p21

∆σ)∆s∆m
′|

+ |
∫ t

σ(a)

∫ m
′

σ(a)

f2(s, p
σ
21, p21

∆σ)∆s∆m
′|

+ |
∫ t

σ(a)

ρ3
ρ4

(∫ ρ(a)

0

f1(s, u
σ
0 , u0

∆σ)∆s

)
∆m

′|

≤ ∥v0 − p21∥B
′
+

∫ t

σ(a)

∫ m
′

σ(a)

f2(s, p
σ
21, p21

∆σ)∆s∆m
′ |

+ |
∫ t

σ(a)

ρ3
ρ4

(∫ ρ(a)

0

f1(s, u
σ
0 , u0

∆σ)∆s

)
∆m

′|

= A
′
which is finite.

Therefore |g1(t)| ≤ A
′
where A

′
is finite. Let us assume that

gp−1(t) ≤ A
′
B

′p−2
for 2 < p < n.
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Now

gp(t) = |vp(t)− vp−1(t)|

= |
∫ t

σ(a)

∫ m
′

σ(a)

f2(s, v
σ
p−1, vp−1

∆σ)∆s∆m
′

−
∫ t

σ(a)

∫ m
′

σ(a)

f2(s, v
σ
p−2, vp−2

∆σ)∆s∆m
′ |

≤ A
′
B

′p−1
(similar to Case I).

In similar lines to Case I it can be shown that the sequence of functions vp(t)
converges uniformly to v(t) where

limp→∞vp(t) = v(t).

Also v(t) is a continuous function for t ∈ T2. The fact that v(t) is bounded follows
from the fact that f1(s, y

σ, y∆σ) is bounded on T1 and f2(s, z
σ, z∆σ) is bounded

on T2.
We are done through the proof if we can show that (u(t), v(t)) is a fixed point

of the operator T . We see that
limn→∞un+1(t)

= limn→∞

∫ t

0

∫ m

0

f1(s, u
σ
n, un

∆σ)∆s∆m

=

∫ t

0

∫ m

0

f1(s, limn→∞uσ
n, limn→∞un

∆σ)∆s∆m (since f1 is continuous)

=

∫ t

0

∫ m

0

f1(s, u
σ, u∆σ)∆s∆m

Hence we have

u(t) =

∫ t

0

∫ m

0

f1(s, u
σ, u∆σ)∆s∆m

Similarly, using the fact that f2 is continuous it can be shown that

v(t) =

∫ t

σ(a)

∫ m
′

σ(a)

f2(s, v
σ, v∆σ)∆s∆m

′

+

∫ t

σ(a)

ρ3
ρ4

(∫ ρ(a)

0

f1(s, u
σ, u∆σ)∆s

)
∆m

′

+
ρ1
ρ2

(∫ ρ(a)

0

∫ m
′

0

f1(s, u
σ, u∆σ)∆s∆m

′
)

So (u(t), v(t)) is a fixed point of the operator T . Hence there exists a solution for
the IVP-SIP. � �

Remark 4.2. The above theorem can be proved for IVPs for the Interface II and
Interface III with suitable changes in the notations.
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5. Applications

The results presented here are general in nature and holds true for both the
interface problems for the regular case and singular interface problems. Evidently
we need to consider ρ(a) = a = σ(a) for the regular case where we have the
delta derivative becoming the ordinary derivative. These results can be applied
for a pair of ordinary nonlinear differential equations with matching interface
conditions which is the subject matter of discussion in [3],[8]–[12], [16]–[22].

Here we discuss the theory developed for a regular interface problems in the
field of applied elasticity.

[1] In the branch of applied elasticity [23], we encounter the problem of buck-
ling of columns of variable cross sections given by

d2u1

dx2
+K2

1u1 = 0, 0 ≤ x ≤ l1

d2u2

dx2
+K2

2u2 = 0, l1 ≤ x ≤ l

where K2
i = P

EIi
, E is the modulus of elasticity, P is the load applied, Ii are the

moments of inertia, i = 1, 2, and u1, u2 are the displacements of the cross sections
for the thinner and thicker portions of the column respectively. The physical
conditions on the system are given by

u1(0) = u
′

1(0) = 0

u1(l1) = u2(l1)

u
′

1(l1) = u
′

2(l1)

where x = l1 denotes the point of interface.
Here we see that a = l1 = σ(a) is the regular interface. Hence from The-

orem(4.1) we see that a solution exists for the buckling of columns of variable
cross sections.
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