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Abstract

In this paper, we investigate the Ulam stability of the functional equations

2f

(
x+ y,

z + w

2

)
= f(x, z) + f(x,w) + f(y, z) + f(y, w)

and
f(x+ y, z + w) + f(x+ y, z − w) = 2f(x, z) + 2f(x,w) + 2f(y, z) + 2f(y, w)

in paranormed spaces. c©2015 All rights reserved.
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1. Introduction

In 1940, S. M. Ulam proposed the stability problem (see [10]):
Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there exist a

δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1

then there is a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?
In 1941, this problem was solved by D. H. Hyers [3] in the case of Banach space. Thereafter, we call that

type the Hyers-Ulam stability. In 1978, Th. M. Rassias [9] extended the Hyers-Ulam stability by considering
variables. It also has been generalized to the function case by P. Găvruta [2]. For more details on this topic,
we also refer to [1, 4, 6] and references therein.

We recall some basic facts concerning Fréchet spaces (see [11]).
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Definition 1.1. Let X be a vector space. A paranorm on X is a function P : X → R such that for all
x, y ∈ X
(i) P (0) = 0;
(ii) P (−x) = P (x);
(iii) P (x+ y) ≤ P (x) + P (y) (triangle inequality);
(iv) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P (xn − x)→ 0, then P (tnxn − tx)→ 0
(continuity of scalar multiplication).

The pair (X,P ) is called a paranormed space if P is a paranorm on X. Note that

P (nx) ≤ nP (x)

for all n ∈ N and all x ∈ (X,P ). The paranorm P on X is called total if, in addition, P satisfies (v) P (x) = 0
implies x = 0. A Fréchet space is a total and complete paranormed space. Note that each seminorm P on
X is a paranorm, but the converse need not be true. In recent, C. Park [5] obtained some stability results
in paranormed spaces.

Let X and Y be vector spaces. A mapping f : X × X → Y is called a Cauchy-Jensen mapping
(respectively, additive-quadratic mapping) if it satisfies the system of equations

f(x+ y, z) = f(x, z) + f(y, z), 2f
(
x,
y + z

2

)
= f(x, y) + f(x, z)

(respectively, f(x+ y, z) = f(x, z) + f(y, z), f(x, y + z) + f(x, y − z) = 2f(x, y) + 2f(x, z)).

The authors [7, 8] considered the following functional equations:

2f

(
x+ y,

z + w

2

)
= f(x, z) + f(x,w) + f(y, z) + f(y, w) (1.1)

and
f(x+ y, z + w) + f(x+ y, z − w) = 2f(x, z) + 2f(x,w) + 2f(y, z) + 2f(y, w). (1.2)

It is easy to show that the functions f(x, y) = ax2 + bx and f(x, y) = axy2 satisfy the functional equations
(1.1) and (1.2), respectively. Also, they solved the solutions of (1.1) and (1.2).

From now on, assume that (X,P ) is a Fréchet space and (Y, ‖ · ‖) is a Banach space.
In this paper, we investigate the Ulam stability of the functional equations (1.1) and (1.2) in paranormed

spaces.

2. Ulam stability of the Cauchy-Jensen functional equation (1.1)

Theorem 2.1. Let r, θ be positive real numbers with r > log2 6, and let f : Y × Y → X be a mapping
satisfying f(x, 0) = 0 for all x ∈ Y such that

P

(
2f
(
x+ y,

z + w

2

)
− f(x, z)− f(x,w)− f(y, z)− f(y, w)

)
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) (2.1)

for all x, y, z, w ∈ Y . Then there exists a unique mapping F : Y × Y → X satisfying (1.1) such that

P
(
2f(x, y)− F (x, y)

)
≤ 2θ

( 15

2r − 6
‖x‖r +

13 + 2 · 3r

3r − 6
‖y‖r

)
(2.2)

for all x, y ∈ Y .
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Proof. Letting y = x in (2.1), we gain

P

(
2f
(

2x,
z + w

2

)
− 2f(x, z)− 2f(x,w)

)
≤ θ(2‖x‖r + ‖z‖r + ‖w‖r) (2.3)

for all x, z, w ∈ Y . Letting w = −z in (2.3)), we get

P (2f(x, z) + 2f(x,−z)) ≤ 2θ(‖x‖r + ‖z‖r) (2.4)

for all x, z ∈ Y . Replacing z by −z and w by −z in (2.3)), we have

P (2f(2x,−z)− 4f(x,−z)) ≤ 2θ(‖x‖r + ‖z‖r) (2.5)

for all x, z ∈ Y . By (2.4) and (2.5), we obtain

P (4f(x, z) + 2f(2x,−z)) ≤ 2P (2f(x, z) + 2f(x,−z)) + P (2f(2x,−z)− 4f(x,−z))
≤ 6 θ(‖x‖r + ‖z‖r)

for all x, z ∈ Y . Putting w = −3z in (2.3)), we gain

P (2f(2x,−z)− 2f(x, z)− 2f(x,−3z)) ≤ θ [ 2‖x‖r + (1 + 3r)‖z‖r ]

for all x, z ∈ Y . By the above two inequalities, we see that

P (6f(x, z) + 2f(x,−3z)) ≤ θ [ 8‖x‖r + (7 + 3r)‖z‖r ] (2.6)

for all x, z ∈ Y . Replacing z by 3z in (2.5), we gain

P (2f(2x,−3z)− 4f(x,−3z)) ≤ 2θ(‖x‖r + 3r‖z‖r)

for all x, z ∈ Y . By (2.6) and the above inequality, we get

P (12f(x, z) + 2f(2x,−3z)) ≤ 2P (6f(x, z) + 2f(x,−3z)) + P (2f(2x,−3z)− 4f(x,−3z))

≤ 2θ [ 9‖x‖r + (7 + 2 · 3r)‖z‖r ]

for all x, z ∈ Y . Replacing z by −z in the above inequality, we have

P (12f(x,−z) + 2f(2x, 3z)) ≤2P (6f(x,−z) + 2f(x, 3z)) + P (2f(2x, 3z)− 4f(x, 3z))

≤2θ [ 9‖x‖r + (7 + 2 · 3r)‖z‖r ]

for all x, z ∈ Y . By (2.4) and the above inequality, we obtain

P (12f(x, z)− 2f(2x, 3z)) ≤6P (2f(x, z) + 2f(x,−z)) + P (−12f(x,−z)− 2f(2x, 3z))

≤2θ [ 15‖x‖r + (13 + 2 · 3r)‖z‖r ]

for all x, z ∈ Y . Replacing x by x
2j+1 and z by z

3j+1 in the above inequality, we see that

P
(

12f
( x

2j+1
,
z

3j+1

)
− 2f

( x
2j
,
z

3j

))
≤ 2θ

[
15

2(j+1)r
‖x‖r +

13 + 2 · 3r

3(j+1)r
‖z‖r

]
for all nonnegative integers j and all x, z ∈ Y . For given integers l,m(0 ≤ l < m), we obtain that

P
(

2 · 6mf
( x

2m
,
z

3m

)
− 2 · 6lf

( x
2l
,
z

3l

))
≤

m−1∑
j=l

P

(
2 · 6j+1f

( x

2j+1
,
z

3j+1

)
− 2 · 6jf

( x
2j
,
z

3j

))

≤ 2θ

m−1∑
j=l

6j
[

15

2(j+1)r
‖x‖r +

13 + 2 · 3r

3(j+1)r
‖z‖r

]
(2.7)
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for all x, z ∈ Y . By (2.7), the sequence {2 · 6jf( x
2j
, z
3j

)} is a Cauchy sequence in X for all x, z ∈ Y .
Since X is complete, the sequence {2 · 6jf( x

2j
, z
3j

)} converges for all x, z ∈ Y . Define F : Y × Y → X by
F (x, z) := limj→∞ 2 · 6jf

(
x
2j
, z
3j

)
for all x, z ∈ Y . By (2.1), we see that

P

(
2F
(
x+ y,

z + w

2

)
− F (x, z)− F (x,w)− F (y, z)− F (y, w)

)
= lim

j→∞
P

(
6j
[
4f
(x+ y

2j
,
z + w

3j

)
− 2f

( x
2j
,
z

3j

)
− 2f

( x
2j
,
w

3j

)
− 2f

( y
2j
,
z

3j

)
− 2f

( y
2j
,
w

3j

)])
≤ lim

j→∞
2 · 6jP

(
2f
(x+ y

2j
,
z + w

3j

)
− f

( x
2j
,
z

3j

)
− f

( x
2j
,
w

3j

)
− f

( y
2j
,
z

3j

)
− f

( y
2j
,
w

3j

))
≤ 2θ lim

j→∞
6j
(‖x‖r + ‖y‖r

2jr
+
‖z‖r + ‖w‖r

3jr

)
= 0

for all x, y, z, w ∈ Y . Since X is total, F satisfies (1.1). Setting l = 0 and taking m→∞ in (2.7), one can
obtain the inequality (2.2).

Let F ′ : Y × Y → X be another mapping satisfying (1.1) and (2.2). By [7], there exist bi-additive
mappings B,B′ : Y × Y → X and additive mappings A,A′ : Y → X such that F (x, y) = B(x, y) + A(x)
and F ′(x, y) = B′(x, y) +A′(x) for all x, y ∈ Y . Since r > log2 6, we obtain that

P (F (x, y)− F ′(x, y)) = P

(
6n
[
B
( x

2n
,
y

3n

)
+A

( x
2n

)
−B′

( x
2n
,
y

3n

)
−A′

( x
2n

)])
≤ 6n

[
P

(
F
( x

2n
,
y

3n

)
− 2f

( x
2n
,
y

3n

))
+ P

(
2f
( x

2n
,
y

3n

)
− F ′

( x
2n
,
y

3n

))]
≤ 4 · 6nθ

( 15

(2r − 6)2nr
‖x‖r +

13 + 2 · 3r

(3r − 6)3nr
‖y‖r

)
→ 0 as n→∞

for all x, y ∈ Y . Hence F is a unique mapping satisfying (1.1) and (2.2), as desired.

Theorem 2.2. Let r be a positive real number with r < log3 6, and let f : X × X → Y be a mapping
satisfying f(x, 0) = 0 for all x ∈ X such that∥∥∥2f

(
x+ y,

z + w

2

)
− f(x, z)− f(x,w)− f(y, z)− f(y, w)

∥∥∥ ≤ P (x)r + P (y)r + P (z)r + P (w)r (2.8)

for all x, y, z, w ∈ X. Then there exists a unique mapping F : X ×X → Y satisfying (1.1) such that∥∥f(x, y)− F (x, y)
∥∥ ≤ 18

6− 2r
P (x)r +

15 + 3r+1

6− 3r
P (y)r (2.9)

for all x, y ∈ X.

Proof. Letting y = x in (2.8), we gain∥∥∥2f
(

2x,
z + w

2

)
− 2f(x, z)− 2f(x,w)

∥∥∥ ≤ 2P (x)r + P (z)r + P (w)r (2.10)

for all x, z, w ∈ X. Putting w = −z in (2.10), we get

‖2f(x, z) + 2f(x,−z)‖ ≤ 2
[
P (x)r + P (z)r

]
(2.11)

for all x, z ∈ X. Replacing z by −z and w by −z in (2.10), we have

‖f(2x,−z)− 2f(x,−z)‖ ≤ 2
[
P (x)r + P (z)r

]
(2.12)
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for all x, z ∈ X. By (2.11) and (2.12), we obtain

‖f(2x,−z) + 2f(x, z)‖ ≤ 4
[
P (x)r + P (z)r

]
(2.13)

for all x, z ∈ X. Setting w = −3z in (2.10), we gain

‖2f(2x,−z)− 2f(x, z)− 2f(x,−3z)‖ ≤ 2P (x)r + (1 + 3r)P (z)r

for all x, z ∈ X. By (2.13) and the above inequality, we get

‖6f(x, z) + 2f(x,−3z)‖ ≤ 10P (x)r + (9 + 3r)P (z)r (2.14)

for all x, z ∈ X. Replacing z by 3z in (2.12), we have

‖f(2x,−3z)− 2f(x,−3z)‖ ≤ 2
[
P (x)r + 3rP (z)r

]
for all x, z ∈ X. By (2.14) and the above inequality, we gain

‖6f(x, z) + f(2x,−3z)‖ ≤ 12P (x)r + (9 + 3r+1)P (z)r

for all x, z ∈ X. Replacing z by −z in the above inequality, we get

‖6f(x,−z) + f(2x, 3z)‖ ≤ 12P (x)r + (9 + 3r+1)P (z)r

for all x, z ∈ X. By (2.11) and the above inequality, we have

‖6f(x, z)− f(2x, 3z)‖ ≤ 18P (x)r + (15 + 3r+1)P (z)r

for all x, z ∈ X. Replacing x by 2jx and z by 3jz in the above inequality and dividing 6j+1, we see that∥∥∥∥ 1

6j
f(2jx, 3jz)− 1

6j+1
f(2j+1x, 3j+1z)

∥∥∥∥ ≤ 1

6j+1
[18 · 2jrP (x)r + (15 + 3r+1)3jrP (z)r]

for all nonnegative integers j and all x, z ∈ X. For given integers l,m(0 ≤ l < m), we obtain that∥∥∥∥ 1

6l
f(2lx, 3lz)− 1

6m
f(2mx, 3mz)

∥∥∥∥ ≤ m−1∑
j=l

1

6j+1
[18 · 2jrP (x)r + (15 + 3r+1)3jrP (z)r] (2.15)

for all x, z ∈ X. By (2.15), the sequence { 1
6j
f(2jx, 3jy)} is a Cauchy sequence for all x, y ∈ X. Since

Y is complete, the sequence { 1
6j
f(2jx, 3jy)} converges for all x, y ∈ X. Define F : X × X → Y by

F (x, y) := limj→∞
1
6j
f(2jx, 3jy) for all x, y ∈ X.

By (2.8), we see that

1

6j

∥∥∥∥2f

(
2j(x+ y),

3j(z + w)

2

)
− f(2jx, 3jz)− f(2jx, 3jw)− f(2jy, 3jz)− f(2jy, 3jw)

∥∥∥∥
≤ 1

6j
[P (2jx)r + P (2jy)r + P (3jz)r + P (3jw)r]

≤ 1

6j
(
2rj [P (x)r + P (y)r] + 3rj [P (z)r + P (w)r]

)
for all x, y, z, w ∈ X. Letting j →∞, F satisfies (1.1). By Theorem 4 in [7], F is a Cauchy-Jensen mapping.
Setting l = 0 and taking m → ∞ in (2.15), one can obtain the inequality (2.9). Let G : X × X → Y be
another Cauchy-Jensen mapping satisfying (2.9). Since 0 < r < log3 6, we obtain that
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‖F (x, y)−G(x, y)‖ =
1

2n
‖F (2nx, y)− F (2nx, 0) +G(2nx, 0)−G(2nx, y)‖

=
1

6n
‖F (2nx, 3ny)− F (2nx, 0) +G(2nx, 0)−G(2nx, 3ny)‖

≤ 1

6n
‖F (2nx, 3ny)− F (2nx, 0)− f(2nx, 3ny) + f(2nx, 0)‖

+
1

6n
‖ − f(2nx, 0) + f(2nx, 3ny) +G(2nx, 0)−G(2nx, 3ny)‖

≤ 1

6n
(‖F (2nx, 3ny)− f(2nx, 3ny)‖+ ‖ − F (2nx, 0) + f(2nx, 0)‖)

+
1

6n
(‖ − f(2nx, 0) +G(2nx, 0)‖+ ‖f(2nx, 3ny)−G(2nx, 3ny)‖)

≤ 2

6n

[
36 · 2nr

6− 2r
P (x)r +

3nr(15 + 3r+1)

6− 3r
P (y)r

]
→ 0 as n→∞

for all x, y ∈ X. Hence F is a unique Cauchy-Jensen mapping, as desired.

3. Ulam stability of the additive-quadratic functional equation (1.2)

Theorem 3.1. Let r, θ be positive real numbers with r > log2 8 = 3, and let f : Y × Y → X be a mapping
satisfying f(x, 0) = 0 for all x ∈ Y such that

P (f(x+ y,z + w) + f(x+ y, z − w)− 2f(x, z)− 2f(x,w)− 2f(y, z)− 2f(y, w))

≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) (3.1)

for all x, y, z, w ∈ Y . Then there exists a unique mapping F : Y × Y → X satisfying (1.2) such that

P
(
f(x, y)− F (x, y)

)
≤ 2θ

2r − 8
(‖x‖r + ‖y‖r) (3.2)

for all x, y ∈ Y .

Proof. Letting y = x and w = z in (3.1), we gain

P (f(2x, 2z)− 8f(x, z)) ≤ 2θ(‖x‖r + ‖z‖r)

for all x, z ∈ Y . Replacing x by x
2j+1 and z by z

2j+1 in the above inequality, we see that

P

(
f

(
x

2j
,
z

2j

)
− 8f

(
x

2j+1
,
z

2j+1

))
≤ 2θ

2(j+1)r
(‖x‖r + ‖z‖r)

for all nonnegative integers j and all x, z ∈ Y . Thus we obtain that

P

(
8jf

(
x

2j
,
z

2j

)
− 8j+1f

(
x

2j+1
,
z

2j+1

))
≤ 8jP

(
f

(
x

2j
,
z

2j

)
− 8f

(
x

2j+1
,
z

2j+1

))
≤ 2

2r

(
8

2r

)j

θ(‖x‖r + ‖z‖r)

for all nonnegative integers j and all x, z ∈ Y . For given integers l,m(0 ≤ l < m), we have
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P

(
8lf

(
x

2l
,
z

2l

)
− 8mf

(
x

2m
,
z

2m

))
≤

m−1∑
j=l

2

2r

(
8

2r

)j

θ(‖x‖r + ‖z‖r) (3.3)

for all x, z ∈ Y . By (3.3), the sequence {8jf( x
2j
, z
2j

)} is a Cauchy sequence in X for all x, z ∈ Y .
Since X is complete, the sequence {8jf( x

2j
, z
2j

)} converges for all x, z ∈ Y . Define F : Y × Y → X by
F (x, z) := limj→∞ 8jf

(
x
2j
, z
2j

)
for all x, z ∈ Y . By (3.1), we see that

P
(
F (x+ y, z + w) + F (x+ y, z − w)− 2F (x, z)− 2F (x,w)− 2F (y, z)− 2F (y, w)

)
= lim

j→∞
P

(
8j
[
f
(x+ y

2j
,
z + w

2j

)
+ f

(x+ y

2j
,
z − w

2j

)
− 2f

( x
2j
,
z

2j

)
− 2f

( x
2j
,
w

2j

)
− 2f

( y
2j
,
z

2j

)
− 2f

( y
2j
,
w

2j

)])
≤ lim

j→∞
8jP

(
f
(x+ y

2j
,
z + w

2j

)
+ f

(x+ y

2j
,
z − w

2j

)
− 2f

( x
2j
,
z

2j

)
− 2f

( x
2j
,
w

2j

)
− 2f

( y
2j
,
z

2j

)
− 2f

( y
2j
,
w

2j

))
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) lim

j→∞

( 8

2r

)j
= 0

for all x, y, z, w ∈ Y . Since X is total, F satisfies (1.2). Setting l = 0 and taking m→∞ in (3.3), one can
obtain the inequality (3.2).

Let F ′ : Y × Y → X be another mapping satisfying (1.2) and (3.2). By [8], there exist multi-additive
mappings M,M ′ : Y × Y × Y → X such that F (x, y) = M(x, y, y), F ′(x, y) = M ′(x, y, y), M(x, y, z) =
M(x, z, y) and M ′(x, y, z) = M ′(x, z, y) for all x, y, z ∈ Y . Since r > 3, we obtain that

P (F (x, y)− F ′(x, y)) = P

(
8n
[
M
( x

2n
,
y

2n
,
y

2n

)
−M ′

( x
2n
,
y

2n
,
y

2n

)])
≤ 8nP

(
M
( x

2n
,
y

2n
,
y

2n

)
−M ′

( x
2n
,
y

2n
,
y

2n

))
≤ 8n

[
P

(
F
( x

2n
,
y

2n

)
− f

( x
2n
,
y

2n

))
+ P

(
f
( x

2n
,
y

2n

)
− F ′

( x
2n
,
y

2n

))]
≤
( 8

2r

)n 4θ

2r − 8
(‖x‖r + ‖y‖r)→ 0 as n→∞

for all x, y ∈ Y . Hence F is a unique mapping satisfying (1.2) and (3.2), as desired.

Theorem 3.2. Let r be a positive real number with r < log2 8 = 3, and let f : X ×X → Y be a mapping
satisfying f(x, 0) = 0 for all x ∈ X such that

‖f(x+ y, z + w) + f(x+ y, z − w)− 2f(x, z)− 2f(x,w)− 2f(y, z)− 2f(y, w)‖
≤ P (x)r + P (y)r + P (z)r + P (w)r (3.4)

for all x, y, z, w ∈ X. Then there exists a unique mapping F : X ×X → Y satisfying (1.2) such that∥∥f(x, y)− F (x, y)
∥∥ ≤ 2

8− 2r
[P (x)r + P (y)r] (3.5)

for all x, y ∈ X.
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Proof. Letting y = x and w = z in (3.4), we gain

‖f(2x, 2z)− 8f(x, z)‖ ≤ 2[P (x)r + P (z)r]

for all x, z ∈ X. Replacing x by 2jx and z by 2jz in the above inequality, we see that∥∥∥∥1

8
f(2j+1x, 2j+1z)− f(2jx, 2jz)

∥∥∥∥ ≤ 2jr

4
[P (x)r + P (z)r]

for all nonnegative integers j and all x, z ∈ X. Thus we obtain that∥∥∥∥ 1

8j+1
f(2j+1x, 2j+1z)− 1

8j
f(2jx, 2jz)

∥∥∥∥ ≤ 1

4

(
2r

8

)j

[P (x)r + P (z)r]

for all nonnegative integers j and all x, z ∈ X. For given integers l,m(0 ≤ l < m), we have∥∥∥∥ 1

8l
f(2lx, 2lz)− 1

8m
f(2mx, 2mz)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

8j
f(2jx, 2jz)− 1

8j+1
f(2j+1x, 2j+1z)

∥∥∥∥
≤

m−1∑
j=l

1

4

(
2r

8

)j

[P (x)r + P (z)r] (3.6)

for all x, z ∈ X. By (3.6), the sequence { 1
8j
f(2jx, 2jz)} is a Cauchy sequence in Y for all x, z ∈ X.

Since Y is complete, the sequence { 1
8j
f(2jx, 2jz)} converges for all x, z ∈ X. Define F : X × X → Y by

F (x, z) := limj→∞
1
8j
f(2jx, 2jz) for all x, z ∈ X. By (3.4), we see that∥∥F (x+ y, z + w) + F (x+ y, z − w)− 2F (x, z)− 2F (x,w)− 2F (y, z)− 2F (y, w)

∥∥
= lim

j→∞

∥∥∥∥ 1

8j
[
f(2j(x+ y), 2j(z + w)) + f(2j(x+ y), 2j(z − w))

− 2f(2jx, 2jz)− 2f(2jx, 2jw)− 2f(2jy, 2jz)− 2f(2jy, 2jw)
]∥∥∥∥

= lim
j→∞

1

8j
∥∥f(2j(x+ y), 2j(z + w)) + f(2j(x+ y), 2j(z − w))

− 2f(2jx, 2jz)− 2f(2jx, 2jw)− 2f(2jy, 2jz)− 2f(2jy, 2jw)
∥∥

≤ [P (x)r + P (y)r + P (z)r + P (w)r] lim
j→∞

(2r

8

)j
= 0

for all x, y, z, w ∈ X. Thus F is a mapping satisfying (1.2). Setting l = 0 and taking m→∞ in (3.6), one
can obtain the inequality (3.5).

Let G : X ×X → Y be another additive-quadratic mapping satisfying (3.5). Since 0 < r < 3, we have

‖F (x, y)−G(x, y)‖ =
1

8n
‖F (2nx, 2ny)−G(2nx, 2ny)‖

≤ 1

8n
‖F (2nx, 2ny)− f(2nx, 2ny)‖+

1

8n
‖f(2nx, 2ny)−G(2nx, 2ny)‖

≤
(

2r

8

)n 4

8− 2r
[P (x)r + P (y)r]→ 0 as n→∞

for all x, y ∈ X. Hence F is a unique additive-quadratic mapping, as desired.
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