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Abstract

Viscosity iterations which include contraction mapping have been widely used to find solutions of equilibrium
problems. Here we introduce a modification of the viscosity iteration scheme by replacing the contraction
with a weak contraction. Weakly contractive mappings are intermediate to contractive and nonexpansive
mappings and are known to have unique fixed points in complete metric spaces. We apply this iteration to
the case of a generalized equilibrium problem. The special case where the weak contraction is a contraction
has also been discussed. c©2012 NGA. All rights reserved.
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1. Introduction and Preliminaries

An equilibrium problem in a real Hilbert space is the following:
Let F : C×C→ R be a bifunction where R is a the set of real numbers and C is a nonempty closed convex
subset of a real Hilbert space H. Let A be an α- inverse strongly monotone mapping from C to H, that is,
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a mapping A : C → H such that
〈x − y,Ax − Ay〉 ≥ α‖Ax − Ay‖2 for all x, y ∈ C where α > 0. Then the generalized equilibrium problem
is to find x ∈ C such that

F (x, y) + 〈Ax, y − x〉 ≥ 0, for all y ∈ C. (1.1)

The above mentioned problem is a very general problem which includes as special cases several optimization
problems, variational inequalities, minimax problems etc [2, 9].
The set of solutions of (1.1) is denoted by GEP (F ), that is,

GEP (F ) = {x ∈ C :F (x, y)+〈Ax, y − x〉 ≥ 0 for all y ∈ C}.
Several authors have developed iterative algorithms for finding common elements of GEP (F ) and the set of
fixed points of nonexpansive mappings in Hilbert spaces [3, 4, 21, 23, 25]. In particular, viscosity approxi-
mation methods were applied to this problem in a number of works like [8, 16, 22]. Further the problem of
finding common elements of GEP (F ) and the fixed point set of mappings like k- strict pseudocontraction
and asymptotically k-strict pseudocontraction mappings have applied in works like [5, 11, 12, 24]. Viscosity
approximation method was introduced by Moudafi [14] for approximating fixed point of nonexpansive map-
pings. This iteration involves a contraction mapping. Here in this paper we have approximated common
element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive
mapping by a generalized two step viscosity approximation method where we have replaced the contraction
mapping by a weak contraction. Weak contractions are mappings which are more general than contractions
and more restrictive than nonexpasive mappings. These mappings are somewhat in between contraction
and nonexpansion. Weak contraction principle was first introduced by Alber et al [1] in Hilbert spaces and
later established in metric spaces by Rhoades [18]. This and similar types of results have been discussed in
a large number of works in recent times [6, 7, 10, 15, 17, 19, 26]. We have also shown that our result can be
improved if we consider the special case where weak contraction is a contraction.
For any x ∈ H, the metric projection PC from H into C is defined as PCx= Inf {‖y−x‖: y ∈ C}. Obviously,
‖x− PCx‖ ≤ ‖x− y‖. It is well known that PC is a firmly nonexpansive mapping from H onto C, that is,
‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 for all x, y ∈ H.
Also the Hilbert space H satisfies Opial’s condition,that is, for any sequence {xn} with xn ⇀ x the inequality
lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ holds for every y ∈ H with y 6= x.

A mapping T : C→ C is said to be a nonexpansive mapping if for all x, y ∈ C
‖Tx− Ty‖ ≤ ‖x− y‖.

A mapping f : C→ C is said to be a weakly contractive mapping if for each x, y ∈ C,
‖fx− fy‖ ≤ ‖x− y‖ − φ(‖x− y‖) (1.2)

where φ : [0,∞)→[0,∞) is continuous and nondecreasing such that φ is positive on(0,∞), φ(0) = 0,
lim
t→∞

φ(t) =∞ and φ(t) < t , for all t > 0.

Theorem 1.1. [18] Let (X, d) be a complete metric space, T a weakly contractive map. Then T has a
unique fixed point p in X.

We will require the results noted in the following lemmas.

Lemma 1.2. [20]. Let {xn} and {yn} be bounded sequences in a Banach space E and let {βn} be a sequence
in [0,1] with 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn <1. Suppose that xn+1 = (1 − βn)yn + βnxn for all integers n ≥1

and lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then lim
n→∞

‖yn − xn‖ = 0.

In the equilibrium problem for the bifunction F from C × C → R , we assume that F satisfies following
conditions:
(C1) F (x, x) = 0 for all x ∈ C,
(C2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0,
(C3) for each x, y, z ∈ C,
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lim
t→0+

F (tz + (1− t)x, y) ≤ F (x, y),

(C4) for each x ∈ C, y → F (x, y) is convex and lower semicontinuous.

Lemma 1.3. [9]. Let C be a nonempty closed convex subset of H and let F be a bifunction from C×C into
R satisfying conditions (C1)- (C4). Then for any r > 0 and x ∈ H there exists z ∈ C such that

F (z, y) + (1/r)〈y − z, z − x〉 ≥ 0 for all y ∈ C.
Further, if Trx = {z ∈ C : F (z, y) + (1/r)〈y − z, z − x〉 ≥ 0 for all y ∈ C} then the following hold:
(1) Tr is single valued,
(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉,
(3) F (Tr) = GEP (F ),
(4) GEP (F ) is closed and convex.

Lemma 1.4. [23]. Let C,H,F and Trx be described as in Lemma 1.2. Then the following holds :
‖Tsx− Tty‖2 ≤ ((s− t)/s)〈Tsx− Tty, Tsx− x〉

Lemma 1.5. [13]. Let {an},{bn} and {cn} be three sequences of nonnegative real numbers satisfying
an+1 ≤ (1− λn)an + bn + cn, n ≥ n0

where n0 is some nonnegative integer, λn ∈ [0,1] ,

∞∑
n=1

λn=∞ , bn=o(λn) , and

∞∑
n=1

cn <∞.

Then an → 0 as n→∞.

Lemma 1.6. [16]. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be an α-
inverse strongly monotone mapping from C to H. Then for any real number r > 0, I − rA is nonexpansive.

Lemma 1.7. [16]. Let C be a nonempty closed convex subset of a real Hilbert space H. Given z ∈ H and
x ∈ C, the inequality 〈x − z, y − x〉 ≥ 0, for all y ∈ C holds if and only if x = PCz, where PC denotes the
metric projection from H onto C.

The following lemma is a well known result of functional analysis.

Lemma 1.8. Let X be a reflexive Banach space. Then every bounded sequence in X has a weakly convergent
subsequence.

2. Main results

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H, A be an α-inverse
strongly monotone mapping from C into H , S be a nonexpansive mapping of C into itself and f be a weakly
contractive mapping of C into itself. Let F be a bifunction from C×C→R satisfying (C1)-(C4). Suppose
that F (S)∩ GEP (F ) 6= φ. Let x0 ∈ C . The sequences {zn} ⊂ C and {xn} ⊂ C are constructed iteratively
as follows:

For n ≥ 0, F (zn, y) + 〈Axn, y − zn〉+ (1/rn)〈y − zn, zn − xn〉 ≥ 0 for all y ∈ C, (2.1)

xn+1 = βnxn + (1− βn)Syn, (2.2)

yn = αnf(xn) + (1− αn)zn, (2.3)

where {αn} and {βn} ⊂ [0,1]. Assume that,
(i) lim

n→∞
αn= 0,

(ii)

∞∑
n=1

αn =∞,
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(iii) lim
n→∞

(rn+1 − rn)=0,

(iv) 0< a ≤ rn ≤ b < 2α,
(v) 0< c ≤ βn ≤ d < 1.

If {xn} is bounded, then there exists z ∈ F (S) ∩ GEP (F ) such that lim inf
n→∞

‖xn − z‖=0.

Proof. The bifunction F satisfies conditions (C1)- (C4). Hence, by Lemma (1.3), for given r > 0 and
x ∈ C, the mapping Tr given by:
Trx = {z ∈ C : F (z, y) + (1/r)〈y − z, z − x〉 ≥ 0 for all y ∈ C}
is a single valued mapping from H → C.
Again z ∈ GEP (F ) ⇔ z ∈ C such that F (z, y) + 〈Az, y − z〉 ≥ 0 for all y ∈ C

⇔ z ∈ C such that F (z, y) + (1/rn)〈z − (I − rnA)z, y − z〉 ≥ 0 for all y ∈ C
⇔ z = Trn(I − rnA)z ⇔ z ∈ F (Trn(I − rnA)).

By an application of Lemma (1.3), we conclude that GEP (F ) = F (Trn(I − rnA)). Again by Lemma (1.6)
, I − rnA is non expansive so that Trn(I − rnA) is firmly nonexpansive for each n ≥ 0 . Thus, GEP (F ) is
closed and convex so that the mapping PF (S)∩GEP (F ) is well defined.
Now PF (S)∩GEP (F ) f is a mapping of C into F (S) ∩ GEP (F ) ⊂ C such that
‖PF (S)∩GEP (F )f(x)− PF (S)∩GEP (F )f(y)‖
≤ ‖f(x)− f(y)‖ ≤ ‖x− y‖ − φ(‖x− y‖).
Therefore PF (S)∩GEP (F )f is a weakly contractive mapping. Hence, by Theorem (1.1),
PF (S)∩GEP (F )f possesses a unique fixed point. Therefore, there exists a unique element

z ∈ F (S) ∩ GEP (F ) ⊂ C such that z = PF (S)∩GEP (F )f(z). (2.4)

By Lemma (1.3) and (2.1), we have

‖zn − z ‖ = ‖Trn(I − rnA)xn − Trn(I − rnA)z ‖ ≤ ‖xn − z ‖. (2.5)

(since zn = Trn(I − rnA)xn, z = Trn(I − rnA)z)
Since {xn} is bounded , { yn}, {zn}, {f(xn)}, {Axn} and {Trnxn} are all bounded.
Next we prove that ‖xn+1 − xn‖ → 0 as n → ∞.
Putting un = (I − rnA)xn, it follows from lemma (1.4) that there exists a constant
M > 0 such that
‖Trn+1un − Trnun‖2 ≤ ((rn+1 − rn)/rn+1)〈Trn+1un − Trnun, Trn+1un − un〉

≤(|rn+1 − rn|/rn+1)(‖Trn+1un − Trnun‖.‖Trn+1un − un‖)
≤ {|rn+1 − rn|/a}M .

Then we have , for all n ≥ 0,
‖zn+1 − zn‖ = ‖Trn+1(I − rn+1A)xn+1 − Trn(I − rnA)xn‖

≤ ‖Trn+1(I − rn+1A)xn+1 − Trn+1(I − rnA)xn‖+ ‖Trn+1un − Trnun‖
≤ ‖xn+1 − xn‖+ |rn+1 − rn|.‖Axn‖+

√
{|rn+1 − rn|/a}M .

Therefore, for all n ≥ 0,
‖Syn+1 − Syn‖
≤ ‖yn+1 − yn‖
= ‖αn+1(f(xn+1)− f(xn)) + (αn+1 − αn)(f(xn)− zn) + (1− αn+1)(zn+1 − zn)‖
≤ αn+1‖f(xn+1)− f(xn)‖+ |αn+1 − αn|.‖f(xn)− zn‖
+ ‖xn+1 − xn‖+|rn+1 − rn|‖Axn‖+

√
{|rn+1 − rn|/a}M .

By the assumption imposed on αn and rn we have
lim sup
n→∞

(‖Syn+1 − Syn‖ − ‖xn+1 − xn‖) ≤ 0.

From lemma (1.2)we have,
Syn − xn → 0. (2.6)
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Therefore lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖Syn − xn‖ = 0. (2.7)

For each z ∈ F (S) ∩ GEP (F ), since zn = Trn(I − rnA)xn,for all n ≥ 0, we have ,
‖zn − z ‖2 = ‖Trn(I − rnA)xn − Trn(I − rnA)z ‖2

≤ ‖(xn − z)− (rn(Axn −Az)‖2
=‖xn − z ‖2 − 2rn〈xn − z,Axn −Az〉+ r2n‖Axn −Az ‖2

≤ ‖xn − z ‖2 + rn(rn − 2α)‖Axn −Az ‖2. (2.8)

It follows from (2.2) and (2.8), for all n ≥ 0,
‖xn+1 − z ‖2 = ‖βn(xn − z) + (1− βn)(Syn − z) ‖2

≤ βn‖xn − z ‖2 + (1− βn)‖yn − z ‖2
≤ βn‖xn − z ‖2 + (1− βn){αn‖f(xn)− z ‖2 + (1− αn)‖zn − z ‖2}
≤ βn‖xn − z ‖2 + (1− βn){αn‖f(xn)− z ‖2 + (1− αn)‖xn − z ‖2}
+ (1− βn)(1− αn)rn(rn − 2α)‖Axn −Az ‖2
≤ ‖xn − z ‖2 + αn(1− βn)‖f(xn)− z ‖2

+ (1− αn)(1− βn)rn(rn − 2α)‖Axn −Az ‖2. (2.9)

By the fact that 0 < c ≤ βn ≤ d < 1, αn → 0 as n→∞ and (2.7) and (2.9) we have ‖Axn −Az ‖ → 0.
(2.10)

Using lemma (1.3) and (2.5), for all n ≥ 0, we have,
‖zn − z ‖2 = ‖Trn(I − rnA)xn − Trn(I − rnA)z ‖2

≤ 〈(I − rnA)xn − (I − rnA)z, zn − z〉
=(1/2)(‖(I − rnA)xn − (I − rnA)z ‖2 + ‖zn − z ‖2)
− (1/2)(‖(I − rnA)xn − (I − rnA)z − (zn − z)‖2)
≤ (1/2)(‖xn − z ‖2 + ‖zn − z |2 − ‖(xn − zn)− rn(Axn −Az)‖2)
=(1/2)(‖xn − z ‖2 + ‖zn − z ‖2 − ‖xn − zn‖2)
− (1/2)(r2n‖Axn −Az ‖2 − 2rn〈xn − zn, Axn −Az〉)

or, ‖zn − z ‖2 ≤ ‖xn − z ‖2 − ‖xn − zn‖2 − r2n‖Axn −Az ‖2 + 2rn〈xn − zn, Axn −Az〉. (2.11)

It follows from (2.2) and (2.11), for all n ≥ 0
‖xn+1 − z ‖2 ≤ βn‖xn − z ‖2 + (1− βn)‖yn − z ‖2

≤ βn‖xn − z ‖2 + (1− βn)[αn‖f(xn)− z ‖2 + (1− αn)‖zn − z ‖2]
≤ βn‖xn − z ‖2 + αn‖f(xn)− z‖2 + (1− βn)‖zn − z ‖2
≤ ‖xn − z ‖2 + αn‖f(xn)− z ‖2 − (1− βn)‖xn − zn‖2
+ 2(1− βn)rn‖xn − zn‖‖Axn −Az ‖.

Hence , (1− d)‖xn − zn‖2 ≤ ‖xn − z ‖2 − ‖xn+1 − z ‖2
+αn‖f(xn)− z ‖2 + 2(1− βn)rn‖xn − zn‖‖Axn −Az ‖.

By virtue of (2.7), (2.10) and the fact αn → 0 as n→∞, ‖xn − zn‖ → 0 as n→∞. (2.12)

Since {f(xn} and {zn} are bounded, yn = αnf(xn) + (1− αn)zn and αn→ 0 as n→∞ we have

‖yn − zn‖ = αn‖f(xn)− zn‖ → 0 as n→∞. (2.13)

From (2.12) and (2.13), we have
‖yn − xn‖ → 0. (2.14)

Since ‖Syn − yn‖ ≤ ‖Syn − xn‖+ ‖xn − yn‖ , from (2.6) and (2.14) we have

‖Syn − yn‖ → 0. (2.15)
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By (2.4), z = PF (S)∩GEP (F )f(z) , we shall prove that lim sup
n→∞

〈f(z)− z, yn − z〉 = 0.

We take a subsequence {yni} of { yn} such that
lim sup
n→∞

〈f(z)− z, yn − z〉

= lim
i→∞
〈f(z)− z, yni − z〉. (2.16)

Since {yn} is bounded and the Hilbert space H is reflexive, by lemma (1.8) there exists a subsequence {yni}
of {yn} which converges weakly to w. C is closed and bounded, hence it is weakly closed and hence w ∈ C.
Next we show that w ∈ F (S) ∩GEP (F ). Since zn = Trn(I − rnA)xn for any y ∈ C we have,
F (zn, y) + 〈Axn, y − zn〉+ (1/rn)〈y − zn, zn − xn〉 ≥ 0.
From (C2) we have , 〈Axn, y − zn〉+ (1/rn)〈y − zn, zn − xn〉 ≥ F (y, zn ).
Replacing n by ni we have,

〈Axni , y − zni〉+ 〈y − zni , (zni − xni)/rni〉 ≥ F (y, zni). (2.17)

For t ∈ (0, 1] and y ∈ C, we define zt = ty + (1− t)w . Since C is convex have zt ∈ C.
Therefore , from (2.17) we have,
〈zt − zni , Azt〉 ≥ 〈zt − zni , Azt〉 − 〈Axni , zt − zni〉 − 〈zt − zni , (zni − xni)/rni〉+ F (zt, zni)

= 〈zt − zni , Azt −Axni〉 − 〈zt − zni , (zni − xni)/rni〉+ F (zt, zni).
Since ‖zni−xni‖ → 0 ,we have , ‖Azni−Axni‖ → 0 . From the monotonicity of A , we have , 〈zt−zni , Azt−
Axni〉 ≥ 0. Therefore, from (C4), we have,

〈zt − w,Azt〉 ≥ F (zt, w) as i→∞. (2.18)

From (C1),(C4) and (2.18) we also have,
0 = F (zt, zt) ≤ tF (zt, y) + (1− t)F (zt, w)

≤ tF (zt, y) + (1− t)〈zt − w,Azt〉
=tF (zt, y) + (1− t)t〈y − w,Azt〉.

Hence, 0 ≤ F (zt, y) + (1− t)〈y − w,Azt〉.Taking t→ 0+, for each y ∈ C, we have
0 ≤ F (w, y) + 〈y − w,Aw〉 which holds for any y ∈ C.

This implies that w ∈ GEP (F ).
Next we show that w ∈ F (S). If w /∈ F (S) we have w 6= Sw. From Opial’s condition and (2.15)
lim inf
i→∞

‖yni − w‖ < lim inf
i→∞

‖yni − Sw‖
= lim inf

i→∞
‖yni − Syni + Syni − Sw‖

≤ lim inf
i→∞

‖yni − w‖.
This is a contradiction. Therefore, we have w ∈ F (S). Since w ∈ F (S) ∩GEP (F ), from Lemma (1.7), we
have,

lim
n→∞

〈f(z)− z, yn − z〉
= lim

i→∞
〈f(z)− z, yni − z〉 (by using(2.16))

= 〈f(z)− z, w − z〉 ≤ 0. (2.19)

From (2.19) we can consider for some positive integer n ≥ nl,

〈f(z)− z, yn − z〉 ≤ 0. (2.20)

For all n ≥ nl, ‖xn+1 − z‖2 = ‖βn(xn − z) + (1− βn)(Syn − z) ‖2
≤ βn‖xn − z‖2 + (1− βn)‖Syn − z‖2
≤ βn‖xn − z‖2 + (1− βn)‖yn − z‖2
≤ βn‖xn − z‖2 + (1− βn){(1− αn)2‖zn − z‖2 + 2αn〈f(xn)− z, yn − z〉}
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≤ βn‖xn − z‖2 + (1− βn)(1− 2αn + α2
n)‖xn − z‖2

+2αn(1− βn)〈f(xn)− z, yn − z〉
≤ (1− 2(1− βn)αn)‖xn − z‖2 + α2

n‖xn − z‖2
+ 2αn(1− βn){〈f(xn)− f(z), yn − z〉+ 〈f(z)− z, yn − z〉}
≤ (1− 2(1− βn)αn)‖xn − z‖2+ α2

nM0

+ 2αn(1− βn)[{‖xn − z‖ − φ(‖xn − z‖)}‖yn − z‖] (using(2.20)
≤ (1− 2(1− βn)‖xn − z‖2 + α2

nM0

+ 2αn(1− βn)[‖xn − z‖ − {φ(‖xn − z‖)/‖xn − z‖}‖xn − z‖]‖yn − z‖
where M0 =sup

n≥0
{‖xn−z‖2 +‖f(xn)−z‖2} (M0 finitely exists since {xn} and {f(xn} are bounded sequence).

Now, 2αn(1− βn)[{1− φ(‖xn − z‖)/‖xn − z‖}‖yn − z‖‖xn − z‖]
≤ αn(1− βn)[1− φ(‖xn − z‖)/‖xn − z‖][‖xn − z‖2 + ‖yn − z‖2]
Now, ‖yn − z‖2 ≤ αn‖f(xn)− z‖2 + (1− αn)‖zn − z‖2

≤ αn‖f(xn)− z‖2 + (1− αn)‖xn − z‖2
≤ αnM0 + ‖xn − z‖2.

Therefore, αn(1− βn)[1− φ(‖xn − z‖)/‖xn − z‖][‖xn − z‖2 + ‖yn − z‖2]
≤ 2αn(1− βn)[1− φ(‖xn − z‖)/‖xn − z‖]‖xn − z‖2 + α2

nM0(1− βn)[1− φ(‖xn − z‖)/‖xn − z‖]
≤ 2αn(1− βn)[1− φ(‖xn − z‖)/‖xn − z‖]‖xn − z‖2 + α2

nM0[1− φ(‖xn − z‖)/‖xn − z‖]
Therefore, ‖xn+1 − z‖2 ≤ [1− 2αn(1− βn) + 2αn(1− βn){1− φ(‖xn − z‖)/‖xn − z‖}]‖xn − z‖2

+α2
nM0[2− φ(‖xn − z‖)/‖xn − z‖].

Next we have to prove lim inf
n→∞

‖xn − z‖ = 0.

If not, let lim inf
n→∞

‖xn − z‖ 6= 0.

By the above consideration and the condition imposed on ’φ’ we can consider for some positive integer nk ,
lim inf
n→∞

φ(‖xn − z‖)/‖xn − z‖ > ρ where ρ is a positive number, for n ≥ nk. Let G=max{nl, nk}
Now for all n ≥ G,
‖xn+1 − z‖2 ≤ [1− 2αn(1− βn)ρ]‖xn − z‖2 + α2

nM0[1− φ(‖xn − z‖)/‖xn − z‖]
≤ [1− 2αn(1− d)ρ]‖xn − z‖2 + α2

nM0[1− φ(‖xn − z‖)/‖xn − z‖].
Using the lemma (1.5) we can say that lim inf

n→∞
‖xn−z‖=0 which is a contradiction to our initial assumption.

Therefore we are left with only alternative lim inf
n→∞

‖xn − z‖=0. This proves the theorem.

Note: As an example, if C = [0, 1], then in the viscosity iteration (2.1) - (2.3) in Theorem (2.1) we can
choose the weak contraction f as fx = x− 1

2x
2 for all x ∈ C.

Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H, A be an α-inverse
strongly monotone mapping from C into H , S be a nonexpansive mapping of C into itself and f be a weakly
contractive mapping of C into itself. Let F be a bifunction from C×C→R satisfying (C1)-(C4). Suppose
that F (S) ∩ GEP (F ) 6= φ.The sequences {zn} ⊂ C and {xn} ⊂ C are constructed as in Theorem (2.1)
Assume that,

(i) lim
n→∞

αn= 0,

(ii)

∞∑
n=1

αn =∞,

(iii) lim
n→∞

(rn+1 − rn)=0,

(iv) 0< a ≤ rn ≤ b < 2α,
(v) 0< c ≤ βn ≤ d < 1.

If {xn} is convergent then it converges to a point in F (S) ∩ GEP (F ).

Proof. Since a convergent sequence is bounded , proceeding exactly as in Theorem (2.1) we obtain,
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‖xn+1 − z‖2 ≤ [1− 2αn(1− βn) + 2αn(1− βn){1− φ(‖xn − z‖)/‖xn − z‖}]‖xn − z‖2

+α2
nM0[2− φ(‖xn − z‖)/‖xn − z‖]. (2.21)

Therefore by (2.21) we can say that {xn} is convergent and converges to z.

Theorem 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H, A be an α-inverse
strongly monotone mapping from C into H , S be a nonexpansive mapping of C into itself and f be a
contractive mapping of C into itself. Let F be a bifunction from C×C→R satisfying (C1)-(C4). Suppose
that F (S) ∩ GEP (F ) 6= φ.The sequences {zn} ⊂ C and {xn} ⊂ C are constructed as in Theorem (2.1)
Assume that,

(i) lim
n→∞

αn= 0,

(ii)
∞∑
n=1

αn =∞,

(iii) lim
n→∞

(rn+1 − rn)=0,

(iv) 0< a ≤ rn ≤ b < 2α,
(v) 0< c ≤ βn ≤ d < 1.

Then {xn} is convergent to a point in F (S) ∩ GEP (F ).

Proof. The proof is identical with that of theorem (2.1) except that the boundedness of the sequence
{xn} now follows from the given condition of the theorem.
By (2.3) we have for any z ∈ F (S) ∩ GEP (F ),
‖yn − z ‖ = ‖αn(f(xn)− z) + (1− αn)(zn − z)‖

≤ αn‖f(xn)− f(z) + f(z)− z ‖+ (1− αn)‖zn − z ‖
≤ αn‖f(xn)− f(z)‖+ αn‖f(z)− z ‖+ (1− αn)‖xn − z ‖
≤ αnθ‖xn − z ‖+ αn‖f(z)− z ‖+ (1− αn)‖xn − z ‖

where θ is the contraction coefficient.

= (1− αn(1− θ))‖xn − z ‖+ αn‖f(z)− z ‖
≤ max {‖xn − z ‖, (1/(1− θ))‖f(z)− z ‖}. (2.22)

Therefore by (2.2) we have,
‖xn+1 − z ‖ = ‖βn(xn − z) + (1− βn)(Syn − z)‖

≤ βn‖xn − z ‖+ (1− βn)‖yn − z)‖
≤max{‖xn − z ‖, (1/(1− θ))‖f(z)− z ‖}. (by (2.22))

Applying the same process we obtain
‖xn+1 − z ‖≤ max{‖x1 − z ‖, (1/(1− θ))‖f(z)− z ‖}.
This implies that {xn} is bounded in H.
Now proceeding exactly as in theorem (2.1) the theorem can be proved.

Remark 1. In this paper we have generalized the viscosity approximation scheme by replacing the contrac-
tion mapping conventionally present in the definition of the viscosity approximation with a weak contraction.
Its effect on an application of the scheme to a generalized equilibrium problem has been studied here. From
the results obtained in this paper we have the following observation. We have strong convergence result
‖xn− z‖ → 0 when we use a contraction as in theorem (2.3) while in the theorem (2.1), where we have used
the iteration scheme with a weak contraction, we can only conclude that the limit infimum of {‖xn − z‖}
is zero. In the above sense the viscosity iteration is weakened with the weak contraction replacing the
contraction.
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