Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 5 (2012), 252–258 Research Article

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

On Banach contraction principle in a cone metric space

Shobha Jain^a, Shishir Jain^{b,*}, Lal Bahadur Jain^c

^aQuantum School of Technology, Roorkee (U.K), India.

^bShri Vaishnav Institute of Technology and Science, Indore (M.P.), India. ^cRetd. Principal,Govt. Arts and Commerce College Indore (M.P.), India.

This paper is dedicated to Professor Ljubomir Ćirić

Communicated by Professor V. Berinde

Abstract

The object of this paper is to establish a generalized form of Banach contraction principle for a cone metric space which is not necessarily normal. This happens to be a generalization of all different forms of Banach contraction Principle, which have been arrived at in L. G. Huang and X. Zhang [L. G. Huang and X. Zhang, J. Math. Anal. Appl 332 (2007), 1468–1476] and Sh. Rezapour, R. Hamlbarani [Sh. Rezapour, R. Hamlbarani, J. Math. Anal. Appl. 345 (2008) 719-724] and D. Ilic, V. Rakocevic [D. Ilic, V. Rakocevic, Applied Mathematics Letters **22** (2009), 728–731]. It also results that the theorem on quasi contraction of Čirič [L. J. B. Čirič, Proc. American Mathematical Society 45 (1974), 999–1006]. for a complete metric space also holds good in a complete cone metric space. All the results presented in this paper are new. (©2012. All rights reserved.

Keywords: Cone metric space, common fixed points.

1. Introduction

There has been a number of generalizations of metric space. One such generalization is a cone metric space. In the second half of previous century a lot of work has been done in a K-metric space, which is in the setting of cone in a real normed linear space and variously defined notions of convergence and a Cauchy

^{*}Corresponding author

Email addresses: shobajain1@yahoo.com (Shobha Jain), jainshishir11@rediffmail.com (Shishir Jain), lalbahdurjain11@yahoo.com (Lal Bahadur Jain)

sequence [13]. However, another school in U.S.S.R [7, 8, 9, 10] worked in K- metric space in the setting of a Banach space B and a closed cone in it in the name of a generalized metric space or a SKS metric space. Recently, in [3] Huang and Zhang defined cone metric space in the same setting of a real Banach space E ordered with a closed cone P in it with $intP \neq \Phi$ defining convergence and a Cauchy sequence with respect to interior points of P. In this space they replaced the set of real numbers of a metric space by an ordered Banach Space and gave some fundamental results for a self map satisfying a contractive condition assuming the normality of cone metric space.

Recently, Rezapour and Hamlbarani [11] omitted the assumption of normality in cone metric space, which is a milestone in developing fixed point theory in cone metric space. In [5], the authors introduced the concept of a compatible pair of self maps in a cone metric space and established a basic result for a non-normal cone metric space with an example, while in [6] weakly compatible maps have been studied. In this paper we are proving a common fixed point theorem for a sequence of self maps satisfying a generalized contractive condition for a non-normal cone metric space. It results in a generalized form of Banach contraction principle in this space.

2. Preliminaries

Definition 2.1. [3] Let E be a real Banach space and P be a subset of E. P is called a cone if

(i) P is a closed, nonempty and $P \neq \{0\}$;

(*ii*) $a, b \in R, a, b \ge 0, x, y \in P$ imply $ax + by \in P$;

(*iii*) $x \in Pand - x \in P$ imply x = 0.

Given a cone $P \subseteq E$, we define a partial ordering " \leq " in E by $x \leq y$ if $y - x \in P$. We write x < y to denote $x \leq y$ but $x \neq y$ and $x \ll y$ to denote $y - x \in P^0$, where P^0 stands for the interior of P. P is called normal if for some M > 0 for $x, y \in E, 0 \leq x \leq y$ implies $||x|| \leq M|y||$.

Proposition 2.2. Let P be a cone in a real Banach space E. If for $a \in P$ and $a \leq ka$, for some $k \in [0, 1)$ then a = 0.

Proof: For $a \in P, k \in [0, 1)$ and $a \leq ka$ gives $(k - 1)a \in P$ implies $-(1 - k)a \in P$. Therefore by (*ii*) we have $-a \in P$, as 1/(1 - k) > 0. Hence a = 0, by (*iii*).

Proposition 2.3. [4] Let P be a cone is a real Banach space E with non-empty interior If for $a \in E$ and $a \ll c$, for all $c \in P^0$, then a = 0.

Remark 2.4. [11] $\lambda P^0 \subseteq P^0$, for $\lambda > 0$ and $P^0 + P^0 \subseteq P^0$.

Definition 2.5. [3] Let X be a nonempty set and P be a cone in a real Banach space E. Suppose the mapping $d: X \times X \to E$ satisfies:

(a) $0 \le d(x, y)$, for all $x, y \in X$ and d(x, y) = 0, if and only if x = y;

(b) d(x,y) = d(y,x), for all $x, y \in X$;

(c) $d(x,y) \le d(x,z) + d(z,y)$, for all $x, y, z \in X$.

Then d is called a cone metric on X, and (X, d) is called a cone metric space. If P is normal, then (X, d) is said to be a normal cone metric space.

Example 2.6. [3] Let $E = R^2$, $P = \{(x, y) \in E : x \ge 0, y \ge 0\}$ and X = R. For $x, y \in R$ define $d(x, y) = |x - y|(1, \alpha)$ where $\alpha \ge 0$ is some fixed constant. Then (X, d) is a cone metric space.

Example 2.7. Let $E = C_R^2[0,1]$ with the norm $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Consider the cone $P = \{f \in E : f \ge 0\}$. Then P is not a normal cone as shown in [11]. Taking $X = \{1, 1/2, 1/3...\}$ we define $d : X \times X \to P$ by $d(\frac{1}{m}, \frac{1}{n}) = f_{mn}$, where $f_{mn}(t) = |\frac{1}{m} - \frac{1}{n}|t$, for all $t \in [0,1]$. Then (X,d) is a non-normal cone metric space.(X,d) is not a metric space as it is not normal.

Definition 2.8. [3] Let (X, d) be a cone metric space with respect to a cone in a real Banach space E with non-empty interior. Let $\{x_n\}$ be a sequence in X and $x \in X$. If for every $c \in E$ with $0 \ll c$ there is a positive integer N_c such that for all $n > N_c$, $d(x_n, x) \ll c$, then the sequence $\{x_n\}$ is said to converges to x, and x is called limit of $\{x_n\}$. We write $\lim_{n\to\infty} x_n = x$ or $x_n \to x$, as $n \to \infty$.

Definition 2.9. [3] Let (X, d) be a cone metric space with respect to a cone with nonempty interior in a real Banach space E. Let $\{x_n\}$ be a sequence in X. If for any $c \in E$ with $0 \ll c$ there is a positive integer N_c such that for all $n, m > N_c, d(x_n, x_m) \ll c$, then the sequence $\{x_n\}$ is said to be a Cauchy sequence in X.

In the following (X, d) will stand for a cone metric space with respect to a cone P with $P^0 \neq \phi$ in a real Banach space E and \leq is partial ordering in E with respect to P

Remark 2.10. It follows from above definitions that if $\{x_{2n}\}$ is a subsequence of a Cauchy sequence $\{x_n\}$ in a cone metric space (X, d) and $x_{2n} \to z$ then $x_n \to z$.

Definition 2.11. [3] Let (X, d) be a cone metric space. If every Cauchy sequence in X is convergent in X, then X is called a complete cone metric space.

Proposition 2.12. Let (X,d) be a cone metric space and P be a cone in a real Banach space E. If $u \le v, v \ll w$ then $u \ll w$.

Lemma 2.13. Let (X, d) be a cone metric space and P be a cone in a real Banach space E and $k_1, k_2, k > 0$ are some fixed real numbers. If $x_n \to x, y_n \to y$ in X and for some $a \in P$ (1.1) $ka \leq k_1 d(x_n, x) + k_2 d(y_n, y)$, for all n > N, for some integer N, then a = 0.

 $\begin{array}{l} \textbf{Proof} \mbox{ As } x_n \rightarrow x, \mbox{ and } y_n \rightarrow y \mbox{ for } c \in P^0 \mbox{ there exists a positive integer } N_c \mbox{ such that } \\ \hline \frac{c}{(k_1+k_2)} - d(x_n,x), \mbox{ } \frac{c}{(k_1+k_2)} - d(y_n,y) \in P^0, \mbox{ for all } n > N_c. \\ \hline \mbox{ Therefore by Remark 2.4, we have } \\ \hline \frac{k_1c}{(k_1+k_2)} - k_1d(x_n,x), \mbox{ } \frac{k_2c}{(k_1+k_2)} - k_2d(y_n,y) \in P^0, \mbox{ for all } n > N_c. \\ \hline \mbox{ Again by adding and Remark 2.4, we have } \\ c - k_1d(x_n,x) - k_2d(y_n,y) \in P^0 \mbox{ for all } n > \max\{N,N_c\}. \\ \hline \mbox{ From (1.1) and Proposition 2.12 we have } ka << c, \mbox{ for each } c \in P^0. \mbox{ By Proposition 2.3 , we have } a = 0, \mbox{ as } k > 0. \end{array}$

3. MAIN RESULTS

Theorem 3.1. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E. Let $\{T_n\}$ be a sequence of self maps on X satisfying: (3.1.1) For some $\lambda, \mu, \delta, \alpha, \beta \in [0, 1)$ with $\lambda + \mu + \delta + 2\alpha < 1$, or else $\lambda + \mu + \delta + 2\beta < 1$, for all $x, y \in X$ $d(T_ix, T_jy) \leq \lambda d(T_ix, x) + \mu d(T_jy, y) + \delta d(x, y) + \alpha d(x, T_jy) + \beta d(T_ix, y)$. For $x_0 \in X$, let $x_n = T_n x_{n-1}$, for all n. Then the sequence $\{x_n\}$ converges in X and its limit u is a common fixed point of all the maps of the sequence $\{T_n\}$. This fixed point is unique if $\delta + \alpha + \beta < 1$.

Proof. We show that $\{x_n\}$ is a Cauchy sequence in X. **Step I:** Taking $x = x_{n-1}, y = x_n$ and i = n, j = n + 1 in (3.1.1) we get, $d(T_n x_{n-1}, T_{n+1} x_n) \leq \lambda d(T_n x_{n-1}, x_{n-1}) + \mu d(T_{n+1} x_n, x_n) + \delta(x_{n-1}, x_n) + \alpha d(x_{n-1}, T_{n+1} x_n) + \beta d(T_n x_{n-1}, x_n).$

As $x_n = T_n x_{n-1}$, we have

$$\begin{aligned} d(x_n, x_{n+1}) &\leq \lambda d(x_n, x_{n-1}) + \mu d(x_{n+1}, x_n) + \delta(x_{n-1}, x_n) + \alpha d(x_{n-1}, x_{n+1}) + \beta d(x_n, x_n), \\ &\leq \lambda d(x_n, x_{n-1}) + \mu d(x_{n+1}, x_n) + \delta(x_{n-1}, x_n) + \alpha [d(x_{n-1}, x_n) + d(x_n, x_{n+1})]. \end{aligned}$$

Writing $d(x_n, x_{n+1}) = d_n$, we have $d_n \le \lambda d_{n-1} + \mu d_n + \delta d_{n-1} + \alpha [d_n + d_{n-1}]$, i.e. $(1 - \mu - \alpha)d_n = (\lambda + \delta + \alpha)d_{n-1}$, which implies

$$d_n \le h d_{n-1},\tag{3.1}$$

if $h = \frac{(\lambda + \delta + \alpha)}{1 - \mu - \alpha}$. As $\lambda + \mu + \delta + 2\alpha < 1$ we obtain that h < 1. Now $d_n \le h d_{n-1} \le h^2 d_{n-2} \le h^3 d_{n-3} \le \ldots \le h^n d_0$, where $d_0 = d(x_0, x_1)$. Also $d(x_{n+p}, x_n) \le d(x_{n+p}, x_{n+p-1}) + d(x_{n+p-1}, x_{n+p-2}) + \ldots + d(x_{n+1}, x_n)$, i. e.

$$d(x_{n+p}, x_n) \leq d_{n+p-1} + d_{n+p-2} + \dots + d_n.$$

= $d_n + d_{n+1} + \dots + d_{n+p-1}$
= $h^n [1 + h + h^2 + h^3 + \dots + h^{p-1}] d_0,$
 $\leq h^n d_0 / (1 - h),$

as h < 1 and P is closed. Thus we obtain that

$$d(x_{n+p}, x_n) \le h^n d_0 / (1-h). \tag{3.2}$$

Now for $c \in P^0$, there exists r > 0 such that $c - y \in P^0$, if ||y|| < r. Choose a positive integer N_c such that for all $n \ge N_c$, $||h^n d_0/(1-h)|| < r$, which implies $c - h^n d_0/(1-h) \in P^0$ and $h^n d_0/(1-h) - d(x_{n+p}, x_n) \in P$, using (3.2).

So we have $c - d(x_{n+p}, x_n) \in P^0$, for all $n > N_c$ and for all p, by Proposition 2.12. This implies $d(x_{n+p}, x_n) << c$, for all $n > N_c$, for all p. Hence $\{x_n\}$ is a Cauchy sequence in X, which is complete. Let $x_n \to u$.

Step II: For an arbitrary fixed m we show that $T_m u = u$. Now,

 $d(T_m u, u) \leq d(T_m u, T_n x_{n-1}) + d(T_n x_{n-1}, u),$ $= d(x_n, u) + d(T_m u, T_n x_{n-1}).$

Using (3.1.1) with $x = x_{n-1}, y = u, i = n$ and j = m we have $d(T_m u, u) \le d(x_n, u) + \lambda d(T_n x_{n-1}, x_{n-1}) + \mu d(T_m u, u)$

$$\begin{aligned} &+\delta d(u, x_{n-1}) + \alpha d(T_m u, x_{n-1}) + \beta d(u, T_n x_{n-1}) \\ &= d(x_n, u) + \mu d(T_m u, u) + \lambda d(x_n, x_{n-1}) \\ &+ \delta d(u, x_{n-1}) + \alpha d(T_m u, x_{n-1}) + \beta d(u, x_n), \\ &\leq d(x_n, u) + \mu d(T_m u, u) + \lambda [d(x_n, u) + d(u, x_{n-1})] \\ &+ \delta d(u, x_{n-1}) + \alpha [d(T_m u, u) + d(u, x_{n-1})] + \beta [d(u, x_n)] \end{aligned}$$

 So

 $[1-\mu-\alpha]d(T_mu,u) \leq [\mu+\delta+\alpha]d(x_{n-1},u) + [1+\lambda+\beta]d(u,x_n).$ As $\{x_n\} \to u, \{x_{n-1}\} \to u$, and $1-\mu-\alpha > 0$, using Lemma 2.13, we have $d(T_mu,u) = 0$, and we get $T_mu = u$. Thus u is a common fixed point of all the maps of the sequence $\{T_n\}$.

Step III (Uniqueness): Let $T_n z = z$, for all n, be another common fixed point of all the maps of the sequence $\{T_n\}$. Now

 $d(z, u) = d(T_n z, T_n u).$ Taking x = z and y = u with i = j = n in (3.1.1) we get $d(z, u) \le \lambda d(T_n z, z) + \mu d(T_n u, u) + \delta d(z, u) + \alpha d(z, T_n u) + \beta d(T_n z, u),$ which gives $d(z, u) \le (\delta + \alpha + \beta) d(z, u).$ As $\delta + \alpha + \beta < 1$, using Proposition 2.2, we have d(z, u) = 0 i. e. u = z. Thus u is the unique common fixed point of all the maps of the sequence $\{T_n\}$. To see the sufficiency of the alternate condition $\lambda + \mu + \delta + 2\beta < 1$, in step I we choose $x = u, y = x_{n-1}$ with i = n + 1 and j = n in (3.1.1) to obtain $(1-\lambda-\beta)d_n \leq (\mu+\delta+\beta)d_{n-1}$. Thus $d_n \leq h'd_{n-1}$, where $h' = \frac{(\mu+\delta+\beta)}{1-\lambda-\beta} < 1$.

Again in step II we choose $x = u, y = x_{n-1}i = m, j = n$ in (3.1.1) receiving $(1 - \lambda - \beta)d(T_m(u), u) \leq \dots$ and we get $T_m u = u, \forall m$.

Theorem 3.2. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E. Let $\{A_n\}$ be a sequence of self maps in X satisfying:

(3.2.1) For some $\lambda, \mu, \delta, \alpha, \beta \in [0, 1)$ with $\lambda + \mu + \delta + 2\alpha < 1$, or else $\lambda + \mu + \delta + 2\beta < 1$ and $\delta + \alpha + \beta < 1$,

there exists positive integer m_i , for each i, such that for all $x, y \in X$ $d(A_i^{m_i}x, A_j^{m_j}y) \leq \lambda d(A_i^{m_i}x, x) + \mu d(A_j^{m_j}y, y) + \delta(x, y) + \alpha d(x, A_j^{m_j}y) + \beta d(A_i^{m_i}x, y)$. Then all the maps of the sequence $\{A_n\}$ have a unique common fixed point in X.

Proof. In view of (3.2.1) and using Theorem 3.1 all the maps of the sequence $\{A_i^{m_i}\}$ have a unique common fixed point, say z. Hence $A_i^{m_i} z = z$, for all i. Now $A_1^{m_1} z = z$, implies $A_1^{m_1} A_1 z = A_1 z$. Taking $x = A_1 z$, $y = A_1 z$. z, i = 1 and j = 2 in (3.2.1) we have $A_1 z = z$. Continuing in similar way it follows that $A_i z = z$, for all i. Thus z is a common fixed point of all the maps of the sequence $\{A_i\}$. Its uniqueness follows from the fact that $A_i z = z$, implies $A_i^{m_i} z = z$, for all i.

Example 3.3. (of Theorem 3.2) Let $X = [0,1], E = R^2, P = \{(x,y) \in R^2 : x \ge 0, y \ge 0\} \subseteq R^2$, be a cone in E. Fix a real number $\gamma > 0$. We define $d: X \times X \to E$ by $d(x,y) = |x-y|(1,\gamma)$. Then (X,d) is a complete cone metric space. Define $\{A_n\}$ on X as follows: $A_n(x) = \begin{cases} 0, & if x \in [0, \frac{1}{n+2}] \end{cases}$

 $A_n(x) = \begin{cases} 0, \\ \frac{1}{n+3}, otherwise. \end{cases}$

Taking $m_i = 2$, for all i. Then the maps $A_1^2, A_2^2, A_3^2, \ldots$ satisfy the condition (3.2.1) for $\lambda = \mu = \delta = \frac{1}{15}$ and $\alpha = \beta = \frac{1}{10}$. Hence by Theorem 3.2, all the maps of the sequence $\{A_n\}$ have a unique common fixed point (u=0) in X.

Taking $T_1 = T_2 = T_3 = \cdots = T_{n-1} = T_n = \cdots = A$ in Theorem 3.1, we get the following general form of Banach contraction principal in a cone metric space which is not necessarily normal

Theorem 3.4. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E and A be a self map in X satisfying:

(3.4.1) For some $\lambda, \mu, \delta, \alpha, \beta \in [0, 1)$ with $\lambda + \mu + \delta + 2\alpha < 1$, or else $\lambda + \mu + \delta + 2\beta < 1$, for all $x, y \in X$ $d(Ax, Ay) \le \lambda d(Ax, x) + \mu d(Ay, y) + \delta(x, y) + \alpha d(x, Ay) + \beta d(Ax, y).$

Then for each x in X the sequence $\{A^nx\}$ converges in X and its limit u is a fixed point of A. This fixed point is unique if $\delta + \alpha + \beta < 1$.

In [3] L. G. Huang, X. Zhang and in [11] Sh. Rezapour, R. Hamlbarani proved following various forms of Banach contraction Principle in a normal Cone metric space and in a cone metric space respectively :

Theorem 1[3] and Theorem 2.3[11]: Let (X, d) be a complete cone metric space, Suppose the mapping $T: X \times X \to X$ satisfies the contractive condition

 $d(Tx, Ty) \leq kd(x, y)$, for all $x, y \in X$,

where $k \in [0, 1)$ is a constant. Then T has a unique fixed point in X. For each $x \in X$, the iterative sequence $\{T^n x\}$ converges to the fixed point.

Theorem 3[3] and Theorem 2.6 [11]: Let (X, d) be a complete cone metric space. Suppose the mapping $T: X \times X \to X$ satisfies the contractive condition

 $d(Tx, Ty) \leq k[d(Tx, x) + d(Ty, y)]$ for all $x, y \in X$,

where $k \in [0, 1/2)$ is a constant. Then T has a unique fixed point in X. And for $x \in X$, the iterative sequence $\{T^n x\}$ converges to the fixed point.

Theorem 4 [3] and Theorem 2.7 [11]: Let (X, d) be a complete cone metric space. Suppose the mapping $T: X \times X \to X$ satisfies the contractive condition

 $d(Tx, Ty) \le k[d(Tx, y) + d(Ty, x)] \text{ for all } x, y \in X,$

where $k \in [0, 1/2)$ is a constant. Then T has a unique fixed point in X. For each $x \in X$, the iterative sequence $\{T^n x\}$ converges to the fixed point.

Theorem 2.8 [11]: Let (X, d) be a complete cone metric space. Suppose the mapping $T : X \times X \to X$ satisfies the contractive condition

 $d(Tx, Ty) \le kd(x, y) + ld(y, Tx)$ for all $x, y \in X$,

where $k, l \in [0, 1)$ are constants. Then T has a fixed point in X. Also the fixed point of T is unique whenever k + l < 1.

Remark 3.5. Above Theorems of [3] and [11] follow from Theorem 3.4 of this paper by taking :

(a) $\lambda = \mu = \alpha = \beta = 0$ and $\delta = k$, (b) $\lambda = \mu = k$ and $\delta = \alpha = \beta = 0$, (c) $\lambda = \mu = \delta = 0$ and $\alpha = \beta = k$, and

(d) $\lambda = \mu = \alpha = 0, \delta = k$, and $\beta = l$

Precisely, Theorem 3.4 synthesizes and generalizes all the results of [3] and [11] for a non-normal cone metric space. Theorem 3.1 is a general form of Banach contraction principle in a complete cone metric space which is not necessarily normal.

Definition 3.6. [4] (Quasi contraction)A self-map f on a cone metric space (X, d) is said to be a quasi contraction if for a fixed $\lambda \in (0, 1), d(fx, fy) \leq \lambda u$ for every $x, y \in X$, where

 $u \in \{d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)\}.$

Theorem 2.1 [4]: Let (X, d) be a complete cone metric space and P be a normal cone. Then a quasi contraction f has a unique fixed point in X and for each $x \in X$ the iterative sequence $\{f^n(x)\}$ converges to the fixed point.

Remark 3.7. Keeping one of the constants $\{\alpha, \beta, \gamma, \delta, \mu\}$ non-zero and all others equal to zero in Theorem 3.4, it follows that the above result of [4] is true even for non-normal complete cone metric space.

Remark 3.8. It has been established in L. J. B. Čirič [2] that a quasi contraction has a unique fixed point in a complete metric space. It follows from the above Remark that the result of [2] is also true for a complete cone metric space even if it is non-normal.

References

- [1] V. Berinde, Itrative approximation of fixed points, Springer Verlag, 2007.
- [2] L. J. B. Cirič, A generalization of Banach contraction principle, Proc. American Mathematical Society 45 (1974), 999–1006.
 3.8
- [3] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476. 1, 2.1, 2.5, 2.6, 2.8, 2.9, 2.11, 3, 3.5
- [4] D. Ilic, V. Rakocevic, Quasi-contraction on a cone metric space, Applied Mathematics Letters 22 (2009), 728–731. 2.3, 3.6, 3, 3.7
- [5] Sh. Jain, Sh. Jain and L.B. Jain, Compatibility and weak compatibility for four self maps in a cone metric space, Bulletin of Mathematical analysis and application 1 (2010), 1–18. 1
- [6] Sh. Jain, Sh. Jain and L.B. Jain, Weakly compatibile maps in a cone metric space, Rendiconti Del Seminario Matematica 68 (2010), 115–225.
- B. V. Kvedaras, A.V. Kibenko and A. I. Perov, On some boundary value problems, Litov. matem. sbornik 5 (1965), 69–84.
- [8] E. M. Mukhamadiev and V.J. Stetsenko, Fixed point principle in generalized metric space, Izvestija AN Tadzh. SSR, fiz.-mat. i geol.-chem. nauki. 10 (1969), 8–19 [Russian]. 1

- [9] A.I. Perov, The Cauchy problem for systems of ordinary differential equations. In , Approximate methods of solving differential equations, Kiev, Naukova Dumka, 12 (1964), 115–134 [Russian].
- [10] A.I. Perov and A.V. Kibenko, An approach to studying boundary value problems, Izvestija AN SSSR, ser. math. 30 (1966), 249–264. [Russian] 1
- [11] Sh. Rezapour, R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl. 345 (2008), 719–724. 1, 2.4, 2.7, 3, 3.5
- [12] R. Vasuki, A Fixed Point Theorem for a sequence of Maps satisfying a new contractive type contraction in Menger Space, Math Japonica 35 (1990), 1099–1102.
- [13] P.P. Zabrejko, K-metric and K-normed linear spaces Survey Collect. Math. 48 (1997), 825–859. 1