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Abstract
In this paper, we investigate the Ulam stability of the functional equations

21 (w49 55" ) = Fo2) 4 fla0) + £02) + flg )

and
flx+y,z+w)+ f(x+y,z—w)=2f(z,2) +2f(z,w) + 2f(y, 2) + 2f(y, w)

in paranormed spaces. (©2015 All rights reserved.
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1. Introduction

In 1940, S. M. Ulam proposed the stability problem (see [10]):

Let G be a group and let G5 be a metric group with the metric d(-, ). Given € > 0, does there exist a
d > 0 such that if a mapping h : G; — G2 satisfies the inequality d(h(zy), h(x)h(y)) < 0 for all z, y € Gy
then there is a homomorphism H : G — G2 with d(h(x), H(z)) < ¢ for all z € G;?

In 1941, this problem was solved by D. H. Hyers [3] in the case of Banach space. Thereafter, we call that
type the Hyers-Ulam stability. In 1978, Th. M. Rassias [9] extended the Hyers-Ulam stability by considering
variables. It also has been generalized to the function case by P. Gavruta [2]. For more details on this topic,
we also refer to [II, 4, [6] and references therein.

We recall some basic facts concerning Fréchet spaces (see [11]).
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Definition 1.1. Let X be a vector space. A paranorm on X is a function P : X — R such that for all
z,y e X

(i) P(0) = 0;

ii) P(—2) = P(a);

iii) P(z 4+ y) < P(z) + P(y) (triangle inequality);

iv) If {t,} is a sequence of scalars with ¢, — ¢ and {x,} C X with P(z,, — x) — 0, then P(t,z, —tx) — 0
continuity of scalar multiplication).

(
(
(i
(

The pair (X, P) is called a paranormed space if P is a paranorm on X. Note that
P(nx) < nP(x)

for all n € Nand all z € (X, P). The paranorm P on X is called total if, in addition, P satisfies (v) P(x) =0
implies x = 0. A Fréchet space is a total and complete paranormed space. Note that each seminorm P on
X is a paranorm, but the converse need not be true. In recent, C. Park [5] obtained some stability results
in paranormed spaces.

Let X and Y be vector spaces. A mapping f : X x X — Y is called a Cauchy-Jensen mapping
(respectively, additive-quadratic mapping) if it satisfies the system of equations

fla+y2) = f@ )+ f,2), 20 (0, 255) = Fe,p) + f(z,2)

(respectively, f(z +y,2) = f(z,2) + f(y,2), f(z,y+2)+ f(z,y—2)=2f(2,y) +2f(z, 2)).

The authors [7, [§] considered the following functional equations:

27 (245, 55 ) = f0) + S + 10 + S (1)
and
Flatyz ) + Fle .z - w) = 2 (.2) + 2f (o) + 2(0.2) + 2 (3, ) (12)

It is easy to show that the functions f(z,y) = ax?® + bx and f(x,y) = axy? satisfy the functional equations

(1.1) and (1.2)), respectively. Also, they solved the solutions of (1.1]) and (|1.2)).

From now on, assume that (X, P) is a Fréchet space and (Y, || - ) is a Banach space
In this paper, we investigate the Ulam stability of the functional equations (|1.1)) and ([1.2]) in paranormed
spaces.

2. Ulam stability of the Cauchy-Jensen functional equation (|1.1J

Theorem 2.1. Let r,0 be positive real numbers with r > logy 6, and let f :' Y xY — X be a mapping
satisfying f(x,0) =0 for all x € Y such that

P<2f(:r +y, 20 = @, 2) - flaw) — £y 2) - f<y,w>) < O(lal” + Iyl + 1217 + el) - (2.1)

for all x,y, z, w € Y. Then there exists a unique mapping F : Y xY — X satisfying (L.1)) such that

P21 () - Fa,9) < 20(gogllell + o 2 )

(2.2)

forallz,y €Y.
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Proof. Letting y = x in (2.1)), we gain

P<2f(2w, 20) —2f(w,2) - 2f<x,w>) < 0Qlle]" + 2" + o] (2.3)
for all x,z,w € Y. Letting w = —z in ), we get
P2f(x,2) +2f (2, —2)) < 20([l«[" + [[2]") (2.4)
for all x,z € Y. Replacing z by —z and w by —z in ), we have
PQ2f(2z,—2) — 4f (z,—2)) < 20([lz|" + [|=[]") (2.5)
forall z,z € Y. By and , we obtain

P(4f(z,z)+2f(2x,—2)) <2P2f(x,2) + 2f(x,—2)) + P(2f(2z,—2) — 4f(x,—2))
<66([|l[" +[[=[")

for all x,z € Y. Putting w = —3z in ), we gain
PQ2fQ2r,—z) = 2f(x,2) — 2f(x, =32)) < 0 [2[|z[|" + (1 + 3")[|z]]"]
for all x,z € Y. By the above two inequalities, we see that
P(6f(2,2) +2f(x,=32)) <O[8[|lz|" + (7 + 37)[]2[]"] (2.6)
for all =,z € Y. Replacing z by 3z in , we gain
P(2f(2x, =32) — 4f (z, =32)) < 20([|lz[" + 37][=]")
for all z,z € Y. By and the above inequality, we get

P12f(x,2) + 2f (2, —32)) <2P(6f(x,2) + 2f(x, —32)) + P(2f (22, —32) — 4f(x, —32))
<20 [9|z[|" + (7+2-3")|z("]

for all x, z € Y. Replacing z by —z in the above inequality, we have

P12f(x,—2) + 2f(2x,32)) <2P(6f(x,—2) + 2f(x,3z2)) + P(2f(2z,3z) — 4f(x,32))
<20[9)|z[" + (T+2-37)|z]|"]

for all z,z € Y. By (2.4)) and the above inequality, we obtain

P(12f(z, 2) — 2f(2%,32)) <6P(2f(x,2) 4 2f (z, —2)) + P(=12f(z, —2) — 2f(2%,32))
<20 [15)| =" + (13 +2-37) 2" ]

for all z, 2 € Y. Replacing x by 5%+ and 2z by 577 in the above inequality, we see that

z T oz 15 yo B3+2.3"
P(121 (55 5) -2 (. 5)) < 20 ool + 2 e
for all nonnegative integers j and all x,z € Y. For given integers [,m(0 <[ < m), we obtain that
m z (T % 1 z z
P () 20 (5 5)) = X P (20" (5 i) 2 91 (5057))

-1
Lo13+2.37
036 | g el + S 1| 27)

-1

3

™

s -

J

IN

[\]
.
l
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for all z,z € Y. By (2.7), the sequence {2 - 6f(2%,3%)} is a Cauchy sequence in X for all z,z € Y.
Since X is complete, the sequence {2 - 67 f(za v 37)} converges for all z,z € Y. Define F: Y xY — X by
F(x,z) :=1limj_00 2 - 6/ f( - 31) forall z,z € Y. By (2 , we see that

P<2F<:E—|—y,z—;w) —F(:p,z)—F(x,w)—F(y,z)—F(y,w))

= (o[ (75 ) 2 (5eg) 2 () -2 (5 5) - (55)])

j Tty z+w>_ (ﬁ i)_ (ﬁ E>_ (ﬂ i)_ (ﬂ E)
< fim 2- 6P<2f( ) \erE) N\ ) T N\er ) T N\G s

T T T T
"+ llyll” - l=0)” + [l ):0
2 3

<20 lim 6 (
j—o00

for all z,y,z,w €Y. Since X is total, F satisfies (1.1). Setting { = 0 and taking m — oo in (2.7)), one can

obtain the inequality (2
Let F/ : Y XY — X be another mapping satisfying (|1.1)) and - By [7], there exist bi-additive

mappings B, B’ : Y x Y — X and additive mappings A,A Y — X such that F(ac,y) = B(z,y) + A(z)
and F'(z,y) = B'(x,y) + A'(x) for all z,y € Y. Since r > log, 6, we obtain that

puvte = o = (o [o( ) () - 2 () -4 G2)])

<o [r(eom) 21l w)) /(1 3) - o))

<4-6"0( ———M T, -
—4 6 0((27"_6)2717""1.H (37’_ )3717’

HyH)—>0 as m — 00

for all z,y € Y. Hence F' is a unique mapping satisfying (1.1)) and (2.2)), as desired. O

Theorem 2.2. Let r be a positive real number with r < logs6, and let f : X x X — Y be a mapping
satisfying f(x,0) =0 for all x € X such that

Z+w
2

27 (243, 557) = F(@,2) = f@,w) = [(5,2) = flyw)|| € P@) + P)" + P(2)" + Pw)  (28)
for all x,y, z, w € X. Then there exists a unique mapping F : X x X —'Y satisfying (1.1 such that

r+1
18 p +154—3

[ es) = EGa)]| € o Pa) + o Py (29)
forall x,y € X.
Proof. Letting y = = in , we gain
H2f (Zx, et “’) —2f(x, 2) — 2f (x, w)H < 2P(z)" + P(2)" + P(w)" (2.10)
for all x, z,w € X. Putting w = —z in , we get
12f (2, 2) + 2/ (z, —2)|| < 2[P(2)" + P(2)"] (2.11)

for all z,z € X. Replacing z by —z and w by —z in (2.10]), we have
(22, —2) — 2f (2, —2)| < 2[P(&)" + P(2)] (2.12)
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for all x,z € X. By and , we obtain
(2, ~2) +2f (2. 2)]| < 4[P(a) + P(=)'] (2.13)
for all z,z € X. Setting w = —3z in , we gain
12f (22, —2) = 2f(x, 2) = 2f (2, =32)[| < 2P(z)" + (1 +3")P(2)"

for all z,z € X. By ([2.13]) and the above inequality, we get
16f (2, 2) + 2f (z, =32)|| < 10P(z)" + (94 3")P(2)" (2.14)
for all z, z € X. Replacing z by 3z in (2.12]), we have

IIf(2z,—32z) — 2f(x, —32)|| < 2[P(x)7" + 3TP(2)T]
for all z,z € X. By and the above inequality, we gain
16 (x, 2) + f(22,=32)|| < 12P(x)" + (9 + 3"") P(2)"
for all x, z € X. Replacing z by —z in the above inequality, we get
16 (2, —2) + f(22,32)|| < 12P(x)" + (9 +3"") P(2)
for all x,z € X. By and the above inequality, we have
16f(x,2) — f(22,32)| < 18P(x)" + (15 + 3" 1) P(2)"

for all 2,2 € X. Replacing x by 27z and z by 37z in the above inequality and dividing 6/*!, we see that

1 . . 1 . . 1 . .
G/ @2.302) — g (70 37| < g (18- 2P @) 4 (154 3773 P(2)']

for all nonnegative integers j and all x, z € X. For given integers [,m(0 <[ < m), we obtain that

[y

m—

1 . . A

<> G182 P(2)" + (15+ 33 P(2)] (2.15)
j=l

1 1
@f(QlIL‘, 3lz) — G—mf(me, 3"2)

for all z,z € X. By , the sequence {éf(Qj:c,Bjy)} is a Cauchy sequence for all z,y € X. Since
Y is complete, the sequence {%f@jazﬁjy)} converges for all z,y € X. Define FF : X x X — Y by
F(z,y) = lim;_ éf(2j:v, 37y) for all 2,y € X.

By , we see that

3(z +w)
2

) — f(22,32) — f(2z,3w) — f(2y,32) — f(2jy,3jw)H

[P(27z)" + P(27y)" + P(32)" + P(3w)"]

(27[P(2)" + P(y)"] + 37[P(2)" + P(w)"])

for all z,y,z,w € X. Letting j — oo, F' satisfies . By Theorem 4 in [7], F is a Cauchy-Jensen mapping.

Setting [ = 0 and taking m — oo in ([2.15]), one can obtain the inequality (2.9). Let G : X x X — Y be
another Cauchy-Jensen mapping satisfying (2.9)). Since 0 < r < logs 6, we obtain that
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1

1
= P, 3) - F(2"2,0) + G(2",0) - G(2°2,3"y) |

IN

1
g 12", 3%) — F(2"2,0) — f(2"2,3%) + f(2"2, 0]

1
+6—n|] — f(2"z,0) + f(2"x,3"y) + G(2"x,0) — G(2"z,3"y)||

IN

%(IIF(Q":L‘, 3%y) — [(2", 3"y)[| + || = F(2"2,0) + f(2",0)]))

ol = F2,0) + G, 0)] + [1£(2"0,3") ~ G2, 3)])

2 [36- 2’““P(x)r N 37 (15 4 37+
67| 6—2r 6 — 3"

< P(y)"| -0 as n— o

for all z,y € X. Hence F' is a unique Cauchy-Jensen mapping, as desired. O

3. Ulam stability of the additive-quadratic functional equation (|1.2)

Theorem 3.1. Let r,0 be positive real numbers with r > logy 8 =3, and let f :' Y xY — X be a mapping
satisfying f(x,0) =0 for allx € Y such that

P(f(z+yz4+w)+ flx+y,z—w)—2f(x,2) —2f(x,w) —2f(y,2) — 2f(y,w))
<Ozl + lyl™ + 112017 + [lwl") (3.1)
for all x, y, z, w € Y. Then there exists a unique mapping F 1Y xY — X satisfying (1.2)) such that

20
2r

P(f(z,y) = F(z,y)) < g Ul + iyl (3.2)

forallxz,y €Y.

Proof. Letting y = x and w = z in (3.1]), we gain
P(f(2x,22) = 8f(x,2)) < 20(|[=(" + [[=]|")

for all z,z € Y. Replacing x by 5757 and 2z by 557 in the above inequality, we see that

26
P(‘f(; > B f<2j+17 2JZ+1>> < G+ Sl )™+ l=l7)

for all nonnegative integers j and all z,z € Y. Thus we obtain that

z
r((55) > (gn))
, 2 (8
<P(1(5.5) -3 (55 5m1) ) = 25 ) Oalr + 1217

for all nonnegative integers j and all 2,z € Y. For given integers [,m(0 <[ < m), we have
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P(81(55) -5 (o)) < Ef;z(>'|ww+wwu> (3.3

Jj=l

for all z,z € Y. By (3.3), the sequence {8jf(%,§)} is a Cauchy sequence in X for all z,z € Y.
Since X is complete, the sequence {8 f(35, %)} converges for all 2,z € Y. Define F : Y xY — X by
F(x,z) :=limj_00 8jf(2j ) 2J) for all x,z € Y. By (3.1] ., we see that

P(F(z+y,z24+w)+ F(z+y,z —w) — 2F(z,2) — 2F (z,w) — 2F (y, z) — 2F (y, w))
= P(9 [ (") 1 (T 55

j—roo 27 2J 2J 2J

~2(5057) Y w) (5 5) (5 2J)D

. j Tty z+w> (:C+y sz)
SjIL%oSP(f( 5 o )P\

(e g) () 2e(B) —2r(2.5)

8\J
<Ol + " + [0 + o) im (55)" =0

for all z,y,z,w €Y. Since X is total, F satisfies (1.2). Setting { = 0 and taking m — oo in (3.3), one can
obtain the inequality (3

Let F/: Y xY — X be another mapping satisfying ([1.2)) and . By [8], there exist multi-additive
mappings M, M’ : Y xY xY — X such that F(x,y) = M(:U v, y), F'(z, y) M (z,y,y), M(z,y,2) =
M (z,z,y) and M'(z,y,2z) = M'(x,z,y) for all z,y,z € Y. Since r > 3, we obtain that

P(F(x,y)—F’(w,y))ZP(S”[M@L Qyn 2yn) Ml(; zyn ;)D
cor (5 1) 2055 )
<o [r(r(52) -1 1) + (1 ) -2 )]

on’ gn’ on
8\n 46
= (27> 2T_8(Hx\|’"+Hy”T) —0 as n— o0

for all z,y € Y. Hence F is a unique mapping satisfying (1.2)) and (3.2]), as desired. O

Theorem 3.2. Let r be a positive real number with v < logy 8 = 3, and let f : X x X — Y be a mapping
satisfying f(x,0) =0 for all x € X such that

1£( + 9,2+ w) + f@+y,2—w) — 2f(2,2) — 2f (w,w) — 2 (y, =) — 2f (g w)]
< P(a) + P(y)" + P(2) + P(w)’ (3.4)

for all x, y, z, w € X. Then there exists a unique mapping F : X x X =Y satisfying (1.2)) such that

[f(z,9) = F(z,y)| < [P(z)" + P(y)"] (3-5)

8 —2r
forall xz,y € X.
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Proof. Letting y = x and w = z in (3.4), we gain
1f(22,22) = 8f(x, 2)|| < 2[P(2)" + P(2)"]

for all z, 2 € X. Replacing = by 2/2 and z by 27z in the above inequality, we see that

Yis

H;f(2j+1:c,2j+lz) — f(2x,272)|| < QT[P(:C)T + P(2)"]

for all nonnegative integers j and all x, z € X. Thus we obtain that

i.f(ij, 272)

Jj+1 J+L_\
27, 2T z) &

< i(i)j[w P

Sjﬁf(

for all nonnegative integers j and all z,z € X. For given integers {,m(0 <[ < m), we have

m—1

’ éf@lx, QlZ) - 8%f(2m1‘, 2Mz)|| < Z_l %f(gja37 2jz) _ wf@j—s—lx’ 2j+1z)
J:
(=S WO
<2 (g) [P(@)" + P(2)'] (3.6)

Jj=l

for all z,2 € X. By (3.6), the sequence {%f@jx, 272)} is a Cauchy sequence in Y for all z,z € X.
Since Y is complete, the sequence {8 f(272,272)} converges for all x,2 € X. Define F : X x X — Y by
F(x,z) == limj_ 00 8Jf(23:n 27z) for all z,z € X. By (3.4), we see that

J—00

= lim Hglj[f(Qj(x—Fy),Qj(z—Fw)) + f(2(z+y),2(z — w))
—2f(22,292) — 2f(2x,20w) — 2f(27y, 272) — 2f(27y, 2w)] H

= lim [ F (o4 ), 2 (= 4 w) + S+ 9),20(z — w))

]*}OO

—2f(202,272) — 2f (272, 27w) — 2f(27y, 272) — 2f(27y, 2 w)|

< [P(z)" + P(y)" + P(2)" + P(w)"] lim (z)j =0

j—oo \ 8

for all x,y,z,w € X. Thus F is a mapping satisfying (1.2). Setting [ = 0 and taking m — oo in (3.6)), one
can obtain the inequality (3.5]).
Let G : X x X — Y be another additive-quadratic mapping satisfying (3.5)). Since 0 < r < 3, we have

1F(z,y) — G(z,y)|| = *HF( "z, 2%y) — G(2"x, 2"y ||

< 87|\F(2”$,2”y) — f(2%, 2"y)[| + *Ilf( e, 2My) — G(2", 2"y) ||

< <28> 5 _42r [P(2)" + P(y)'] = 0 as n— oo

for all x,y € X. Hence F is a unique additive-quadratic mapping, as desired. O
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