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Abstract

In this study, we define the fuzzy cone metric space, the topology induced by this space and some related
results of them. Also we state and prove the fuzzy cone Banach contraction theorem. c⃝2015 All rights
reserved.
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1. Introduction and preliminaries

Huang and Zhang [5] introduced the notion of cone metric spaces by replacing real numbers with an
ordering Banach space and proved some fixed point theorems for contractive mappings between these spaces.
After the paper [5], series of articles about cone metric spaces started to appear.

On the other hand, after the theory of fuzzy sets which was introduced by Zadeh [4], there has been
a great effort to obtain fuzzy analogues of classical theories. In particular, Kramosil and Michalek in [6]
introduced the fuzzy metric space. Later on, George and Veeramani in [1] gave a stronger form of metric
fuzziness.

In this paper, we introduce the notion of fuzzy cone metric space that generalize the corresponding
notions of fuzzy metric space by George and Veeramani. Also we give the topology induced by this space
and then give some properties about this topology such as Hausdorffness and first countability. Finally
we give the fuzzy cone Banach contraction theorem. With the help of these results one can derive many
properties of fuzzy cone metric spaces.

Throughout this paper E denotes a real Banach space and θ denotes the zero of E.
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Definition 1.1 ([5]). A subset P of E is called a cone if
1) P is closed, nonempty and P ̸= {θ} ,
2) If a, b ∈ R, a, b ≥ 0 and x, y ∈ P , then ax+ by ∈ P ,
3) If both x ∈ P and −x ∈ P then x = θ.

For a given cone, a partial ordering ≼ on E via P is defined by x ≼ y if only if y − x ∈ P . x ≺ y will
stand for x ≼ y and x ̸= y, while x ≪ y will stand for y − x ∈ int (P ). Throughout this paper, we assume
that all cones has nonempty interior.

Proposition 1.2. Let P be a cone of E. Then;
1) [7] int (P ) + int (P ) ⊂ int (P ),
2) [7] λint (P ) ⊂ int (P ) for any λ ∈ R+,
3) [3] For each θ ≼ c1 and θ ≼ c2, there is an element θ ≼ c such that c ≼ c1, c ≼ c2.

The cone P is called normal if there exists a constant K > 0 such that for all t, s ∈ E, θ ≼ t ≼ s implies
∥t∥ ≤ K∥s∥ and the least positive number K satisfying this properties is called normal constant of P [5].
Rezapour and Hamlbarani [7] showed that there are no cones with normal constant K < 1 and there exist
cones of normal constant 1, and cones of normal constant M > K for each K > 1.

Definition 1.3 ([5]). A cone metric space is an ordered (X, d), where X is any set and d : X ×X −→ E is
a mapping satisfying:
CM1) θ ≼ d (x, y) for all x, y ∈ X,
CM2) d (x, y) = θ if and only if x = y,
CM3) d (x, y) = d (y, x) for all x, y ∈ X,
CM4) d (x, z) ≼ d (x, y) + d (y, z) for all x, y, z ∈ X.

Definition 1.4 ([5]). Let (X, d) be a cone metric space, x ∈ X and (xn) be a sequence in X. Then
i) (xn) is said to converge to x if for any c ∈ E with c ≫ 0 there exists a natural number n0 such that
d (xn, x) ≪ c for all n ≥ n0. We denote this by limn−→∞ xn = x or xn −→ x as n → ∞.
ii) (xn) is said to be a Cauchy sequence if for any c ∈ E with c ≫ θ there exists a natural number n0 such
that d (xn, xm) ≪ c for all n,m ≥ n0.
iii) (X, d) is said to be a complete cone metric space if every Cauchy sequence is convergent.

In [3] Turkoglu, for c ∈ E with c ≫ θ and x ∈ X, define B (x, c) = {y ∈ X : d (x, y) ≪ c} and
β = {B (x, c) : x ∈ X, c ∈ E with c ≫ θ}, then show that

τc = {U ⊂ X : ∀x ∈ U,∃B (x, c) ∈ β, x ∈ B (x, c) ⊂ U}

is a topology on X.

Definition 1.5 ([2]). A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a continuous t-norm if ∗ satisfies the
following conditions;
1) ∗ is associative and commutative,
2) ∗ is continuous,
3) a ∗ 1 = a for all a ∈ [0, 1],
4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

Remark 1.6 ([1]). For any r1 > r2, we can find a r3 such that r1 ∗ r3 ≥ r2 and for any r4 we can find a r5
such that r5 ∗ r5 ≥ r4. ( r1,r2,r3,r4,r5 ∈ (0, 1) )

Example 1.7. a ∗ b = ab

Example 1.8. a ∗ b = min {a, b}
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Definition 1.9 ([1]). A 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an arbitrary set, ∗ is a
continuous t-norm and M is a fuzzy set on X2 × (0,∞) satisfying the following conditions;
FM1) M (x, y, t) > 0,
FM2) M (x, y, t) = 1 if and only if x = y,
FM3) M (x, y, t) = M (y, x, t),
FM4) M (x, y, t) ∗M (y, z, s) ≤ M (x, z, t+ s),
FM5) M (x, y, .) : (0,∞) −→ [0, 1] is continuous,
x, y, z ∈ X and t, s > 0.

Definition 1.10 ([1]). Let (X,M, ∗) be a fuzzy metric space, x ∈ X and (xn) be a sequence in X. Then
i) (xn) is said to converge to x if for any t > 0 and any r ∈ (0, 1) there exists a natural number n0 such that
M (xn, x, t) > 1− r for all n ≥ n0. We denote this by limn−→∞ xn = x or xn −→ x as n → ∞.
ii) (xn) is said to be a Cauchy sequence if for any r ∈ (0, 1) and any t > 0 there exists a natural number n0

such that M (xn, xm, t) > 1− r for all n,m ≥ n0.
iii) (X,M, ∗) is said to be a complete metric space if every Cauchy sequence is convergent.

Remark 1.11 ([1]). Let (X,M, ∗) be a fuzzy metric space. τ = {A ⊂ X : x ∈ A, if and only if there exists
t > 0 and r, r ∈ (0, 1) such that B (x, r, t) ⊂ A} is a topology on X.

2. Fuzzy cone metric spaces

In this section, we define the fuzzy cone metric space and the topology induced by this space. Then we
give some properties.

Definition 2.1. A 3-tuple (X,M, ∗) is said to be a fuzzy cone metric space if P is a cone of E, X is
an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × int (P ) satisfying the following
conditions;
For all x, y, z ∈ X and t, s ∈ int (P ) (that is t ≫ θ, s ≫ θ)
FCM1) M (x, y, t) > 0,
FCM2) M (x, y, t) = 1 if and only if x = y,
FCM3) M (x, y, t) = M (y, x, t),
FCM4) M (x, y, t) ∗M (y, z, s) ≤ M (x, z, t+ s),
FCM5) M (x, y, .) : int (P ) −→ [0, 1] is continuous.

If we take E = R, P = [0,∞) and a ∗ b = ab, then every fuzzy metric spaces became a fuzzy cone metric
spaces.

Example 2.2. Let E = R2. Then P = {(k1, k2) : k1,k2 ≥ 0} ⊂ E is a normal cone with normal constant
K = 1 [5]. Let X = R, a ∗ b = ab and M : X2 × int (P ) −→ [0, 1] defined by M (x, y, t) = 1

e
|x−y|
∥t∥

for all

x, y ∈ X and t ≫ θ.
FCM1-2-3) are obvious. FCM4) We know that P is a normal cone with normal constant K = 1. Hence,

s ≼ t+ s and t ≼ t+ s imply ∥s∥ ≤ ∥t+ s∥ and ∥t∥ ≤ ∥t+ s∥. Since ∥t+s∥
∥s∥ ≥ 1 and ∥t+s∥

∥t∥ ≥ 1, we can write

|x− z| ≤ ∥t+ s∥
∥t∥

|x− y|+ ∥t+ s∥
∥s∥

|y − z|,

i.e.
|x− z|
∥t+ s∥

≤ |x− y|
∥t∥

+
|y − z|
∥s∥

.

Therefore

e
|x−z|
∥t+s∥ ≤ e

|x−y|
∥t∥ e

|y−z|
∥s∥ .
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Thus M (x, y, t) ∗M (y, z, s) ≤ M (x, z, t+ s).

FCM5) If we define n : int (P ) −→ (0,∞), n (t) = ∥t∥ =
√

k21 + k22 and f : (0,∞) −→ [0, 1], f (u) = e
|x−y|

u ,
M (x, y, .) : int (P ) −→ [0, 1] can be taught as composition of n and f . Since n and f are continuous, M is
also continuous.
Hence (X,M, ∗) is a fuzzy cone metric spaces.

Example 2.3. Let P be an any cone, X = N, a ∗ b = ab, M : X2 × int (P ) −→ [0, 1] defined by

M (x, y, t) =

{
x/y if x ≤ y
y/x if y ≤ x

for all x, y ∈ X and t ≫ θ. Then (X,M, ∗) is a fuzzy cone metric spaces.

Lemma 2.4. M (x, y, .) : int (P ) −→ [0, 1] is nondecreasing for all x, y ∈ X.

Proof. Assume that M (x, y, t) > M (x, y, s), for s ≫ t ≫ 0. Note that since s ≫ t, s − t in int (P ). By
FCM4) and assumption, we haveM (x, y, t)∗M (y, y, s− t)≤M (x, y, s)<M (x, y, t). SinceM (y, y, s− t) = 1
by FCM2), we have M (x, y, t) < M (x, y, t) that is a contradiction.

Definition 2.5. Let (X,M, ∗) be a fuzzy cone metric space. For t ≫ θ, the open ball B (x, r, t) with center
x and radius r ∈ (0, 1) is defined by B (x, r, t) = {y ∈ X : M (x, y, t) > 1− r}.

Theorem 2.6. Let (X,M, ∗) be a fuzzy cone metric space. Define

τfc = {A ⊂ X : x ∈ A if and only if there exist r ∈ (0, 1), and t ≫ θ such that B (x, r, t) ⊂ A},

then τfc is a topology on X.

Proof. 1. If x ∈ ∅, then ∅ = B (x, r, t) ⊂ ∅. Hence ∅ ∈ τfc. Since for any x ∈ X, any r ∈ (0, 1) and any
t ≫ θ, B(x, r, t) ⊂ X, then X ∈ τfc.

2. Let A,B ∈ τfc and x ∈ A∩B. Then x ∈ A and x ∈ B, so there exist t1 ≫ θ, t2 ≫ θ and r1, r2 ∈ (0, 1)
such that B(x, r1, t1) ⊂ A and B(x, r2, t2) ⊂ B. From Proposition 1.2 3), for t1 ≫ θ, t2 ≫ θ, there exists
t ≫ θ such that t ≪ t1, t ≪ t2 and take r = min{r1, r2}. Then B(x, r, t) ⊂ B(x, r1, t1)∩B(x, r2, t2) ⊂ A∩B.
Thus A ∩B ∈ τfc.

3. Let Ai ∈ τfc for each i ∈ I and x ∈
∪

i∈I Ai. Then there exists i0 ∈ I such that x ∈ Ai0 . So, there
exist t ≫ θ and r ∈ (0, 1) such that B(x, t, r) ⊂ Ai0 . Since Ai0 ⊂

∪
i∈I Ai, B(x, r, t) ⊂

∪
i∈I Ai. Thus∪

i∈I Ai ∈ τfc. Hence, τfc is a topology on X.

Theorem 2.7. Let (X,M, ∗) be a fuzzy cone metric space. Then (X, τfc) is Hausdorff.

Proof. Let x, y ∈ X such that x ̸= y. From the definition of fuzzy metric, 1 > M(x, y, t) > 0 say
M(x, y, t) = r. From Remark 1.6, for all r0 such that 1 > r0 > r there exists r1 ∈ (0, 1) such that
r1 ∗ r1 > r0.

Now consider, the sets B
(
x, 1− r1,

t
2

)
and B

(
y, 1− r1,

t
2

)
. We have to see

B

(
x, 1− r1,

t

2

)
∩B

(
y, 1− r1,

t

2

)
= ∅.

Suppose that, B
(
x, 1− r1,

t
2

)
∩B

(
y, 1− r1,

t
2

)
̸= ∅. Then there exists z ∈ B

(
x, 1− r1,

t
2

)
∩B

(
y, 1− r1,

t
2

)
.

Therefore, M
(
x, z, t

2

)
> 1 − (1 − r1) = r1 and M

(
y, z, t

2

)
> 1 − (1 − r1) = r1. From FCM4),

r = M(x, y, t) ≥ M
(
x, z, t

2

)
∗ M

(
y, z, t

2

)
. Then r > r1 ∗ r1 so, r > r0 > r. This is a contradiction.

Hence B
(
x, 1− r1,

t
2

)
∩B

(
y, 1− r1,

t
2

)
= ∅.

Theorem 2.8. Let (X,M, ∗) be a fuzzy cone metric space. Then (X, τfc) is first countable.
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Proof. Let t ≫ θ, x ∈ X. We will show that βx =
{
B
(
x, 1

n ,
t
n

)
: n ∈ N

}
is a local basis for x ∈ X. Let

U ∈ τfc and x ∈ U . Since U is open, then there exists r ∈ (0, 1) and t ≫ θ such that B(x, r, t) ⊂ U . Choose
n ∈ N such that 1

n < r and t
n ≪ t. Now we just need to show B

(
x, 1

n ,
t
n

)
⊂ B(x, r, t). Let z ∈ B

(
x, 1

n ,
t
n

)
.

Then M
(
x, z, t

n

)
> 1 − 1

n > 1 − r. Since t
n ≼ t, by Lemma 2.4 we have 1 − r < M

(
x, z, t

n

)
≤ M(x, z, t).

Hence z ∈ B(x, r, t) which implies B
(
x, 1

n ,
t
n

)
⊂ B(x, r, t) ⊂ U . Consequently, βx is countable local basis

for x. Hence (X, τfc) is first countable topological space.

Definition 2.9. Let (X,M, ∗) be a fuzzy cone metric space, x ∈ X and (xn) be a sequence in X. Then
(xn) is said to converge to x if for any t ≫ θ and any r ∈ (0, 1) there exists a natural number n0 such that
M (xn, x, t) > 1− r for all n ≥ n0. We denote this by limn−→∞ xn = x or xn −→ x as n → ∞.

Theorem 2.10. Let (X,M, ∗) be a fuzzy cone metric space, x ∈ X and (xn) be a sequence in X. (xn)
converges to x if and only if M (xn, x, t) −→ 1 as n −→ ∞, for each t ≫ θ.

Proof. (⇒:) Suppose that, xn → x. Then, for each t ≫ θ and r ∈ (0, 1), there exists a natural number n0

such that M(xn, x, t) > 1− r for all n ≥ n0. We have 1−M(xn, x, t) < r. Hence M(xn, x, t) → 1 as n → ∞.
(⇐:) Now, suppose that M(xn, x, t) → 1 as n → ∞. Then, for each t ≫ θ and r ∈ (0, 1), there exists a

natural number n0 such that 1 −M(xn, x, t) < r for all n ≥ n0. In that case, M(xn, x, t) > 1 − r. Hence
xn → x as n → ∞.

Definition 2.11. Let (X,M, ∗) be a fuzzy cone metric space and (xn) be a sequence in X. Then (xn) is
said to be a Cauchy sequence if for any 0 < ε < 1 and any t ≫ θ there exists a natural number n0 such that
M (xn, xm, t) > 1− ε for all n,m ≥ n0.

Definition 2.12. A fuzzy cone metric space is called complete if every Cauchy sequence is convergent.

Definition 2.13. Let (X,M, ∗) be a fuzzy cone metric space. A subset A of X is said to be FC-bounded
if there exists t ≫ θ and r ∈ (0, 1) such that M (x, y, t) > 1− r for all x, y ∈ A.

Theorem 2.14. In a fuzzy cone metric space, every compact set is closed and FC-bounded.

Proof. Let A be a compact subset of X, t ≫ θ and r ∈ (0, 1). Since {B (x, r, t) : x ∈ A} is a open cover of A,
there exist x1, x2,. . . , xn ∈ A such that A ⊂ ∪n

i=1B (xi, r, t). For any x, y ∈ A there exist 1 ≤ i, j ≤ n such
that x ∈ B (xi, r, t) and y ∈ B (xj , r, t). Hence we can write M (x, xi, t) > 1− r and M (x, xj , t) > 1− r. Let
α = min{M (xi, xj , t) : 1 ≤ i, j ≤ n}. Then we have

M (x, y, 3t) ≥ M (x, xi, t) ∗M (xi, xj , t) ∗M (xj , y, t)

≥ (1− r) ∗ α ∗ (1− r) .

Let t′ = 3t, and choose 0 < s < 1 such that (1− r) ∗ α ∗ (1− r) > 1 − s. Hence for any x, y ∈ A, we have
M (x, y, t′) > 1− s, and A is FC- bounded. On the other hand, since a fuzzy cone metric space is Hausdorff
and every compact subset of a Hausdorff space is closed, A is closed.

3. Fuzzy cone Banach contraction theorem

In [8], Gregori and Sapena gave the fuzzy Banach contraction theorem. Now we extent it for the complete
fuzzy cone metric space.

Definition 3.1. Let (X,M, ∗) be a fuzzy cone metric space and f : X −→ X is a self mapping. Then f is
said fuzzy cone contractive if there exists k ∈ (0, 1) such that

1

M (f (x) , f (y) , t)
− 1 ≤ k

(
1

M (x, y, t)
− 1

)
for each x, y ∈ X and t ≫ θ. k is called the contractive constant of f .
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Definition 3.2. Let (X,M, ∗) be a fuzzy cone metric space and (xn) be a sequence in X. Then (xn) is said
fuzzy cone contractive if there exists k ∈ (0, 1) such that

1

M (xn+1, xn+2, t)
− 1 ≤ k

(
1

M (xn, xn+1, t)
− 1

)
for all t ≫ θ, n ∈ N.

Theorem 3.3 (Fuzzy Cone Banach contraction theorem). Let (X,M, ∗) be a complete fuzzy cone metric
space in which fuzzy cone contractive sequences are Cauchy. Let T : X −→ X be a fuzzy cone contractive
mapping being k the contractive constant. Then T has a unique fixed point.

Proof. Fix x ∈ X and let xn = Tn (x), n ∈ N. For t ≫ θ, we have

1

M (T (x) , T 2 (x) , t)
− 1 ≤ k

(
1

M (x, x1, t)
− 1

)
and by induction

1

M (xn+1, xn+2, t)
− 1 ≤ k

(
1

M (xn, xn+1, t)
− 1

)
,

n ∈ N. Then (xn) is a fuzzy contractive sequence, by assumptions it is a Cauchy sequence and (xn) converges
to y, for some y ∈ X. By Theorem 2.10, we have

1

M (T (y) , T (xn) , t)
− 1 ≤ k

(
1

M (y, xn, t)
− 1

)
−→ 0

as n −→ ∞. Then for each t ≫ θ, limn→∞M ((T (y) , T (xn) , t)) = 1 and hence limn→∞ T (xn) = T (y),
i.e., limn→∞ xn+1 = T (y) and T (y) = y. Now we show uniqueness. Assume T (z) = z for some z ∈ Z. For
t ≫ θ, we have

1

M (y, z, t)
− 1 =

1

M (T (y) , T (z) , t)
− 1

≤ k

(
1

M (y, z, t)
− 1

)
= k

(
1

M (T (y) , T (z) , t)
− 1

)
≤ k2

(
1

M (y, z, t)
− 1

)
≤ · · · ≤ kn

(
1

M (y, z, t)
− 1

)
→ 0

as n −→ ∞. Hence M (y, z, t) = 1 and y = z.

4. Conclusion

We defined the notion of fuzzy cone metric space which is a generalization of fuzzy metric spaces and
then the topology induced by this space. By using these definitions we gave some topological properties,
such as Hausdorfness, first countability. The cone version of fuzzy Banach contraction theorem is also stated
here. So one can study, by using these results, on the other fix point theorems, similar topological properties
of this space and problems related to convergence of a sequence.
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