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Abstract

In this paper, we establish a new fixed point theorem for a Meir-Keeler type contraction through rational
expression. The presented theorem is an extension of the result of Dass and Gupta (1975). Some applications
to contractions of integral type are given.
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1. Introduction

The Banach contraction principle [4] is the most celebrated fixed point theorem. It is a very useful,
simple, and classical tool in nonlinear analysis. Moreover, this principle has many generalizations; see
([1]-[30]) and others. For example, Meir and Keeler [20] proved the following fixed point theorem.

Theorem 1.1. Let (X, d) be a complete metric space and let T be a mapping from X into itself satisfying
the following condition:

∀ ε > 0, ∃ δ(ε) > 0 such that ε ≤ d(x, y) < ε+ δ(ε)⇒ d(Tx, Ty) < ε.

Then T has a unique fixed point ξ ∈ X. Moreover, for all x ∈ X, the sequence {Tnx} converges to ξ.

It is clear that Theorem 1.1 is a generalization of the Banach contraction principle. Some generalizations
of Theorem 1.1 exist in literature; see [10, 15, 19] and others.

Dass and Gupta [11] proved the following fixed point theorem.
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Theorem 1.2. Let (X, d) be a complete metric space and let T be a mapping from X into itself satisfying:

d(Tx, Ty) ≤ αd(y, Ty)
1 + d(x, Tx)

1 + d(x, y)
+ βd(x, y)

for all x, y ∈ X, where α, β are constants with α, β > 0 and α + β < 1. Then T has a unique fixed point
ξ ∈ X. Moreover, for all x ∈ X, the sequence {Tnx} converges to ξ.

Some generalizations of Theorem 1.2 exist in literature; see [8, 27] and others.
In this paper, we derive a new fixed point theorem of Meir-Keeler type that generalizes Theorem 1.2 of

Dass and Gupta in the case α, β ∈ (0, 1/2). Our main result is given in Section 2. In Section 3, following
the ideas of Branciari [7] and Suzuki [28], some applications to contractions of integral type are given.

2. Main result

Our main result is the following.

Theorem 2.1. Let (X, d) be a complete metric space and T be a mapping from X into itself. We assume
that the following hypothesis holds:
given ε > 0, there exists δ(ε) > 0 such that

2ε ≤ d(y, Ty)
1 + d(x, Tx)

1 + d(x, y)
+ d(x, y) < 2ε+ δ(ε)⇒ d(Tx, Ty) < ε. (2.1)

Then T has a unique fixed point ξ ∈ X. Moreover, for any x ∈ X, the sequence {Tnx} converges to ξ.

Proof. We first observe that (2.1) trivially implies that T satisfies:

x 6= y or y 6= Ty implies d(Tx, Ty) <
1

2
d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
+

1

2
d(x, y). (2.2)

Now, let x ∈ X and consider the sequence {xn} = {Tnx}. We will show that {xn} is a Cauchy sequence in
X.

If there exists p ∈ N such that xp = xp+1, then xp is a fixed point of T . For this reason, we will assume
that xp 6= xp+1 for all p ∈ N. Let

cn = d(xn, xn+1), ∀n ∈ N.

From (2.2), we have:

cn = d(Txn−1, Txn) <
1

2
d(xn, xn+1)

1 + d(xn−1, xn)

1 + d(xn−1, xn)
+

1

2
d(xn−1, xn) =

1

2
cn +

1

2
cn−1.

Then
cn < cn−1, ∀n ∈ N∗

and the sequence {cn} is decreasing with n. Suppose now that cn ↓ ε > 0 as n→ +∞. Then cn + cn−1 ↓ 2ε
as n→ +∞. This implies that there exists N ∈ N∗ such that

2ε ≤ cN + cN−1 < 2ε+ δ(ε).

We get:

2ε ≤ d(xN , TxN )
1 + d(xN−1, TxN−1)

1 + d(xN−1, xN )
+ d(xN−1, xN ) < 2ε+ δ(ε).

From (2.1), we obtain:
d(TxN−1, TxN ) = d(xN , xN+1) = cN < ε,
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that is a contradiction. Then we deduce that

cn ↓ 0 as n→ +∞. (2.3)

Let ε > 0. Condition (2.1) will remain true with δ(ε) replaced by δ′(ε) = min(δ(ε), ε, 1). From (2.3),
there exists k ∈ N such that

d(xm, xm+1) <
δ′(ε)

4
, ∀m ≥ k. (2.4)

Now, we introduce the set Λ ⊂ X defined by

Λ :=

{
xp | p ≥ k, d(xp, xk) < 2ε+

δ′(ε)

2

}
.

Let us prove that
T (Λ) ⊂ Λ. (2.5)

Let λ ∈ Λ. There exists p ≥ k such that λ = xp and d(xp, xk) < 2ε+
δ′(ε)

2
.

If p = k, we have T (λ) = xk+1 ∈ Λ (by (2.4)). Then we will assume that p > k. We distinguish two cases.
• First case:

2ε ≤ d(xp, xk) < 2ε+
δ′(ε)

2
. (2.6)

First, let us prove that

ε ≤ 1

2
d(xk, xk+1)

1 + d(xp, xp+1)

1 + d(xp, xk)
+

1

2
d(xp, xk) < ε+

δ′(ε)

2
. (2.7)

From (2.6), we have:

ε ≤ 1

2
d(xp, xk) ≤ 1

2
d(xk, xk+1)

1 + d(xp, xp+1)

1 + d(xp, xk)
+

1

2
d(xp, xk). (2.8)

On the other hand, we have:

1

2
d(xk, xk+1)

1 + d(xp, xp+1)

1 + d(xp, xk)
+

1

2
d(xp, xk) ≤ 1

2
d(xk, xk+1) +

1

2
d(xk, xk+1)

d(xp, xp+1)

d(xp, xk)
+

1

2
d(xp, xk)

by (2.4) <
δ′(ε)

8
+

1

2

d(xk, xk+1)

d(xp, xk)
d(xp, xp+1) +

1

2
d(xp, xk)

by (2.4) and (2.6) <
δ′(ε)

8
+

1

2
d(xp, xp+1) +

1

2
d(xp, xk)

by (2.4) <
δ′(ε)

8
+
δ′(ε)

8
+

1

2
d(xp, xk)

by (2.6) <
δ′(ε)

4
+

1

2

(
2ε+

δ′(ε)

2

)
= ε+

δ′(ε)

2
.

Then
1

2
d(xk, xk+1)

1 + d(xp, xp+1)

1 + d(xp, xk)
+

1

2
d(xp, xk) < ε+

δ′(ε)

2
. (2.9)

It follows from (2.8)-(2.9) that (2.7) holds. Then

2ε ≤ d(xk, Txk)
1 + d(xp, Txp)

1 + d(xp, xk)
+ d(xp, xk) < 2ε+ δ′(ε),
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which implies by (2.1) that
d(Txp, Txk) < ε. (2.10)

Now, we have:

d(Txp, xk) ≤ d(Txp, Txk) + d(Txk, xk)

by (2.10) and (2.4) < ε+
δ′(ε)

4

< 2ε+
δ′(ε)

2
.

This implies that Tλ = Txp = xp+1 ∈ Λ.
• Second case:

d(xp, xk) < 2ε. (2.11)

From (2.2), we have:

d(Txp, xk) ≤ d(Txp, Txk) + d(Txk, xk)

<
1

2
d(xk, xk+1)

1 + d(xp, xp+1)

1 + d(xp, xk)
+

1

2
d(xp, xk) + d(xk+1, xk)

≤ 1

2
d(xk, xk+1) +

1

2

d(xk, xk+1)d(xp, xp+1)

1 + d(xp, xk)
+

1

2
d(xp, xk) + d(xk+1, xk)

=
3

2
d(xk, xk+1) +

1

2

d(xk, xk+1)d(xp, xp+1)

1 + d(xp, xk)
+

1

2
d(xp, xk).

On the other hand, from (2.4), we have:

d(xk, xk+1)

1 + d(xp, xk)
≤ d(xk, xk+1) <

δ′(ε)

4
< 1.

Then

d(Txp, xk) <
3

2
d(xk, xk+1) +

1

2
d(xp, xp+1) +

1

2
d(xp, xk)

by (2.4) and (2.11) <
3δ′(ε)

8
+
δ′(ε)

8
+ ε

=
δ′(ε)

2
+ ε

<
δ′(ε)

2
+ 2ε.

This implies that Tλ = Txp = xp+1 ∈ Λ. Hence, (2.5) holds and

d(xm, xk) < 2ε+
δ′(ε)

2
, ∀m > k. (2.12)

Now, for all (m,n) ∈ N2 such that m > n > k, by (2.12), we get:

d(xm, xn) ≤ d(xm, xk) + d(xn, xk) < 4ε+ δ′(ε) < 5ε.

This implies that {xn} is a Cauchy sequence in X.
Since (X, d) is complete, there exists ξ ∈ X such that {xn} converges to ξ. From (2.2), we have:

d(Tξ, ξ) ≤ d(Tξ, Txn) + d(xn+1, ξ)

<
1

2
d(xn, xn+1)

1 + d(ξ, T ξ)

1 + d(ξ, xn)
+

1

2
d(ξ, xn) + d(xn+1, ξ).
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Now, let n→ +∞, we get:
d(Tξ, ξ) ≤ 0,

which implies that ξ = Tξ, i.e, ξ is a fixed point of T .
Suppose now that η is another fixed point of T . From (2.2), we get:

d(ξ, η) = d(Tξ, Tη) <
1

2
d(η, η)

1 + d(ξ, ξ)

1 + d(ξ, η)
+

1

2
d(ξ, η) =

1

2
d(ξ, η),

which is a contradiction. Then the uniqueness of the fixed point is proved. This makes end to the proof.

Now, we will show that the result of Dass and Gupta [11] (when α, β ∈ (0, 1/2)) is a particular case of
Theorem 2.1.

Corollary 2.2. (Dass-Gupta [11])
Let (X, d) be a complete metric space and T be a mapping from X into itself. We assume that the mapping
T satisfies:
for all x, y ∈ X,

d(Tx, Ty) ≤ k
(
d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
+ d(x, y)

)
, (2.13)

where k ∈ (0, 1/2) is a constant. Then T has a unique fixed point ξ ∈ X. Moreover, for any x ∈ X, the
sequence {Tnx} converges to ξ.

Proof. Fix ε > 0. We take :

δ(ε) = ε

(
1

k
− 2

)
.

Assume that

2ε ≤ d(y, Ty)
1 + d(x, Tx)

1 + d(x, y)
+ d(x, y) < 2ε+ δ(ε).

From (2.13), we have:

d(Tx, Ty) ≤ k

(
d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
+ d(x, y)

)
< k(2ε+ δ(ε))

= 2εk + kε

(
1

k
− 2

)
= ε.

Then condition (2.1) of Theorem 2.1 is satisfied. This makes end to the proof.

3. Applications to contractions of integral type

In recent years, Branciari [7] initiated a study of contractive condition of integral type, giving an integral
version of the Banach contraction principle, that could be extended to more general contractive conditions.
More precisely, he established the following result.

Theorem 3.1. (Branciari [7])
Let (X, d) be a complete metric space, k ∈ (0, 1), and let T be a mapping from X into itself such that for
each x, y ∈ X, ∫ d(Tx,Ty)

0
ϕ(t) dt ≤ k

∫ d(x,y)

0
ϕ(t) dt, (3.1)
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where ϕ is a locally integrable function from [0,+∞) into itself and such that for all ε > 0,∫ ε

0
ϕ(t) dt > 0.

Then T admits a unique fixed point ξ ∈ X such that for each x ∈ X, the sequence {Tnx} converges to ξ.

Putting ϕ ≡ 1 in the previous theorem , we retrieve the Banach fixed point theorem.
Later on, the authors in [2, 12, 23, 27, 30] established fixed point theorems involving more general

contractive conditions.
Suzuki [28] showed that Meir-Keeler contractions of integral type are still Meir-Keeler contractions and

so proved that Theorem 3.1 of Branciari is a particular case of the Meir-Keeler fixed point theorem [20]. In
this section, following the idea of Suzuki [28], we will show that Theorem 2.1 allows us to obtain an integral
version of Corollary 2.2.

We start by proving the following result.

Theorem 3.2. Let (X, d) be a metric space and let T be a mapping from X into itself. Assume that there
exists a function θ from [0,+∞) into itself satisfying the following:

(i) θ(0) = 0 and θ(t) > 0 for every t > 0.

(ii) θ is nondecreasing and right continuous.

(iii) For every ε > 0, there exists δ(ε) > 0 such that

2ε ≤ θ
(
d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
+ d(x, y)

)
< 2ε+ δ(ε)⇒ θ(2d(Tx, Ty)) < 2ε

for all x, y ∈ X.

Then (2.1) is satisfied.

Proof. Fix ε > 0. Since θ(2ε) > 0, by (iii), there exists α > 0 such that

θ(2ε) ≤ θ
(
d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
+ d(x, y)

)
< θ(2ε) + α⇒ θ(2d(Tx, Ty)) < θ(2ε). (3.2)

From the right continuity of θ, there exists δ > 0 such that θ(2ε+ δ) < θ(2ε) + α. Fix x, y ∈ X such that

2ε ≤ d(y, Ty)
1 + d(x, Tx)

1 + d(x, y)
+ d(x, y) < 2ε+ δ.

Since θ is nondecreasing, we get:

θ(2ε) ≤ θ
(
d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
+ d(x, y)

)
≤ θ(2ε+ δ) < θ(2ε) + α.

Then, by (3.2), we have:
θ(2d(Tx, Ty)) < θ(2ε),

which implies that d(Tx, Ty) < ε. Then (2.1) is satisfied. This completes the proof.

Since a function t 7→
∫ t

0
ϕ(s) ds is absolutely continuous, we obtain the following.

Corollary 3.3. Let (X, d) be a metric space and let T be a mapping from X into itself. Let ϕ be a locally

integrable function from [0,+∞) into itself such that

∫ t

0
ϕ(s) ds > 0 for all t > 0. Assume that for each

ε > 0, there exists δ(ε) > 0 such that

2ε ≤
∫ d(y,Ty)

1+d(x,Tx)
1+d(x,y)

+d(x,y)

0
ϕ(t) dt < 2ε+ δ(ε)⇒

∫ 2d(Tx,Ty)

0
ϕ(t) dt < 2ε. (3.3)

Then (2.1) is satisfied.
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Now, we are able to obtain an integral version of Corollary 2.2. We have the following result.

Corollary 3.4. Let (X, d) be a complete metric space and let T be a mapping from X into itself. Let ϕ be

a locally integrable function from [0,+∞) into itself such that

∫ t

0
ϕ(s) ds > 0 for all t > 0. We assume that

the mapping T satisfies the following condition:
for all x, y ∈ X, ∫ 2d(Tx,Ty)

0
ϕ(t) dt ≤ c

∫ d(y,Ty)
1+d(x,Tx)
1+d(x,y)

+d(x,y)

0
ϕ(t) dt, (3.4)

where c ∈ (0, 1) is a constant. Then T has a unique fixed point ξ ∈ X. Moreover, for any x ∈ X, the
sequence {Tnx} converges to ξ.

Proof. Fix ε > 0. It is easily to check that (3.3) is satisfied with δ(ε) = 2ε

(
1

c
− 1

)
. Then (2.1) is satisfied

and we can apply Theorem 2.1.

Remark 3.5. Note that the result of Corollary 2.2 can be obtained from Corollary 3.4 by putting ϕ ≡ 1 and
c = 2k, k ∈ (0, 1/2).
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[2] I. Altun, D. Türkoğlu, and B. E. Rhoades, Fixed points of weakly compatible maps satisfying a general contractive condition
of integral type, Fixed Point Theory Appl. Vol. 2007 (2007), Article ID 17301, 9 pages. 3

[3] A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl. 1 (1) (2008),
45–48.

[4] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3
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