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Abstract

The object of this paper is to establish a generalized form of Banach contraction principle for a cone metric
space which is not necessarily normal. This happens to be a generalization of all different forms of Banach
contraction Principle, which have been arrived at in L. G. Huang and X. Zhang [L. G. Huang and X.
Zhang, J. Math. Anal. Appl 332 (2007), 1468–1476] and Sh. Rezapour, R. Hamlbarani [Sh. Rezapour, R.
Hamlbarani, J. Math. Anal. Appl. 345 (2008) 719-724] and D. Ilic, V. Rakocevic [D. Ilic, V. Rakocevic,
Applied Mathematics Letters 22 (2009), 728–731]. It also results that the theorem on quasi contraction of
C̃iric̃ [L. J. B. C̃iric̃, Proc. American Mathematical Society 45 (1974), 999–1006]. for a complete metric
space also holds good in a complete cone metric space. All the results presented in this paper are new.
c©2012. All rights reserved.
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1. Introduction

There has been a number of generalizations of metric space. One such generalization is a cone metric
space. In the second half of previous century a lot of work has been done in a K-metric space, which is in
the setting of cone in a real normed linear space and variously defined notions of convergence and a Cauchy
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sequence [13]. However, another school in U.S.S.R [7, 8, 9, 10] worked in K- metric space in the setting of
a Banach space B and a closed cone in it in the name of a generalized metric space or a SKS metric space.
Recently, in [3] Huang and Zhang defined cone metric space in the same setting of a real Banach space E
ordered with a closed cone P in it with intP 6= Φ defining convergence and a Cauchy sequence with respect
to interior points of P . In this space they replaced the set of real numbers of a metric space by an ordered
Banach Space and gave some fundamental results for a self map satisfying a contractive condition assuming
the normality of cone metric space.
Recently, Rezapour and Hamlbarani [11] omitted the assumption of normality in cone metric space, which is
a milestone in developing fixed point theory in cone metric space.In [5], the authors introduced the concept
of a compatible pair of self maps in a cone metric space and established a basic result for a non-normal cone
metric space with an example, while in [6] weakly compatible maps have been studied. In this paper we
are proving a common fixed point theorem for a sequence of self maps satisfying a generalized contractive
condition for a non-normal cone metric space. It results in a generalized form of Banach contraction principle
in this space.

2. Preliminaries

Definition 2.1. [3] Let E be a real Banach space and P be a subset of E. P is called a cone if
(i) P is a closed, nonempty and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply ax+ by ∈ P ;
(iii) x ∈ Pand− x ∈ P imply x = 0.
Given a cone P ⊆ E, we define a partial ordering “ ≤ ” in E by x ≤ y if y − x ∈ P. We write x < y to
denote x ≤ y but x 6= y and x << y to denote y − x ∈ P 0, where P 0 stands for the interior of P .
P is called normal if for some M > 0 for x, y ∈ E, 0 ≤ x ≤ y implies
‖x‖ ≤ M |y‖.

Proposition 2.2. Let P be a cone in a real Banach space E . If for a ∈ P and a ≤ ka, for some k ∈ [0, 1)
then a = 0.

Proof: For a ∈ P, k ∈ [0, 1) and a ≤ ka gives (k − 1)a ∈ P implies −(1− k)a ∈ P. Therefore by (ii) we
have −a ∈ P, as 1/(1− k) > 0. Hence a = 0, by (iii).

Proposition 2.3. [4] Let P be a cone is a real Banach space E with non-empty interior If for a ∈ E and
a << c, for all c ∈ P 0, then a = 0.

Remark 2.4. [11] λP 0 ⊆ P 0, for λ > 0 and P 0 + P 0 ⊆ P 0.

Definition 2.5. [3] Let X be a nonempty set and P be a cone in a real Banach space E. Suppose the
mapping d : X ×X → E satisfies:
(a) 0 ≤ d(x, y), for all x, y ∈ X and d(x, y) = 0, if and only if x = y;
(b) d(x, y) = d(y, x), for all x, y ∈ X;
(c) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space. If P is normal , then (X, d)
is said to be a a normal cone metric space.

Example 2.6. [3] Let E = R2, P = {(x, y) ∈ E : x ≥ 0, y ≥ 0} and X = R . For x, y ∈ R define
d(x, y) = |x− y|(1, α) where α ≥ 0 is some fixed constant. Then (X, d) is a cone metric space.

Example 2.7. Let E = C2
R[0, 1] with the norm ‖f‖ = ‖f‖∞+ ‖f ′‖∞. Consider the cone P = {f ∈ E : f ≥

0}. Then P is not a normal cone as shown in [11]. Taking X = {1, 1/2, 1/3 . . .} we define d : X ×X → P
by d( 1

m ,
1
n) = fmn, where fmn(t) = | 1m −

1
n |t , for all t ∈ [0, 1] . Then (X, d) is a non-normal cone metric

space.(X, d) is not a metric space as it is not normal.
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Definition 2.8. [3] Let (X, d) be a cone metric space with respect to a cone in a real Banach space E with
non-empty interior. Let {xn} be a sequence in X and x ∈ X. If for every c ∈ E with 0 << c there is a
positive integer Nc such that for all n > Nc, d(xn, x) << c, then the sequence {xn} is said to converges to
x, and x is called limit of {xn} . We write limn→∞xn = x or xn → x, as n→∞.

Definition 2.9. [3] Let (X, d) be a cone metric space with respect to a cone with nonempty interior in a
real Banach space E. Let {xn} be a sequence in X. If for any c ∈ E with 0 << c there is a positive integer
Nc such that for all n,m > Nc, d(xn, xm) << c, then the sequence {xn} is said to be a Cauchy sequence in
X.

In the following (X, d) will stand for a cone metric space with respect to a cone P with P 0 6= φ in a real
Banach space E and ≤ is partial ordering in E with respect to P

Remark 2.10. It follows from above definitions that if {x2n} is a subsequence of a Cauchy sequence {xn} in
a cone metric space (X, d) and x2n → z then xn → z.

Definition 2.11. [3] Let (X, d) be a cone metric space. If every Cauchy sequence in X is convergent in X,
then X is called a complete cone metric space.

Proposition 2.12. Let (X, d) be a cone metric space and P be a cone in a real Banach space E. If u ≤
v, v << w then u << w.

Lemma 2.13. Let (X, d) be a cone metric space and P be a cone in a real Banach space E and k1, k2, k > 0
are some fixed real numbers. If xn → x, yn → y in X and for some a ∈ P
(1.1) ka ≤ k1d(xn, x) + k2d(yn, y), for all n > N, for some integer N ,
then a = 0.

Proof As xn → x, and yn → y for c ∈ P 0 there exists a positive integer Nc such that
c

(k1+k2)
− d(xn, x), c

(k1+k2)
− d(yn, y) ∈ P 0, for all n > Nc.

Therefore by Remark 2.4, we have
k1c

(k1+k2)
− k1d(xn, x), k2c

(k1+k2)
− k2d(yn, y) ∈ P 0, for all n > Nc.

Again by adding and Remark 2.4, we have
c− k1d(xn, x)− k2d(yn, y) ∈ P 0 for all n > max{N,Nc}.
From (1.1) and Proposition 2.12 we have ka << c, for each c ∈ P 0. By Proposition 2.3 , we have a = 0, as
k > 0.

3. MAIN RESULTS

Theorem 3.1. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real
Banach space E. Let {Tn} be a sequence of self maps on X satisfying:
(3.1.1) For some λ, µ, δ, α, β ∈ [0, 1) with λ+ µ+ δ + 2α < 1, or else λ+ µ+ δ + 2β < 1, for all x, y ∈ X
d(Tix, Tjy) ≤ λd(Tix, x) + µd(Tjy, y) + δd(x, y) + αd(x, Tjy) + βd(Tix, y).
For x0 ∈ X, let xn = Tnxn−1, for all n. Then the sequence {xn} converges in X and its limit u is a common
fixed point of all the maps of the sequence {Tn}. This fixed point is unique if δ + α+ β < 1.

Proof. We show that {xn} is a Cauchy sequence in X.
Step I: Taking x = xn−1, y = xn and i = n, j = n+ 1 in (3.1.1) we get,
d(Tnxn−1, Tn+1xn) ≤ λd(Tnxn−1, xn−1) + µd(Tn+1xn, xn) + δ(xn−1, xn)+

αd(xn−1, Tn+1xn) + βd(Tnxn−1, xn).
As xn = Tnxn−1, we have

d(xn, xn+1) ≤ λd(xn, xn−1) + µd(xn+1, xn) + δ(xn−1, xn) + αd(xn−1, xn+1) + βd(xn, xn),
≤ λd(xn, xn−1) + µd(xn+1, xn) + δ(xn−1, xn) + α[d(xn−1, xn) + d(xn, xn+1)].
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Writing d(xn, xn+1) = dn, we have
dn ≤ λdn−1 + µdn + δdn−1 + α[dn + dn−1],
i.e.
(1− µ− α)dn = (λ+ δ + α)dn−1,
which implies

dn ≤ hdn−1, (3.1)

if h = (λ+δ+α)
1−µ−α .

As λ+ µ+ δ + 2α < 1 we obtain that h < 1.
Now
dn ≤ hdn−1 ≤ h2dn−2 ≤ h3dn−3 ≤ . . . ≤ hnd0, where d0 = d(x0, x1).
Also
d(xn+p, xn) ≤ d(xn+p, xn+p−1) + d(xn+p−1, xn+p−2) + . . .+ d(xn+1, xn),
i. e.

d(xn+p, xn) ≤ dn+p−1 + dn+p−2 + · · ·+ dn.
= dn + dn+1 + . . . dn+p−1
= hn[1 + h+ h2 + h3 + . . .+ hp−1]d0,
≤ hnd0/(1− h),

as h < 1 and P is closed. Thus we obtain that

d(xn+p, xn) ≤ hnd0/(1− h). (3.2)

Now for c ∈ P 0, there exists r > 0 such that c− y ∈ P 0, if ||y|| < r. Choose a positive integer Nc such that
for all n ≥ Nc, ||hnd0/(1−h)|| < r, which implies c−hnd0/(1−h) ∈ P 0 and hnd0/(1−h)−d(xn+p, xn) ∈ P,
using (3.2).
So we have c − d(xn+p, xn) ∈ P 0, for all n > Nc and for all p, by Proposition 2.12 . This implies
d(xn+p, xn) << c, for all n > Nc, for all p. Hence {xn} is a Cauchy sequence in X, which is complete.
Let xn → u.
Step II: For an arbitrary fixed m we show that Tmu = u.
Now,
d(Tmu, u) ≤ d(Tmu, Tnxn−1) + d(Tnxn−1, u),

= d(xn, u) + d(Tmu, Tnxn−1).
Using (3.1.1) with x = xn−1, y = u, i = n and j = m we have
d(Tmu, u) ≤ d(xn, u) + λd(Tnxn−1, xn−1) + µd(Tmu, u)

+δd(u, xn−1) + αd(Tmu, xn−1) + βd(u, Tnxn−1)
= d(xn, u) + µd(Tmu, u) + λd(xn, xn−1)
+δd(u, xn−1) + αd(Tmu, xn−1) + βd(u, xn),
≤ d(xn, u) + µd(Tmu, u) + λ[d(xn, u) + d(u, xn−1)]
+δd(u, xn−1) + α[d(Tmu, u) + d(u, xn−1)] + β[d(u, xn).

So
[1− µ− α]d(Tmu, u) ≤ [µ+ δ + α]d(xn−1, u) + [1 + λ+ β]d(u, xn).

As {xn} → u, {xn−1} → u, and 1 − µ − α > 0, using Lemma 2.13, we have d(Tmu, u) = 0, and we get
Tmu = u. Thus u is a common fixed point of all the maps of the sequence {Tn}.
Step III (Uniqueness): Let Tnz = z, for all n, be another common fixed point of all the maps of the
sequence {Tn} . Now
d(z, u) = d(Tnz, Tnu).
Taking x = z and y = u with i = j = n in (3.1.1) we get
d(z, u) ≤ λd(Tnz, z) + µd(Tnu, u) + δd(z, u) + αd(z, Tnu) + βd(Tnz, u),
which gives
d(z, u) ≤ (δ + α+ β)d(z, u).
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As δ + α + β < 1, using Proposition 2.2, we have d(z, u) = 0 i. e. u = z. Thus u is the unique com-
mon fixed point of all the maps of the sequence {Tn}. To see the sufficiency of the alternate condition
λ + µ + δ + 2β < 1, in step I we choose x = u, y = xn−1 with i = n + 1 and j = n in (3.1.1) to obtain

(1− λ− β)dn ≤ (µ+ δ + β)dn−1. Thus dn ≤ h′dn−1, where h′ = (µ+δ+β)
1−λ−β < 1.

Again in step II we choose x = u, y = xn−1i = m, j = n in (3.1.1) receiving (1 − λ − β)d(Tm(u), u) ≤ . . .
and we get Tmu = u,∀m.

Theorem 3.2. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real
Banach space E. Let {An} be a sequence of self maps in X satisfying:
(3.2.1) For some λ, µ, δ, α, β ∈ [0, 1) with λ+ µ+ δ+ 2α < 1, or else λ+ µ+ δ+ 2β < 1 and δ+α+ β < 1,
there exists positive integer mi, for each i, such that for all x, y ∈ X
d(Ami

i x,A
mj

j y) ≤ λd(Ami
i x, x) + µd(A

mj

j y, y) + δ(x, y) + αd(x,A
mj

j y) + βd(Ami
i x, y). Then all the maps of

the sequence {An} have a unique common fixed point in X.

Proof. In view of (3.2.1) and using Theorem 3.1 all the maps of the sequence {Ami
i } have a unique common

fixed point, say z. Hence Ami
i z = z, for all i. Now Am1

1 z = z, implies Am1
1 A1z = A1z. Taking x = A1z, y =

z, i = 1 and j = 2 in (3.2.1) we have A1z = z. Continuing in similar way it follows that Aiz = z, for all
i.Thus z is a common fixed point of all the maps of the sequence {Ai}. Its uniqueness follows from the fact
that Aiz = z, implies Ami

i z = z, for all i.

Example 3.3. (of Theorem 3.2) Let X = [0, 1], E = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} ⊆ R2, be a
cone in E. Fix a real number γ > 0. We define d : X ×X → E by d(x, y) = |x− y|(1, γ). Then (X, d) is a
complete cone metric space. Define {An} on X as follows:

An(x) =

{
0, ifx ∈ [0, 1

n+2 ]
1

n+3 , otherwise.

Taking mi = 2, for all i. Then the maps A2
1, A

2
2, A

2
3, . . . satisfy the condition (3.2.1) for λ = µ = δ = 1

15 and
α = β = 1

10 . Hence by Theorem 3.2, all the maps of the sequence {An} have a unique common fixed point
(u = 0) in X.

Taking T1 = T2 = T3 = · · · = Tn−1 = Tn = · · · = A in Theorem 3.1, we get the following general form of
Banach contraction principal in a cone metric space which is not necessarily normal

Theorem 3.4. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real
Banach space E and A be a self map in X satisfying:
(3.4.1) For some λ, µ, δ, α, β ∈ [0, 1) with λ+ µ+ δ + 2α < 1, or else λ+ µ+ δ + 2β < 1 , for all x, y ∈ X
d(Ax,Ay) ≤ λd(Ax, x) + µd(Ay, y) + δ(x, y) + αd(x,Ay) + βd(Ax, y).
Then for each x in X the sequence {Anx} converges in X and its limit u is a fixed point of A.This fixed
point is unique if δ + α+ β < 1.

In [3] L. G. Huang , X. Zhang and in [11] Sh. Rezapour, R. Hamlbarani proved following various forms
of Banach contraction Principle in a normal Cone metric space and in a cone metric space respectively :
Theorem 1[3] and Theorem 2.3[11] : Let (X, d) be a complete cone metric space, Suppose the mapping
T : X ×X → X satisfies the contractive condition
d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X,
where k ∈ [0, 1) is a constant. Then T has a unique fixed point in X. For each x ∈ X, the iterative sequence
{Tnx} converges to the fixed point.
Theorem 3[3] and Theorem 2.6 [11]: Let (X, d) be a complete cone metric space. Suppose the mapping
T : X ×X → X satisfies the contractive condition
d(Tx, Ty) ≤ k[d(Tx, x) + d(Ty, y)] for all x, y ∈ X,
where k ∈ [0, 1/2) is a constant. Then T has a unique fixed point in X. And for x ∈ X, the iterative sequence
{Tnx} converges to the fixed point.
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Theorem 4 [3] and Theorem 2.7 [11]: Let (X, d) be a complete cone metric space. Suppose the mapping
T : X ×X → X satisfies the contractive condition
d(Tx, Ty) ≤ k[d(Tx, y) + d(Ty, x)] for all x, y ∈ X,
where k ∈ [0, 1/2) is a constant. Then T has a unique fixed point in X. For each x ∈ X, the iterative
sequence {Tnx} converges to the fixed point.
Theorem 2.8 [11]: Let (X, d) be a complete cone metric space. Suppose the mapping T : X × X → X
satisfies the contractive condition
d(Tx, Ty) ≤ kd(x, y) + ld(y, Tx) for all x, y ∈ X,
where k, l ∈ [0, 1) are constants. Then T has a fixed point in X. Also the fixed point of T is unique whenever
k + l < 1.

Remark 3.5. Above Theorems of [3] and [11] follow from Theorem 3.4 of this paper by taking :
(a) λ = µ = α = β = 0 and δ = k,
(b) λ = µ = k and δ = α = β = 0,
(c) λ = µ = δ = 0 and α = β = k, and
(d) λ = µ = α = 0, δ = k, and β = l
respectively in it.
Precisely,Theorem 3.4 synthesizes and generalizes all the results of [3]and [11] for a non-normal cone metric
space. Theorem 3.1 is a general form of Banach contraction principle in a complete cone metric space which
is not necessarily normal.

Definition 3.6. [4] (Quasi contraction)A self-map f on a cone metric space (X, d) is said to be a quasi
contraction if for a fixed λ ∈ (0, 1), d(fx, fy) ≤ λu for every x, y ∈ X, where

u ∈ {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)}.

Theorem 2.1 [4]: Let (X, d) be a complete cone metric space and P be a normal cone. Then a quasi
contraction f has a unique fixed point in X and for each x ∈ X the iterative sequence {fn(x)} converges to
the fixed point.

Remark 3.7. Keeping one of the constants {α, β, γ, δ, µ} non-zero and all others equal to zero in Theorem
3.4 , it follows that the above result of [4] is true even for non-normal complete cone metric space.

Remark 3.8. It has been established in L. J. B. C̃iric̃ [2] that a quasi contraction has a unique fixed point in
a complete metric space. It follows from the above Remark that the result of [2] is also true for a complete
cone metric space even if it is non-normal.
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