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Abstract

In this paper we prove some existence and uniqueness results for pseudo almost automorphic and weighted
pseudo almost automorphic mild solutions to a class of partial functional differential equation in Banach
spaces. The main technique is based upon some appropriate composition theorems combined with the
Banach contraction mapping principle and fractional powers of operators. c©2012 NGA. All
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1. Introduction

In this paper, we are mainly concerned with the existence and uniqueness of pseudo almost automorphic
and weighted pseudo almost automorphic mild solutions for a class of partial neutral functional differential
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equations in the abstract form

d

dt
[u(t) + f (t, u(h1(t)))] = Au(t) + g (t, u(h2(t))) , t ∈ R, (1.1)

where A : D(A) ⊂ X → X is the infinitesimal generator of an analytic semigroup of linear operators
{T (t)}t≥0 on a Banach space (X, | · |) and there exist positive numbers M , δ such that ‖T (t)‖ ≤Me−δt for
t ≥ 0, and f(·), g(·), hi (·), i = 1, 2, are appropriate functions specified later.

The concept of pseudo almost automorphic function, which was initiated by Xiao et al. in [1], is more
general than that of almost automorphic function created by Bochner in [2, 3]. Since then, those functions
has been studied and developed extensively. For more details on those functions we refer the reader to
[4, 5, 6, 7, 8, 9] and the references therein. Very recently, J. Blot et al [10] have introduced the concept
of weighted pseudo almost automorphic, which generalizes the concept of weighted pseudo almost periodic
[11, 12, 13, 14]. In [10], the authors have proved some useful properties of the space of weighted pseudo
almost automorphic functions and established a general existence and uniqueness theorem for weighted
pseudo almost automorphic mild solutions to some semi-linear differential equations. The existence of
almost automorphic, pseudo almost automorphic and weighted pseudo almost automorphic solutions are
among the most attractive topics in qualitative theory of differential equations due to their significance
and applications in physics, mechanics and mathematical biology [15]. In recent years, the existence of
almost automorphic and pseudo almost automorphic solutions on different kinds of differential equations
have been considered in many publications such as [6, 16, 17, 18, 19, 20, 21, 22, 23, 24] and references
therein. Especially, authors in [23] have proved the existence of almost automorphic and weighted pseudo
almost automorphic solutions to a semi-linear evolution equation in a Banach space X such as

x′(t) = A(t)x(t) + f(t, x(t)), t ∈ R,

where the family {A(t), t ∈ R} of operators in X generates an exponentially stable evolution family
{U(t, s), t ≥ s} and f : R × X → X an almost automorphic function(resp. a weighted pseudo almost
automorphic function).

And in [24], authors have investigated the existence of almost automorphic and pseudo-almost automor-
phic mild solutions to the following equation

du (t)

dt
= Au(t) +

d

dt
F1(t, u(h1(t))) + F2(t, u(h2(t))),

where A : D(A) ⊂ X → X is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0} on a Banach space
X.

Motivated by the above mentioned works [10, 23, 24], the main purpose of this paper is to deal with
the existence and uniqueness of pseudo almost automorphic and weighted pseudo almost automorphic mild
solutions to the problem (1.1). We obtain the new results by using fractional powers of linear operators and
the Banach contraction mapping principle.

The rest of this paper is organized as follows: In section 2 we recall some basic definitions, lemmas and
preliminary facts which will be need in the sequel. Our main results and their proofs are arranged in Section
3.

2. Preliminaries

This section is concerned with some notations, definitions, lemmas and preliminary facts which are used
in what follows.

Throughout the paper, let (X, | · |) be a Banach space and C (R, X) stand for the collection of continuous
functions from R into X. We denote by BC(R, X) the Banach space of all bounded continuous functions
from R into X endowed with the supremum norm defined by ‖x‖BC(R,X) := supt∈R {|x(t)|}. Furthermore,
BC(R×X,X) is the space of all bounded continuous functions F : R×X → X.
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Let U denote the set of all functions (weights) ρ : R→ (0,∞), which are locally integrable over R such
that ρ > 0 almost everywhere. For a given r > 0 and for each ρ ∈ U, we set

m(r, ρ) =

∫ r

−r
ρ(x)dx.

We denote by U∞ the set of all ρ ∈ U with limr→∞m(r, ρ) =∞ and Ub the set of all ρ ∈ U∞ such that ρ is
bounded and infx∈R ρ(x) > 0.

It is clear that Ub ⊂ U∞ ⊂ U, with strict inclusions.
Let 0 ∈ ρ(A), then it is possible to define the fractional power (−A)α, for 0 < α ≤ 1, as a closed linear

operator on its domain D((−A)α). Furthermore, the subspace D((−A)α) is dense in X and the expression

|x|α = |(−A)αx|, x ∈ D((−A)α),

defines a norm on D((−A)α). Hereafter we denote by Xα the Banach space D((−A)α) with norm |x|α.
The following properties hold by [25, Lemma 2.1] and [26].

Lemma 2.1. Let 0 < γ ≤ µ ≤ 1. Then the following properties hold:
(i) Xµ is a Banach space and Xµ ↪→ Xγ is continuous.
(ii) The function s → (−A)µT (s) is continuous in the uniform operator topology on (0,∞) and there

exists Mµ > 0 such that ‖(−A)µT (t)‖ ≤Mµe
−δtt−µ for each t > 0.

(iii) For each x ∈ D((−A)µ) and t ≥ 0, (−A)µT (t)x = T (t)(−A)µx.
(iv) (−A)−µ is a bounded linear operator in X with D((−A)µ) = Im((−A)−µ).

Definition 2.2. A continuous function F : R → X is said to be almost automorphic if for every sequence
of real numbers (sn

′)n∈N, there exists a subsequence (sn)n∈N such that

G(t) := lim
n→∞

F(t+ sn)

is well defined for each t ∈ R and
lim
n→∞

G(t− sn) = F(t)

for each t ∈ R. The collection of such functions will be denote by AA(X).

We recall that every almost periodic function is almost automorphic, but the class of almost automorphic
functions is larger than the class of almost periodic solutions. For example

f(t) = cos

(
1

2 + sin
√

2t+ sin t

)
, t ∈ R

is almost automorphic but not almost periodic.

Definition 2.3. A continuous function F : R×X → X is said to be almost automorphic if F(t, x) is almost
automorphic for each t ∈ R uniformly for all x ∈ B, where B is any bounded subset of X. The collection
of such functions will be denote by AA(R×X,X).

Lemma 2.4. ([7])
(
AA(X), ‖ · ‖AA(X)

)
is a Banach space endowed with the supremum norm given by

‖F‖AA(X) = sup
t∈R
|F(t)|.

The notation PAA0(X) stands for for the spaces of functions

PAA0(X) =

{
F ∈ BC(R, X) : lim

r→∞

1

2r

∫ r

−r
|F(t)|dt = 0

}
.

Similarly, the notation PAA0(R×X,X) stands for for the spaces of functions

PAA0(R×X,X) =

{
F ∈ BC(R×X,X) : limr→∞

1
2r

∫ r
−r |F(t, x)|dt = 0,

uniformly in x in any bounded subset of X

}
.
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Definition 2.5. A continuous function F : R→ X(resp. R×X → X) is called pseudo almost automorphic
if it can be decomposed as F = G + φ, where G ∈ AA(X)(resp. AA(R ×X,X)) and φ ∈ PAA0(X)(resp.
PAA0(R×X,X)). The class of all such functions will be denote by PAA(X)(resp. PAA(R×X,X)).

Lemma 2.6. ([27, Theorem 2.2])
(
PAA(X), ‖ · ‖PAA(X)

)
is a Banach space endowed with the supremum

norm given by
‖F‖PAA(X) = sup

t∈R
|F(t)|.

Lemma 2.7. ([27, Lemma 2.4]) Assume F = G +φ ∈ PAA(R×X,X), where G (t, x) ∈ AA(R×X,X) and
φ(t, x) ∈ PAA0(R×X,X), and suppose that F(t, x) is uniformly continuous in any bounded subset K ⊂ X
uniformly for t ∈ R. If x(t) ∈ PAA(R, X), then F (·, x(·)) ∈ PAA(R, X).

Now for ρ ∈ U∞, we define

PAA0(R, ρ) =

{
F ∈ BC(R, X) : lim

r→∞

1

m(r, ρ)

∫ r

−r
|F(t)|ρ(t)dt = 0

}
;

PAA0(R×X, ρ) =

{
F ∈ BC(R×X,X) : limr→∞

1
m(r,ρ)

∫ r
−r |F(t, x)|ρ(t)dt = 0

uniformly in x ∈ X

}
.

Definition 2.8. ([10]) A bounded continuous function F : R → X(resp. R × X → X) is called weighted
pseudo almost automorphic if it can be decomposed as F = G + φ, where G ∈ AA(X)(resp. AA(R ×
X,X)) and φ ∈ PAA0(R, ρ)(resp. PAA0(R × X, ρ)). The class of all such functions will be denote by
WPAA(R, ρ)(resp. WPAA(R×X, ρ)).

Remark 2.9. ([10, Remark 2.2.]) When ρ = 1, we obtain the standard spaces PAA(R, X) and PAA(R ×
X,X).

Lemma 2.10. [5, Theorem 3.4] Let ρ ∈ U∞. Suppose that PAA0(R, ρ) is translation invariant. Then the
decomposition of weighted pseudo almost automorphic functions is unique.

Lemma 2.11. [28, Theorem 2.15] Let ρ ∈ U∞. If PAA0(R, ρ) is translation invariant,
then

(
WPAA(R, ρ), ‖ · ‖WPAA(R,ρ)

)
is a Banach space endowed with the supremum norm given by

‖F‖WPAA(R,ρ) = sup
t∈R
|F(t)|.

Lemma 2.12. ([10, Corollary 2.11.]) Let F = G +φ ∈WPAA(R×X, ρ) where ρ ∈ U∞, G ∈ AA(R×X,X)
and φ ∈ PAA0(R × X, ρ). Assume both F and G are Lipschitzian in x ∈ X uniformly in t ∈ R. If
x(t) ∈WPAA(R, ρ) then the function F(·, x(·)) ∈WPAA(R, ρ).

Lemma 2.13. ([10, Lemma 3.1.]) Let F = G + φ ∈ WPAA(R, ρ) where ρ ∈ U∞ and {T (t)}t≥0 is an
exponentially stable semigroup. Then F (t) :=

∫ t
−∞ T (t− s)F(s)ds ∈WPAA(R, ρ).

The next result is a straightforward consequence of Lemma 2.13 when ρ = 1.

Lemma 2.14. Let F = G +φ ∈ PAA(X) and {T (t)}t≥0 is an exponentially stable semigroup. If F : R→ X
be the function defined by

F (t) =

∫ t

−∞
T (t− s)F(s)ds, t ≥ s ∈ R,

then F (·) ∈ PAA(X).
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Definition 2.15. A function u ∈ BC(R, X) is called a pseudo almost automorphic mild solution of Eq.
(1.1) on R if u ∈ PAA(X) and the function s → AT (t − s)f (s, u(h1(s))) is integrable on (−∞, t) for each
t ∈ R, and u(t) satisfies

u (t) = T (t− a) [u(a) + f (a, u(h1(a)))]− f (t, u(h1(t)))−
∫ t

a
AT (t− s)f (s, u(h1(s))) ds

+

∫ t

a
T (t− s)g (s, u(h2(s))) ds

for all t ≥ a and all a ∈ R.

Definition 2.16. A function u ∈ BC(R, X) is called a weighted pseudo almost automorphic mild solution
of Eq. (1.1) on R if u ∈WPAA(R, ρ) and the function s→ AT (t− s)f (s, u(h1(s))) is integrable on (−∞, t)
for each t ∈ R, and u(t) satisfies

u (t) = T (t− a) [u(a) + f (a, u(h1(a)))]− f (t, u(h1(t)))−
∫ t

a
AT (t− s)f (s, u(h1(s))) ds

+

∫ t

a
T (t− s)g (s, u(h2(s))) ds

for all t ≥ a and all a ∈ R.

Now we list the following basic assumptions of this paper:
(H1) (I) There exists a positive number α ∈ (0, 1) such that f : R×X → Xα is continuous and (−A)αf ∈
PAA(R×X,X). Let L

(1)
f > 0 be such that for each (t, x), (t, y) ∈ R×X

|(−A)αf(t, x)− (−A)αf(t, y)| ≤ L(1)
f |x− y|.

(II) There exists a positive number α ∈ (0, 1) such that f : R ×X → Xα is continuous and (−A)αf =

ϕ1+ψ1 ∈WPAA(R×X, ρ), and there exist positive numbers L
(2)
f , Lϕ1 such that for each (t, x), (t, y) ∈ R×X

|(−A)αf(t, x)− (−A)αf(t, y)| ≤ L(2)
f |x− y|, |ϕ1(t, x)− ϕ2(t, y)| ≤ Lϕ1 |x− y|.

(H2) (I) g ∈ PAA(R×X,X) and there exists a positive number L
(1)
g such that for each (t, x), (t, y) ∈ R×X

|g(t, x)− g(t, y)| ≤ L(1)
g |x− y|.

(II) g = ϕ2 + ψ2 ∈ WPAA(R × X, ρ), and there exist positive numbers L
(2)
g , Lϕ2 such that for each

(t, x), (t, y) ∈ R×X

|g(t, x)− g(t, y)| ≤ L(2)
g |x− y|, |ϕ2(t, x)− ϕ2(t, y)| ≤ Lϕ2 |x− y|.

(H3) ([24]) The functions hi : R → R, hi(R) = R are continuously differentiable on R, and for u(·) ∈
AA(X), u(hi(·)) ∈ AA(X), h

′
i(t) > 0, i = 1, 2, are nondecreasing with

lim sup
r→∞

(
|hi(−r)|+ |hi(r)|

rh
′
i(−r)

)
<∞.

(H4) The functions hi : R→ R, hi(R) = R are continuously differentiable on R, and for u(·) ∈ AA(X), u(hi(·)) ∈
AA(X), h

′
i(t) > 0, i = 1, 2, are nondecreasing with

lim sup
r→∞

(
m(r∗i , ρ)

m(r, ρ)h
′
i(−r)

)
<∞, and 0 < sup

t∈R

ρ (t)

ρ (hi (t))
<∞,

where r∗i = |hi(−r)|+ |hi(r)| for i = 1, 2.
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3. Main results

In this section, we present and prove our main results. In order to establish our main results, we need
the following auxiliary results.

Lemma 3.1. Let α ∈ (0, 1] and (−A)αv ∈WPAA(R, ρ). If u(·) : R→ X be the function defined by

u(t) =

∫ t

−∞
AT (t− s)v(s)ds, t ≥ s,

then u(·) ∈WPAA(R, ρ).

Proof. . First we observe that u(·) is well defined. Since (−A)αv ∈WPAA(R, ρ), then (−A)αv is bounded,
we assume that there exists M1 > 0, such that ‖(−A)αv‖WPPA(R,ρ) ≤M1. So

|u(t)| ≤
∫ t

−∞
|AT (t− s)v(s)|ds

≤
∫ t

−∞
‖(−A)1−αT (t− s)‖|(−A)αv(s)|ds

≤ M1

∫ t

−∞
M1−αe

−δ(t−s)(t− s)α−1ds

≤ M1M1−α

∫ +∞

0
σα−1e−δσdσ

≤ M1M1−αδ
−αΓ(α),

where Γ(·) is the gamma function. Thus s → AT (t − s)v(s) is integrable on (−∞, t) for each t ∈ R
and so that u(t) is a bounded continuous functions. Now we prove that u(·) ∈ WPAA(R, ρ). We let
(−A)αv(t) = m(t) + n(t), where m(·) ∈ AA(X) and n(·) ∈ PAA0(R, ρ).

Then

u(t) = −
∫ t

−∞
(−A)1−αT (t− s)(−A)αv(s)ds

= −
∫ t

−∞
(−A)1−αT (t− s)m(s)ds−

∫ t

−∞
(−A)1−αT (t− s)n(s)ds.

Let G(t) = −
∫ t
−∞(−A)1−αT (t−s)m(s)ds, H(t) = −

∫ t
−∞(−A)1−αT (t−s)n(s)ds. Clearly, u(t) = G(t)+H(t).

Now we show that G(t) ∈ AA(X). Let (sn
′)n∈N be an arbitrary sequence of real numbers. Since

m(t) ∈ AA(X), there exists a subsequence (sn)n∈N of (sn
′)n∈N such that ϕ(t) := limn→∞m(t + sn) is well

defined for each t ∈ R, and m(t) = limn→∞ ϕ(t− sn) for each t ∈ R.
Now, we consider

G(t+ sn) = −
∫ t+sn

−∞
(−A)1−αT (t+ sn − s)m(s)ds

= −
∫ t

−∞
(−A)1−αT (t− s)m(s+ sn)ds

= −
∫ t

−∞
(−A)1−αT (t− s)mn(s)ds,
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where mn(s) = m(s+ sn), n = 1, 2, · · · . Also, we have

|G(t+ sn)| ≤
∫ t

−∞
|(−A)1−αT (t− s)mn(s)|ds

≤
∫ t

−∞
M1−αe

−α(t−s)(t− s)α−1|mn(s)|ds

≤ M1−αδ
−αΓ(α)‖m‖AA(X),

for n = 1, 2, · · · . By the property (ii) of Lemma 2.1 it follows that

(−A)1−αT (t− s)mn(s)→ (−A)1−αT (t− s)ϕ(s), as n→∞,

for each s ∈ R fixed and any t ≥ s, and we get

lim
n→∞

G(t+ sn) = −
∫ t

−∞
(−A)1−αT (t− s)ϕ(s)ds,

by the Lebesgue’s dominated convergence theorem. Analogously to the above proof, it can be shown that

lim
n→∞

{
−
∫ t−sn

−∞
(−A)1−αT (t− sn − s)ϕ(s)ds

}
= G(t).

This shows that G(t) ∈ AA(X).
Next we prove that H(t) ∈ PAA0(R, ρ), that is we need to prove that

lim
r→∞

1

m(r, ρ)

∫ r

−r
|H(t)|ρ(t)dt = 0.

We have

lim
r→∞

1

m(r, ρ)

∫ r

−r
|H(t)|ρ(t)dt ≤ lim

r→∞

1

m(r, ρ)

∫ r

−r

∫ t

−∞
|(−A)1−αT (t− s)n(s)|ρ(s)dsdt

≤ lim
r→∞

1

m(r, ρ)

∫ r

−r
dt

∫ −r
−∞
|(−A)1−αT (t− s)n(s)|ρ(s)ds

+ lim
r→∞

1

m(r, ρ)

∫ r

−r
dt

∫ t

−r
|(−A)1−αT (t− s)n(s)|ρ(s)ds

= I1 + I2,

where

I1 := lim
r→∞

1

m(r, ρ)

∫ r

−r
dt

∫ −r
−∞
|(−A)1−αT (t− s)n(s)|ρ(s)ds

and

I2 := lim
r→∞

1

m(r, ρ)

∫ r

−r
dt

∫ t

−r
|(−A)1−αT (t− s)n(s)|ρ(s)ds.
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We get

I1 = lim
r→∞

1

m(r, ρ)

∫ r

−r
dt

∫ −r
−∞
|(−A)1−αT (t− s)n(s)|ρ(s)ds

≤ lim
r→∞

1

m(r, ρ)

∫ r

−r
dt

∫ −r
−∞

M1−αe
−δ(t−s)(t− s)α−1|n(s)|ρ(s)ds

≤ lim
r→∞

‖n‖BC(R,X)

m(r, ρ)

∫ r

−r
ρ(t)dt

∫ −r
−∞

M1−αe
−δ(t−s)(t− s)α−1ds

≤ lim
r→∞

M1−α‖n‖BC(R,X)

m(r, ρ)

∫ r

−r
ρ(t)dt

∫ +∞

t+r
σα−1e−δσdσ

≤ lim
r→∞

M1−α‖n‖BC(R,X)

m(r, ρ)

∫ r

−r
ρ(t)dt

∫ +∞

2r
σα−1e−δσdσ

≤ lim
r→∞

M1−α‖n‖BC(R,X)

∫ +∞

2r
(2r)α−1e−δσdσ

≤
M1−α‖n‖BC(R,X)

(2r)1−αe2δrδ
,

where converges to zero as r →∞.

I2 = lim
r→∞

1

m(r, ρ)

∫ r

−r
dt

∫ t

−r
|(−A)1−αT (t− s)n(s)|ρ(s)ds

≤ lim
r→∞

M1−α
m(r, ρ)

∫ r

−r
dt

∫ t

−r
e−δ(t−s)(t− s)α−1|n(s)|ρ(s)ds

≤ lim
r→∞

M1−α
m(r, ρ)

∫ r

−r
|n(t)|ρ(t)dt

∫ t+r

0
σα−1e−δσdσ

≤ lim
r→∞

M1−α
m(r, ρ)

∫ r

−r
|n(t)|ρ(t)dt

∫ +∞

0
σα−1e−δσdσ

≤ lim
r→∞

M1−αδ
−αΓ(α)

1

m(r, ρ)

∫ r

−r
|n(t)|ρ(t)dt.

Since n(·) ∈ PAA0(R, ρ), then limr→∞
1

m(r,ρ)

∫ r
−r |n(t)|ρ(t)dt = 0. Therefore limr→∞ I2 = 0. In view of the

above it is clear that u ∈WPAA(R, ρ). The proof is achieved.

The next result is a straightforward consequence of Lemma 3.1 when ρ = 1, and so we omit its proof.

Lemma 3.2. Let α ∈ (0, 1] and (−A)αv ∈ PAA(X). If u(·) : R→ X be the function defined by

u(t) =

∫ t

−∞
AT (t− s)v(s)ds, t ≥ s,

then u(·) ∈ PAA(X).

Lemma 3.3. ([24, Lemma 4.1]) Assume that both h1(·) and h2(·) satisfy (H3). If u ∈ PAA(X), then
u (hi(·)) ∈ PAA(X) for i = 1, 2.

The proof of the following lemma is similar to that of Lemma 3.2 in [29]. For the completeness, we give
the detailed proof here.

Lemma 3.4. Assume that both h1(·) and h2(·) satisfy (H4). If u ∈ WPAA(R, ρ), then u (hi(·)) ∈
WPAA(R, ρ) for i = 1, 2.
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Proof. . Let u(·) = v(·) + w(·), where v(·) ∈ AA(X) and w(·) ∈ PAA0(R, ρ). By condition (H4) and the
definition of almost automorphic functions, we can easily conclude that v (hi(t)) ∈ AA(X).

On the other hand, we need to prove that w (hi(t)) ∈ PAA0(R, ρ). We have

0 ≤ 1

m(r, ρ)

∫ r

−r
|w (hi(t)) |ρ (t) dt

=
1

m(r, ρ)

∫ r

−r
|w (hi(t)) |ρ (hi(t))

ρ(t)

ρ (hi(t))

h
′
i(t)

h
′
i(t)

dt

≤ 1

m(r, ρ)h
′
i(−r)

sup
t∈R

ρ(t)

ρ (hi(t))

∫ r

−r
|w (hi(t)) |ρ (hi(t))h

′
i(t)dt

≤ 1

m(r, ρ)h
′
i(−r)

sup
t∈R

ρ(t)

ρ (hi(t))

∫ |hi(r)|
−|hi(−r)|

|w(t)|ρ(t)dt

≤ 1

m(r, ρ)h
′
i(−r)

sup
t∈R

ρ(t)

ρ (hi(t))

∫ |hi(−r)|+|hi(r)|
−|hi(−r)|−|hi(r)|

|w(t)|ρ(t)dt

=
m(r∗i , ρ)

m(r, ρ)h
′
i(−r)

sup
t∈R

ρ(t)

ρ (hi(t))

1

m(r∗i , ρ)

∫ r∗i

−r∗i
|w(t)|ρ(t)dt,

where r∗i = |hi(−r)|+ |hi(r)|, i = 1, 2. Since (H4) and w(·) ∈ PAA0(R, ρ), then the last inequality converges
to zero as r → ∞. Thus w (hi(t)) ∈ PAA0(R, ρ). As a consequence of the above proof, we can see that
u (hi(t)) ∈WPAA(R, ρ) for i = 1, 2. The proof is finished.

Remark 3.5. Let ρ = 1, then the condition (H4) is reduced to the condition (H3). It is consistent with the
fact that the space WPAA(R×X, ρ) is turned into the space PAA(R×X,X) when ρ = 1.

Now, we state and prove our main results.

Theorem 3.6. Assume the conditions (H1)(I), (H2)(I) and (H3) hold, then the problem (1.1) has a unique
pseudo almost automorphic mild solution on R provide that

‖(−A)−α‖L(1)
f +M1−αδ

−αΓ(α)L
(1)
f +

M

δ
L(1)
g < 1, (3.1)

where Γ(·) is the gamma function.

Proof. Let Λ : PAA(X)→ C(R, X) be the operator defined by

Λu(t) = −(−A)−α(−A)αf (t, u(h1(t))) +

∫ t

−∞
(−A)1−αT (t− s)(−A)αf (s, u(h1(s))) ds

+

∫ t

−∞
T (t− s)g (s, u(h2(s))) ds

= −f (t, u(h1(t)))−
∫ t

−∞
AT (t− s)f (s, u(h1(s))) ds

+

∫ t

−∞
T (t− s)g (s, u(h2(s))) ds, t ∈ R.

First we prove that Λu(t) is well defined. From the continuity of s→ AT (t− s) and s→ T (t− s) in the
uniform operator topology on (−∞, t) for each t ∈ R and the estimate

|AT (t− s)f (s, u(h1(s))) | = |(−A)1−αT (t− s)(−A)αf (s, u(h1(s))) |
≤ M1−αe

−δ(t−s)(t− s)α−1‖(−A)αf (s, u(h1(s))) ‖BC(R×X,X),

it follows that s → AT (t − s)f (s, u(h1(s))) and s → T (t − s)g (s, u(h2(s))) are integrable on (−∞, t) for
every t ∈ R and so that Λu is well defined and continuous. Moreover, from Lemmas 3.3, 2.7, 3.2 and 2.14
we infer that Λu(t) ∈ PAA(X), that is, Λ maps PAA(X) into itself.
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Next, we show that Λ is a contraction on PAA(X). Indeed, for each t ∈ R, u, v ∈ PAA(X), we have

|Λu(t)− Λv(t)|
≤ |f (t, u(h1(t)))− f (t, v(h1(t))) |

+

∫ t

−∞
|AT (t− s)f (s, u(h1(s)))−AT (t− s)f (s, v(h1(s))) |ds

+

∫ t

−∞
|T (t− s)g (s, u(h2(s)))− T (t− s)g (s, v(h2(s))) |ds

≤ ‖(−A)−α‖|(−A)αf (t, u(h1(t)))− (−A)αf (t, v(h1(t))) |

+

∫ t

−∞
‖(−A)1−αT (t− s)‖|(−A)αf (s, u(h1(s)))− (−A)αf (s, v(h1(s))) |ds

+

∫ t

−∞
Me−δ(t−s)|g (s, u(h2(s)))− g (s, v(h2(s))) |ds

≤ ‖(−A)−α‖L(1)
f |u (h1(t))− v (h1(t)) |

+L
(1)
f

∫ t

−∞
M1−αe

−δ(t−s)(t− s)α−1|u (h1(s))− v (h1(s)) |ds

+L(1)
g

∫ t

−∞
Me−δ(t−s)|u (h2(s))− v (h2(s)) |ds

≤ ‖(−A)−α‖L(1)
f ‖u− v‖PAA(X) + L

(1)
f M1−αδ

−αΓ(α)‖u− v‖PAA(X)

+L(1)
g

M

δ
‖u− v‖PAA(X)

= [‖(−A)−α‖L(1)
f +M1−αδ

−αΓ(α)L
(1)
f +

M

δ
L(1)
g ]‖u− v‖PAA(X).

Thus

‖Λu− Λv‖PAA(X) ≤ [‖(−A)−α‖L(1)
f +M1−αδ

−αΓ(α)L
(1)
f +

M

δ
L(1)
g ]‖u− v‖PAA(X),

which implies that Λ is a contraction by (3.1). By the contraction principle, we conclude that there exists
a unique fixed point u(·) for Λ in PAA(X), such that Λu = u, that is

u(t) = −f (t, u(h1(t)))−
∫ t

−∞
AT (t− s)f (s, u(h1(s))) ds+

∫ t

−∞
T (t− s)g (s, u(h2(s))) ds,

for all t ∈ R. If we let u(a) = −f (a, u(h1(a)))−
∫ a
−∞AT (a−s)f (s, u(h1(s))) ds+

∫ a
−∞ T (a−s)g (s, u(h2(s))) ds,

then

T (t− a)u(a) = −T (t− a)f (a, u(h1(a)))−
∫ a

−∞
AT (t− s)f (s, u(h1(s))) ds

+

∫ a

−∞
T (t− s)g (s, u(h2(s))) ds.
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But for t ≥ a,∫ t

a
T (t− s)g (s, u(h2(s))) ds

=

∫ t

−∞
T (t− s)g (s, u(h2(s))) ds−

∫ a

−∞
T (t− s)g (s, u(h2(s))) ds

= u(t) + f (t, u(h1(t))) +

∫ t

−∞
AT (t− s)f (s, u(h1(s))) ds

−T (t− a)[u(a) + f (a, u(h1(a)))]

−
∫ a

−∞
AT (t− s)f (s, u(h1(s))) ds

= u(t) + f (t, u(h1(t))) +

∫ t

a
AT (t− s)f (s, u(h1(s))) ds

−T (t− a)[u(a) + f (a, u(h1(a)))].

In conclusion,

u (t) = T (t− a) [u(a) + f (a, u(h1(a)))]− f (t, u(h1(t)))

−
∫ t

a
AT (t− s)f (s, u(h1(s))) ds+

∫ t

a
T (t− s)g (s, u(h2(s))) ds

is a mild solution of equation (1.1) and u ∈ PAA(X). This finishes the proof.

Theorem 3.7. Assume the conditions (H1)(II), (H2)(II) and (H4) are satisfied, then the problem (1.1) has
a unique weighted pseudo almost automorphic mild solution on R provide that

‖(−A)−α‖L(2)
f +M1−αδ

−αΓ(α)L
(2)
f +

M

δ
L(2)
g < 1, (3.2)

where Γ(·) is the gamma function.

Proof. We define the operator Λ : WPAA(R, ρ)→ C(R, X) as

Λu(t) = −(−A)−α(−A)αf (t, u(h1(t))) +

∫ t

−∞
(−A)1−αT (t− s)(−A)αf (s, u(h1(s))) ds

+

∫ t

−∞
T (t− s)g (s, u(h2(s))) ds

= −f (t, u(h1(t)))−
∫ t

−∞
AT (t− s)f (s, u(h1(s))) ds

+

∫ t

−∞
T (t− s)g (s, u(h2(s))) ds, t ∈ R.

The same arguments used in the proof of Theorem 3.6, we can prove that Λu(t) is well defined and continuous.
Moreover, from Lemmas 3.4, 2.12, 3.1 and 2.13, we infer that Λu(t) ∈ WPAA(R, ρ), that is, Λ maps
WPAA(R, ρ) into itself.

Now we prove that Λ is a contraction on WPAA(R, ρ). Indeed, for each t ∈ R, u, v ∈WPAA(R, ρ), we
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have

|Λu(t)− Λv(t)|
≤ |f (t, u(h1(t)))− f (t, v(h1(t))) |

+

∫ t

−∞
|AT (t− s)f (s, u(h1(s)))−AT (t− s)f (s, v(h1(s))) |ds

+

∫ t

−∞
|T (t− s)g (s, u(h2(s)))− T (t− s)g (s, v(h2(s))) |ds

≤ ‖(−A)−α‖|(−A)αf (t, u(h1(t)))− (−A)αf (t, v(h1(t))) |

+

∫ t

−∞
‖(−A)1−αT (t− s)‖|(−A)αf (s, u(h1(s)))− (−A)αf (s, v(h1(s))) |ds

+

∫ t

−∞
Me−δ(t−s)|g (s, u(h2(s)))− g (s, v(h2(s))) |ds

≤ ‖(−A)−α‖L(2)
f |u (h1(t))− v (h1(t)) |

+L
(2)
f

∫ t

−∞
M1−αe

−δ(t−s)(t− s)α−1|u (h1(s))− v (h1(s)) |ds

+L(2)
g

∫ t

−∞
Me−δ(t−s)|u (h2(s))− v (h2(s)) |ds

≤ ‖(−A)−α‖L(2)
f ‖u− v‖WPAA(R,ρ) + L

(2)
f M1−αδ

−αΓ(α)‖u− v‖WPAA(R,ρ)

+L(2)
g

M

δ
‖u− v‖WPAA(R,ρ)

= [‖(−A)−α‖L(2)
f +M1−αδ

−αΓ(α)L
(2)
f +

M

δ
L(2)
g ]‖u− v‖WPAA(R,ρ).

Thus

‖Λu− Λv‖WPAA(R,ρ) ≤ [‖(−A)−α‖L(2)
f +M1−αδ

−αΓ(α)L
(2)
f +

M

δ
L(2)
g ]‖u− v‖WPAA(R,ρ).

It follows that Λ is a contraction from (3.2). By the contraction principle, we draw a conclusion that there
exists a unique fixed point u(·) for Λ in WPAA(R, ρ), such that Λu = u. Moreover, using the same proof
as in Theorem 3.6, we can see that u (t) = T (t − a) [u(a) + f (a, u(h1(a)))] − f (t, u(h1(t))) −

∫ t
a AT (t −

s)f (s, u(h1(s))) ds+
∫ t
a T (t− s)g (s, u(h2(s))) ds is a mild solution of equation (1.1) and u ∈WPAA(R, ρ).

This completes the proof.
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