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Abstract

In this paper a general fixed point theorem in G–metric spaces for weakly compatible mappings is proved,
theorem which generalize the results from Abbas et. al. [M. Abbas and B. E. Rhoades, Appl. Math.
and Computation 215 (2009), 262 - 269] and [M. Abbas, T. Nazir and S. Radanović, Appl. Math. and
Computation 217 (2010), 4094 - 4099]. In the last part of this paper it is proved that the fixed point problem
for these mappings is well posed. c©2012 NGA. All rights reserved.
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1. Introduction

Let (X, d) be a metric space and S, T : (X, d)→ (X, d) be two mappings. In 1994, Pant [22] introduced
the notion of pointwise R - weakly commuting mappings. It is proved in [23] that the notion of pointwise R
- weakly commutativity is equivalent to commutativity in coincidence points. Jungck [11] defined S and T
to be weakly compatible if Sx = Tx implies STx = TSx. Thus, S and T are weakly compatible if and only
if S and T are pointwise R - weakly commuting.

In [9] and [10], Dhage introduced a new class of generalized metric spaces, named D - metric space.
Mustafa and Sims [14], [15] proved that most of the claims concerning the fundamental topological structures
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on D - metric spaces are incorrect and introduced appropriate notion of generalized metric space, named G
- metric space. In fact, Mustafa, Sims and other authors studied many fixed point results for self mappings
in G - metric spaces under certain conditions [6], [16] - [21], [33] and other papers.

In [25] and [26], Popa initiated the study of fixed points for mappings satisfying implicit relations.
The notion of well posedness of a fixed point problem has generated much interest to several mathemati-

cians, for example [8], [12], [24], [29], [30], [31]. Recently, Popa [27], [33] and Akkouchi and Popa [3], [4], [5]
studied well posedness problem for mappings satisfying implicit relations in metric spaces.

The purpose of this paper is to prove a general fixed point theorem in G - metric spaces for weakly
compatible pairs of mappings satisfying an implicit relation which generalize the results from [1] and [13].
In the last part of this paper we define the notion of a fixed point problem in G - metric spaces for two
mappings and we prove that in G - metric space with a G - symmetric, the fixed point problem is well posed.

2. Preliminaries

Definition 2.1 ([15]). Let X be a nonempty set and G : X3 → R+ be a function satisfying the following
properties:

(G1) : G(x, y, z) = 0 if x = y = z,
(G2) : 0 < G(x, x, y) for all x, y ∈ X with x 6= y,
(G3) : G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,
(G4) : G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables),
(G5) : G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then the function G is called a G - metric on X and the pair (X,G) is called a G - metric space.
Note that G(x, y, z) = 0, then x = y = z.

Definition 2.2 ([15]). Let (X,G) be a metric space. A sequence (xn) in X is said to be
a) G - convergent if for ε > 0, there is an x ∈ X and k ∈ N such that for all m,n ≥ k, G(x, xn, xm) < ε.
b) G - Cauchy if for each ε > 0, there exists k ∈ N such that for all n,m, p ≥ k, G(xn, xm, xp) < ε, that

is G(xn, xm, xp)→ 0 as m,n, n→∞.
c) A G - metric space is said to be G - complete if every G - Cauchy sequence is G - convergent.

Lemma 2.3 ([15]). Let (X,G) be a G - metric space. Then, the following properties are equivalent:
1) (xn) is G - convergent to x;
2) G(xn, xn, x)→ 0 as n→∞;
3) G(xn, x, x)→ 0 as n→∞;
4) G(xm, xn, x)→ 0 as m,n→∞.

Lemma 2.4 ([15]). If (X,G) is a G - metric space, the following are equivalent:
1) (xn) is G - Cauchy.
2) For every ε > 0, there is k ∈ N such that G(xn, xm, xm) < ε for all n,m ≥ k.

Definition 2.5 ([14]). Let (X,G) and (X ′, G′) be two G - metric spaces. A function f : (X,G)→ (X ′, G′)
is said to be G - continuous at a point x ∈ X if for ε > 0, there exists δ > 0 such that for all x, y ∈ X and
G(a, x, y) < δ, then G′(f(a), f(x), f(y)) < ε.

A function f is G - continuous if f is G - continuous at each x ∈ X.

Lemma 2.6 ([15]). Let (X,G) and (X ′, G′) be G - metric spaces. Then, a function f : (X,G) → (X ′, G′)
is G - continuous at a point x ∈ X if and only if it is G - sequentially continuous, that is, whenever (xn) is
G - convergent to x, we have that f(xn) is G - convergent to f(x).

Lemma 2.7 ([15]). Let (X,G) be a G - metric space, then the function G(x, y, z) is jointly continuous in
all three of its variables.

Definition 2.8 ([15]). A G - metric space (X,G) is called symmetric if G(x, y, y) = G(y, x, x, for all
x, y ∈ X.

Remark 2.9. There exists G - metric space which is not symmetric (Example 1 [15]).
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3. Implicit relations

Definition 3.1. Let FG be the set of all continuous functions F (t1, ..., t6) : R6
+ → R such that

(F1) : F is nonincreasing in variable t5,
(F2) : There exists h1 ∈ [0, 1) such that for all u, v ≥ 0, F (u, v, v, u, u+ v, 0) ≤ 0 implies u ≤ h1v.
(F3) : There exists h2 ∈ [0, 1) such that for all t, t′ > 0, F (t, t, 0, 0, t, t′) < 0 implies t ≤ h2t′.

Example 3.2. F (t1, ..., t6) = t1−at2−bt3−ct4−dt5−et6, where a, b, c, d, e ≥ 0 and 0 < a+b+c+2d+e < 1.
(F1) : Obviously.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+ v, 0) = u− av− bv− cu− d(u+ v) ≤ 0. Then, u ≤ h1v, where

0 ≤ h1 =
a+ b+ d

1− (c+ d)
< 1.

(F3) : Let t, t′ > 0 and F (t, t, 0, 0, t, t′) = t − at − dt − et′ ≤ 0. Then t ≤ h2t
′, where 0 ≤ h2 =

e

1− (a+ d)
< 1.

Example 3.3. F (t1, ..., t6) = t1 − kmax{t2, t3, t4, t5, t6}, where k ∈
[
0,

1

2

)
.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − kmax{u, v, u+ v} ≤ 0. Hence, u ≤ h1v, where

0 ≤ h1 =
k

1− k
< 1.

(F3) : Let t, t′ > 0 and F (t, t, 0, 0, t, t′) = t−kmax{t, t′} ≤ 0. If t > t′, then t(1−k) ≤ 0, a contradiction.
Hence, t ≤ t′ which implies t ≤ h2t′, where 0 ≤ h2 = k < 1.

Example 3.4. F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

t5 + t6
2

,

}
, where k ∈ [0, 1).

(F1) : Obviously.

(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+v, 0) = u−kmax

{
u, v,

u+ v

2

}
≤ 0. If u > v, then u(1−k) ≤ 0,

a contradiction. Hence, u ≤ v which implies u ≤ h1v, where 0 ≤ h1 = k < 1.

(F3) : Let t, t′ > 0 and F (t, t, 0, 0, t, t′) = t − kmax

{
t,
t+ t′

2

}
≤ 0. If t > t′, then t(1 − k) ≤ 0, a

contradiction. Hence, t ≤ t′ which implies t ≤ h2t′, where 0 ≤ h2 = k < 1.

Example 3.5. F (t1, ..., t6) = t21− t1(at2 +bt3 +ct4)−dt5t6 ≤ 0, where a, b, c, d ≥ 0 and 0 ≤ a+b+c+d < 1.
(F1) : Obviously.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+v, 0) = u2−u(av+bv+cu) ≤ 0. If u > 0, then u−av−bv−cu ≤ 0

which implies u ≤ h1v, where 0 ≤ h1 =
a+ b

1− c
< 1. If u = 0 then u ≤ h1v.

Example 3.6. F (t1, ..., t6) = t1 − kmax

{
t3 + t4

2
,
t5 + t6

2

}
, where k ∈ [0, 1).

(F1) : Obviously.

(F2) : Let u, v ≥ 0 be such that F (u, v, v, u, u + v, 0) = u − kmax

{
v,
u+ v

2

}
≤ 0. If u > v, then

u(1− k) ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ h1v, where 0 ≤ h1 = k < 1.

(F3) : F (t, t, 0, 0, t, t′) = t − kmax

{
t,
t+ t′

2

}
≤ 0.If t > t′ then t(1 − k) ≤ 0, a contradiction. Hence

t ≤ t′ which implies t ≤ h2t′, where 0 ≤ h2 = k < 1.

Example 3.7. F (t1, ..., t6) = t31 − c
t23t

2
4 + t25t

2
6

1 + t2 + t3 + t4
, where c ∈ [0, 1).

(F1) : Obviously.
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(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+v, 0) = u3−c v2u2

1 + 2v + u
≤ 0. If u > 0, then u ≤ cv v

1 + 2v + u
≤

cv. Hence, u ≤ h1v, where 0 ≤ h1 = c < 1. If u = 0, then u ≤ h1v.

(F3) : Let t, t′ > 0 be such that F (t, t, 0, 0, t, t′) = t3 − c t
2t′2

1 + t
≤ 0, which implies t2 − c t

1 + t
t′2 ≤ ct′2.

Hence t ≤ h2t′, where 0 ≤ h2 =
√
c < 1. If u = 0 then u ≤ h1v.

Example 3.8. F (t1, ..., t6) = t21 − at22 − b
t5t6

1 + t23 + t24
, where a, b ≥ 0 and 0 ≤ a+ b < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+ v, 0) = u2−av2 ≤ 0. Hence, u ≤ h1v, where 0 ≤ h1 =

√
a < 1.

(F3) : Let t, t′ > 0 be and F (t, t, 0, 0, t, t′) = t2 − at2 − btt′ ≤ 0, which implies t ≤ h2t
′, where 0 ≤ h2 =

b

1− a
< 1.

Example 3.9. F (t1, ..., t6) = t1 − at2 − bt3 − cmax{2t4, t5 + t6}, where a, b, c ≥ 0 and 0 ≤ a+ b+ 2c < 1.
(F1) : Obviously.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − av − cmax{2u, u + v} ≤ 0. If u > v, then

u(1− (a+ b+ 2c)) ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ h1v, where 0 ≤ h1 =
a+ b+ c

1− c
< 1.

(F3) : Let t, t′ > 0 be and F (t, t, 0, 0, t, t′) = t − at − c(t + t′) ≤ 0, which implies t ≤ h2t
′, where

0 ≤ h2 =
c

1− (a+ c)
< 1.

Example 3.10. F (t1, ..., t6) = t1 − at2 − bt3 − cmax{t4 + t5, 2t6}, where a, b, c ≥ 0 and 0 ≤ a+ b+ 3c < 1.
(F1) : Obviously.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − av − bv − c(2u + v) ≤ 0, which implies u ≤ h1v,

where 0 ≤ h1 =
a+ b+ c

1− 2c
< 1.

(F3) : Let t, t′ > 0 be and F (t, t, 0, 0, t, t′) = t − at − cmax{t, 2t′}. If t > 2t′ then t(1 − a − c) ≤ 0, a

contradiction. Hence t ≤ 2t′ which implies t ≤ h2t′, where 0 ≤ h2 =
2c

1− a
< 1.

Example 3.11. F (t1, ..., t6) = t1 − cmax{t2, t3,
√
t4t6,

√
t5t6}, where c ∈ [0, 1).

(F1) : Obviously.
(F2) : Let u, v ≥ 0 be such that F (u, v, v, u, u + v, 0) = u − cv ≤ 0, which implies u ≤ h1v, where

0 ≤ h1 = c < 1.
(F3) : Let t, t′ > 0 be and F (t, t, 0, 0, t, t′) = t − cmax{t,

√
tt′} ≤ 0. If t > t′ then t(1 − c) ≤ 0, a

contradiction. Hence t ≤ t′ which implies t ≤ h2t′, where 0 ≤ h2 = c < 1.

Example 3.12. F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

2t4 + t6
3

,
2t4 + t3

3
,
t5 + t6

3

}
, where k ∈ [0, 1).

(F1) : Obviously.
(F2) : Let u, v ≥ 0 be such that

F (u, v, v, u, u+ v, 0) = u− kmax

{
u, v,

2u

3
,
2u+ v

3
,
u+ v

3

}
≤ 0.

If u > v, then u(1− k) ≤ 0, a contradiction. Hence u ≤ v which implies u ≤ h1v, where 0 ≤ h1 = k < 1.

(F3) : Let t, t′ > 0 be and F (t, t, 0, 0, t, t′) = t − kmax

{
t,
t′

3
,
t+ t′

3

}
. If t > t′ then t(1 − k) ≤ 0, a

contradiction. Hence t ≤ t′ which implies t ≤ h2t′, where 0 ≤ h2 = k < 1.
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4. General fixed point theorem

Definition 4.1. Let f and g be self maps of a nonempty set X. If w = fx = gx for some x ∈ X, then x is
called a coincidence point of f and g and w is called a point of coincidence of f and g.

Lemma 4.2 ([1]). Let f and g be weakly compatible self mappings of nonempty set X. If f and g have a
unique point of coincidence w = fx = gx, then w is the unique common fixed point of f and g.

Lemma 4.3. Let (X,G) be a G - metric space and f, g : (X,G)→ (X,G) two functions such that

F (G(fx, fy, fy), G(gx, gy, gy), G(gx, fx, fx), G(gy, fy, fy),
G(gx, fy, fy), G(gy, fx, fx)) ≤ 0

(4.1)

for all x, y ∈ X and F satisfying property (F3). Then, f and g have at most a point of coincidence.

Proof. Suppose that u = fp = gp and v = fq = gq. Then by (4.1) we have

F (G(fq, fp, fp), G(gq, gp, gp), G(gq, fq, fq), G(gp, fp, fp),
G(gq, fp, fp), G(gp, fq, fq)) ≤ 0,

F (G(gq, gp, gp), G(gq, gp, gp), 0, 0, G(gq, gp, gp), G(gq, gp, gp)) ≤ 0

which implies by (F3) that
G(gq, gp, gp) ≤ h2G(gp, gq, gq).

Similarly, we obtain that
G(gp, gq, gq) ≤ h2G(gq, gp, gp)

which implies that G(gq, gp, gp)(1 − h22) ≤ 0. Hence G(gq, gp, gp) = 0, i.e. gq = gp. Therefore u = fp =
gp = gq = fq = v.

Theorem 4.4. Let (X,G) be a G - metric space and f, g : (X,G) → (X,G) satisfying inequality (4.1) for
all x, y ∈ X, where F ∈ FG. If f(X) ⊂ g(X) and g(X) is a G - complete metric subspace of (X,G), then f
and g have a unique point of coincidence. Moreover, if f and g are weakly compatible, then f and g have a
unique common fixed point.

Proof. Let x0 be an arbitrary point of X and x1 ∈ X such that fx0 = gx1. This can be done since
f(X) ⊂ g(X). Continuing this process, having chosen xn in X, we obtain xn+1 such that fxn = gxn+1.
Then, by (4.1) we have successively

F (G(fxn−1, fxn, fxn), G(gxn−1, gxn, gxn), G(gxn−1, fxn−1, fxn−1),
G(gxn, fxn, fxn), G(gxn−1, fxn, fxn), G(gxn, fxn−1, fxn−1)) ≤ 0,

F (G(gxn, gxn+1, gxn+1), G(gxn−1, gxn, gxn), G(gxn−1, gxn, gxn),
G(gxn, gxn+1, gxn+1), G(gxn−1, gxn+1, gxn+1), 0) ≤ 0.

By (F1) and (G5) we obtain

F (G(gxn, gxn+1, gxn+1), G(gxn−1, gxn, gxn), G(gxn−1, gxn, gxn),
G(gxn, gxn+1, gxn+1), G(gxn−1, gxn, gxn) +G(gxn, gxn+1, gxn+1), 0) ≤ 0.

By (F2) we obtain
G(gxn, gxn+1, gxn+1) ≤ h1G(gxn−1, gxn, gxn) (4.2)

Continuing the above process we obtain

G(gxn, gxn+1, gxn+1) ≤ hn1G(gx0, gx1, gx1). (4.3)
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Then for m > n

G(gxn, gxm, gxm) ≤ G(gxn, gxn+1, gxn+1) +G(gxn+1, gxn+2, gxn+2) +

+...+G(gxm−1, gxm, gxm)

≤ (hn1 + hn+1
1 + ...+ hm−11 )G(gx0, gx1, gx1)

≤ hn1
1− h1

G(gx0, gx1, gx1)

which implies that G(gxn, gxm, gxm)→ 0 as n,m→∞.
Hence, (gxn) is a G - Cauchy sequence. Since g(X) is G - complete, there exists a point q in g(X) such

that gxn → q as n→∞. Consequently, we can find a point p ∈ X such that gp = q. We prove that fp = gp.
By (4.1) we have successively

F (G(fxn−1, gp, gp), G(gxn−1, gp, gp), G(gxn−1, fxn−1, fxn−1),
G(gp, fp, fp), G(gxn−1, fp, fp), G(gp, fxn−1, fxn−1)) ≤ 0,

F (G(gxn, fp, fp), G(gxn−1, gp, gp), G(gxn−1, gxn, gxn),
G(gp, fp, fp), G(gxn−1, fp, fp), G(gp, gxn, gxn)) ≤ 0.

Letting n tend to infinity, we obtain

F (G(gp, fp, fp), 0, 0, G(gp, fp, fp), G(gp, fp, fp), 0) ≤ 0.

By (F1) it follows that G(gp, fp, fp) = 0 which implies gp = fp. Hence w = fp = gp is a point of
coincidence of f and g. By Lemma 4.3, w is the unique point of coincidence. Moreover, if f and g are
weakly compatible, by Lemma 4.2, w is the unique common fixed point of f and g.

Remark 4.5. 1) By Example 3.2 with d = e = 0 and Theorem 4.4 we obtain a partial result from
Theorem 2.3 [1].

2) By Example 3.2 for b = c = d = e = 0 we obtain Theorem 2.1 [13].
3) By Example 3.2 for b = c = 2 and Theorem 4.4 we obtain a partial result from Theorem 2.6 [1].

4) By Example 3.3, for h ∈
[
0,

1

2

)
we obtain a partial result of Theorems 2.4, 2.5 [1] which is a form

of Ciric result [7] in G - metric space.
5) By Examples 3.4 - 3.12 we obtain new results.

5. Well posedness problem of fixed point for two mappings in G - metric spaces

Definition 5.1. Let (X,G) be a metric space and f : (X, d) → (X, d) be a mapping. The fixed point
problem f is said to be well posed [8] if

1) f has a unique fixed point x0 ∈ X,
2) for any sequence (xn) ∈ X with limn→∞ d(xn, fxn) = 0 we have

lim
n→∞

d(xn, x0) = 0.

Definition 5.2. A function F : R6
+ → R have property (Fp) if for u, v, w ≥ 0 and F (u, v, 0, w, u, v) ≤ 0,

there exists p ∈ (0, 1) such that u ≤ pmax{v, w}.

Example 5.3. F (t1, ..., t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, as in Example 3.2.
Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u − av − cw − du − ev ≤ 0 which implies u ≤ pmax{v, w},

where 0 < p =
a+ c+ e

1− d
< 1.
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Example 5.4. F (t1, ..., t6) = t1 − kmax{t2, ..., t6}, where k ∈
[
0,

1

2

)
.

Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u− kmax{v, w} ≤ 0. If u > max{v, w}, then u(1− k) ≤ 0, a
contradiction. Hence u ≤ max{v, w} which implies u ≤ pmax{v, w}, where 0 < p = k < 1.

Example 5.5. F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

t5 + t6
2

}
, where k ∈ [0, 1).

Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u−kmax

{
v, w,

1

2
(u+ v)

}
. If u > max{v, w}, then u >

u+ v

2
,

which implies u(1 − k) ≤ 0, a contradiction, hence u ≤ max{v, w} which implies u ≤ pmax{v, w}, where
0 < p = k < 1.

Example 5.6. F (t1, ..., t6) = t21 − t2 (at2 + bt3 + ct4)− dt5t6, where a, b, c, d ≥ 0 and 0 ≤ a+ b+ c+ d < 1.
Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u2 − u(av + cw) − duv ≤ 0. If u > 0, then u ≤ pmax{v, w},

where 0 ≤ p = a+ c+ d < 1. If u = 0, then u ≤ pmax{v, w}.

Example 5.7. F (t1, ..., t6) = t1 − kmax

{
t2,

t3 + t4
2

,
t5 + t6

2

}
, where k ∈ [0, 1).

Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u−kmax

{
v,
w

2
,
u+ v

2

}
which implies u−kmax

{
v,
w

2
,
u+ v

2

}
≤

0. If u > max{v, w}, then u(1 − k) ≤ 0, a contradiction. Hence u ≤ max{v, w} which implies u ≤
pmax{v, w}, where 0 < p = k < 1.

Example 5.8. F (t1, ..., t6) = t31 − c
t23t

2
4 + t25t

2
6

1 + t2 + t3 + t4
, where c ∈ [0, 1).

Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u3 − c u2v2

1 + v + w
≤ 0. If u > 0, then u ≤ cv v

1 + v + w
≤ cv ≤

pmax{v, w}, where 0 < p = c < 1. If u = 0, then u ≤ pmax{v, w}.

Example 5.9. F (t1, ..., t6) = t21 − at22 − c
t5t6

1 + t23 + t24
, where a > 0 and a+ c < 1.

Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u2− c uv

1 + v2
≤ 0 which implies u2−av2− cuv ≤ 0. Let v > 0,

then f(t) = t2 − ct − a , where t =
u

v
. Then f(0) < 0 and f(1) > 0 and hence there exists p ∈ (0, 1) such

that f(t) ≤ 0 for t ≤ p. Hence u ≤ pv ≤ pmax{v, w}. If v = 0, then u = 0 and u ≤ pmax{v, w}.

Example 5.10. F (t1, ..., t6) = t1 − at2 − cmax {2t4, t5 + t6}, where 0 ≤ a+ 2c < 1.
Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u−av−cmax{2w, u+v}. If u > max{v, w} then u(1−a−2c) ≤ 0,
a contradiction. Hence u ≤ max{v, w} which implies u ≤ pmax{v, w}, where 0 < p = a+ 2c < 1.

Example 5.11. F (t1, ..., t6) = t1−at2− bt3− cmax {t4 + t5, 2t6} ≤ 0, where 0 < p = a+ 3c < 1. The proof
is similar to the proof of Example 5.8.

Example 5.12. F (t1, ..., t6) = t1 − cmax
{
t2, t3,

√
t4t6,

√
t5t6

}
, where c ∈ [0, 1).

Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u − cmax{v,
√
vw,
√
uv} ≤ 0. If u > max{v, w} then

u(1− c) ≤ 0, a contradiction. Hence u ≤ max{v, w} which implies u ≤ pmax{v, w}, where 0 < p = c < 1.

Example 5.13. F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

2t4 + t6
3

,
2t4 + t5

3
,
t5 + t6

3

}
, where k ∈ [0, 1).

Let u, v, w ≥ 0 be and F (u, v, 0, w, u, v) = u− kmax

{
v, w,

2w + v

3
,
2w

3
,
u+ v

3

}
≤ 0. If u > max{v, w}

then u(1 − k) ≤ 0, a contradiction. Hence u ≤ max{v, w} which implies u ≤ pmax{v, w}, where 0
< p = k < 1.
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Definition 5.14. Let (X,G) be a G - metric space and f, g : (X,G)→ (X,G). The common fixed problem
of f and g is said to be well posed if:

1) f and g have a unique common fixed point,
2) for any sequence (xn) in X with

lim
n→∞

G(xn, fxn, fxn) = 0

and
lim
n→∞

G(xn, gxn, gxn) = 0,

then
lim
n→∞

G(x, xn, xn) = 0.

Theorem 5.15. Let (X,G) be a symmetric G - metric space. For mappings f, g : (X,G)→ (X,G) satisfying
Theorem 4.4 and F having property (Fp), the fixed point problem of f and g is well posed.

Proof. By Theorem 4.4 f and g have a unique common fixed point x. Let (xn) be a sequence in (X,G) such
that limn→∞G(xn, fxn, fxn) = 0 and limn→∞G(xn, gxn, gxn) = 0. By (4.1) we have successively

F (G(fx, fxn, fxn), G(gx, gxn, gxn), G(gx, fx, fx),
G(gxn, fxn, fxn), G(gx, fxn, fxn), G(gxn, fx, fx)) ≤ 0,

F (G(x, fxn, fxn), G(x, gxn, gxn), 0, G(gxn, fxn, fxn),
G(x, fxn, fxn), G(gxn, x, x)) ≤ 0.

Since G is a symmetric G - metric, G(gxn, x, x) = G(x, gxn, gxn) and

F (G(x, fxn, fxn), G(x, gxn, gxn), 0, G(gxn, fxn, fxn),
G(x, fxn, fxn), G(x, gxn, gxn)) ≤ 0.

By (Fp) we have

G(x, fxn, fxn) ≤ pmax{G(x, gxn, gxn), G(gxn, fxn, fxn)}
≤ p(G(x, gxn, gxn) +G(gxn, fxn, fxn)).

Then by (G5) and the fact that (X,G) is a symmetric G - metric space we have

G(x, xn, xn) ≤ G(x, fxn, fxn) +G(fxn, xn, xn)

≤ p(G(x, gxn, gxn) +G(gxn, fxn, fxn)) +G(fxn, xn, xn)

≤ p(G(x, xn, xn) +G(xn, gxn, gxn) +G(gxn, xn, xn) +

+G(xn, fxn, fxn)) +G(fxn, xn, xn)

= p(G(x, xn, xn) + 2G(xn, gxn, gxn) +

+G(xn, fxn, fxn)) +G(fxn, xn, xn).

Hence G(x, xn, xn) ≤ p+ 1

1− p
G(xn, fxn, fxn)+

2p

1− p
G(xn, gxn, gxn). Letting n tend to infinity we obtain

limn→∞G(x, xn, xn) = 0. Hence the common fixed point problem of f and g is well posed.

Remark 5.16. By Theorem 4.4 and Examples 5.3 - 5.13 we obtain new results.
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[2] M. Abbas, T. Nazir and S. Radanović, Some periodic point results in generalized metric spaces, Appl. Math. and
Computation 217 (2010), 4094 - 4099.

[3] M. Akkouchi and V. Popa, Well posedness of common fixed point problem for three mappings under strict con-
tractive conditions, Bull. Math. Inform. Physics, Petroleum - Gas Univ. Ploieşti 61, 2 (2009), 1 - 10. 1
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