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1. Introduction

Fractional Calculus deals with the generalization of integrals and derivatives of noninteger order. Frac-
tional calculus involves a wide area of applications by bringing into a broader paradigm concepts of physics,
mathematics and engineering [11, 13]. Infact fractional differential equation is considered as an alternative
model to nonlinear differential equations [8]. In [2, 12], the authors have proved the existence of solutions of
abstract fractional differential equations by using fixed point tecniques. In consequence, the subject of frac-
tional differential equations is gaining much importance and attention. For details, see [14, 15, 16] and the
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references therein. Subsequently several authors have discussed the problem for different types of nonlinear
differential and integro differential equations including functional differential equations in Banach spaces.

The theory of impulsive differential equations has undergone rapid development over the years and
played a very important role in modern applied mathematical models of real processes arising in phenom-
ena studied in physics, population dynamics, chemical technology and economics. In [1, 7], Benchohra et
al. established sufficient conditions for the existence of solutions for a class of initial value problems for
impulsive fractional differential equations involving the Caputo fractional derivative of order 0 < q ≤ 1 and
1 < q ≤ 2. In [10], Mophou proved the existence and uniqueness results of a mild solution to impulsive frac-
tional semilinear differential equations. Anguraj and Karthikeyan [3] proved Existence for impulsive neutral
integrodifferential inclusions with nonlocal initial conditions via fractional operators. Benchohra and Seba
[6] studied the existence of fractional impulsive differential equations in Banach spaces while Balachandran
and Kiruthika [5] discussed the existence of nonlocal cauchy problem for semilinear fractional evoluation
equations. Balachandran and Trujillo [4] investigated the nonlocal Cauchy problem for nonlinear fractional
integrodifferential equations in Banach spaces.

In this paper, we consider the following fractional impulsive neutral integrodifferential systems with
infinite delay

Dq
t (x(t)− u(t, xt)) = A(t, x)(x(t)− u(t, xt)) + f(t, xt,

∫ t
0 h(t, s, xs)ds),

t ∈ J = [0, b], t 6= tk

∆x|t=tk = Ik(x(t−k )), t = tk, k = 1, 2, ..., n

x(0) + g(x) = φ, φ ∈ Bϑ

(1.1)

where 0 < q < 1 and the state x(.) belongs to Banach space X endowed with the norm ‖.‖. Operator A
generates a strongly continuous bounded linear operator on a Banach space X. Dq

t is the Caputo fractional
derivative. u and f are two given continuous functions, Ik : X → X, ∆x(tk) = x(t+k ) − x(t−k ) with x(t+k ) =
limh→0+ x(tk + h), x(t−k ) = limh→0− x(tk + h), k = 1, 2, 3, .....n, 0 = t0 < t1 < t2 < ... < tn < tn+1 = b. Let
xt(.) denote xt(θ) = x(t+ θ), θ ∈ (−∞, 0].

The rest of this papper is organized as follows. In Section 2, some preliminaries are presented. In Section
3, we study the existence and the uniqueness of solutions for the impulsive fractional system 1.1. In Section
4, an example.

2. Preliminaries

In this section, we shall introduce some basic definitions, notations, lemmas and proposition which are
used throughout this paper.

Assume that ϑ : (−∞, 0]→ (0,+∞) is a continuous function satisfyi ` =
∫ 0
−∞ ϑ(t)dt < +∞. The Banach

space (Bϑ, ||.||Bϑ
) induced by the function ϑ is defined as follows

Bϑ =

{
ϕ : (−∞, 0] −→ X : for any c > 0, ϕ(θ) is a bounded and

measurable function on [−c, 0] and
∫ 0
−∞ ϑ(t)supt≤θ≤0 |ϕ(θ)| dt < +∞

endowed with the norm ‖ϕ‖Bϑ
=
∫ 0
−∞ ϑ(s)sups≤θ≤0 |ϕ(θ)| ds.

Let us define the space

Bϑ′ =

{
ϕ : (−∞, b]→ X : ϕk ∈ C(Jk, X), k = 0, 1, 2, ...n and there exist

ϕ(t−k )and ϕ(t+k )withϕ(tk) = ϕ(t−k ), ϕ0 = ϕ(0) + g(ϕ) = φ ∈ Bϑ

where ϕk is the restriction of ϕ to Jk, J0 = [0, t1], Jk = (tk, tk+1], k = 1, 2, ....n. Denote by ||.||Bϑ′ , a
seminorm in the space B′ϑ, which is defined by
||ϕ||Bϑ′ = ||ϕ||Bϑ

+ max||ϕk||Jk , k = 1, 2, ...n where ||ϕk||Jk = sups∈Jk ||ϕk(s)||.
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Definition 2.1. A function x : (−∞, b]→ X is said to be a solution of system 1.1 if x(0)+g(x) = φ ∈ Bϑ′ ,the
impulsive condition ∆x|t=tk = Ik(x(t−k )), k = 1, 2, ..., n is verified, the restriction of x(.) to the interval
Jk(k = 0, 1, 2, ...n) is continuous and the following integral equation holds for t ∈ J ,

x(t) =



[φ(0)− g(x)− u(0, φ)] + u(t, xt)

+ 1
Γ(q)

∑
0<tk<t

∫ tk
tk−1

(tk − s)q−1A(s, x)x(s)ds

+ 1
Γ(q)

∫ t
tk

(t− s)q−1A(s, x)x(s)ds

− 1
Γ(q)

∑
0<tk<t

∫ tk
tk−1

(tk − s)q−1A(s, x)u(s, xs)ds

− 1
Γ(q)

∫ t
tk

(t− s)q−1A(s, x)u(s, xs)ds

+ 1
Γ(q)

∑
0<tk<t

∫ tk
tk−1

(tk − s)q−1f(s, xs,
∫ s

0 h(s, τ, xτ )dτ)ds

+ 1
Γ(q)

∫ t
tk

(t− s)q−1f(s, xs,
∫ s

0 h(s, τ, xτ )dτ)ds

+
∑

0<tk<t
Ik(x(t−k ))

(2.1)

Definition 2.2. The Riemann - Liouville fractional integral operator of order q ≥ 0 of function f ∈ L1(R+)
is defined as

Iq
0+
f(t) =

1

Γ(q)

∫ t

0
(t− s)q−1f(s)ds, t > 0

where Γ(.) is the Euler gamma function.

Definition 2.3. The Caputo fractional derivative of order q ≥ 0 , n− 1 < q < n, is defined as

Dq
0+
f(t) =

1

Γ(n− q)

∫ t

0
(t− s)(n−q−1)f (n)(s)ds, t > 0

where the function f(t) has absolutely continuous derivatives up to order (n-1).
If 0 < q < 1, then

Dq
0+
f(t) =

1

Γ(1− q)

∫ t

0
(t− s)(−q)f (1)(s)ds

where f (1)(s) = Df(s) = df(s)
ds and f is an abstract function with values in X.

We shall state some properties of the operators Iα0+ and Dα
0+ .

Lemma 2.4. . For α, β > o and f as a suitable function, we have

(i) IαIβf(t) = Iα+βf(t)

(ii) IαIβf(t) = IβIαf(t)

(iii) Iα(f(t) + g(t)) = Iαf(t) + Iαg(t)

(iv) Iα cDαf(t) = f(t)− f(0), 0 < α < 1

(v) cDαIαf(t) = f(t)

(vi) cDαf(t) = I(1−α)Df(t) = I(1−α)f ′(t), 0 < α < 1, D = d
dt

(vii) cDα cDβf(t) 6= cD(α+β)f(t)
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(viii) cDα cDβf(t) 6= cDβ cDαf(t)

Zhang and Xiyue Huang [18] proved the existence and uniqueness of mild solutions for impulsive frac-
tional equations with nonlocal conditions and infinite delay , in which A is a infinitesimal generator of
strongly continuous semigroup. But in [4], Balachandran and Trujillo observed that both the R - L and
the Caputo fractional differential operators do not possess neither semigroup nor commutative properties,
which are inherent to the derivatives on integer order.

Theorem 2.5. ([17])
Let B be a convex, bounded and closed subset of a Banach space X and N : B → B be a condensing map.

Then N has a fixed point in B.

Lemma 2.6. ([9])
Assume that x ∈ Bϑ′ then, for t ∈ J , xt ∈ Bϑ. Moreover

`||x(t)|| ≤ ||xt||Bϑ
≤ ||φ||Bϑ

+ ` sups∈[0,t]||x(s)||.

3. Main results

For φ ∈ Bϑ, we define φ̂ by

φ̂(t) =


φ(t), t ∈ (−∞, 0]

φ(0), t ∈ J

then φ̂ ∈ Bϑ′ .
Let x(t) = y(t) + φ̂(t), −∞ < t < b.

It is evident that y satisfies y0 = 0, t ∈ (−∞, 0], and

x(t) = [−g(y + φ̂)− u(0, φ)] + u(t, yt + φ̂t)

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

− 1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

− 1

Γ(q)

∫ t

tk

(t− s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, ys + φ̂s,

∫ s

0
h(s, τ, yτ + φ̂τ )dτ)ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1f(s, ys + φ̂s,

∫ s

0
h(s, τ, yτ + φ̂τ )dτ)ds

+
∑

0<tk<t

Ik(y(t−k ) + φ̂(t−k )), t ∈ J

if and only if x satisfies x(t) = φ(t), t ∈ (−∞, 0] and x satisfies equation 2.1.
For brevity let us take

H(xs) =

∫ s

0
h(s, τ, xτ )dτ.

We assume the following conditions to prove the existence of solution of the equation 1.1.
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(H1) A : J ×Bϑ → B(X) is a continuous bounded linear operator and there exists a constant M > 0, such
that ||A(t, x)−A(t, y)|| ≤M ||x− y||Bϑ

, for all x, y ∈ Bϑ.

(H2) The function u : J ×Bϑ → X, and there exist two positive constants λ1 and λ2 such that the function
satisfies the Lipschitz condition
||u(s, xt)− u(s, yt)|| ≤ λ1(||xt − yt||Bϑ′ ), λ2 = supt∈J ||u(t, 0)||.

(H3) f : J ×Bϑ ×X → X , and there exist two positive constants K1,K2 such that
||f(t, φ1, y1)− f(t, φ2, y2)|| ≤ K1(||φ1 − φ2||Bϑ

+ ||y1 − y2||),
K2 = supt∈J ||f(t, 0, 0)||.

(H4) h : ∆×Bϑ → X , where ∆ =
{

(t, s) : 0 ≤ s ≤ b
}

, equipped with positive constants P1, P2 satisfying
||h(t, s, φ1)− h(t, s, φ2)|| ≤ P1(||φ1 − φ2||Bϑ′ ), P2 = sup(t,s)||h(t, s, 0)||.

(H5) Ik : X → X are continuous, and there exists a constant µ > 0 such that
||Ik(x)− Ik(y)|| ≤ µ||x− y||, k = 1, 2, 3, .....n.

(H6) g : Bϑ′ → X is continuous and there exist some positive constantδ1, δ2 such that
||g(x)− g(y)|| ≤ δ1||x− y||B′ϑ and ||g(x)|| ≤ δ1||x||B′ϑ + δ2.

(H7)
[
δ1L+ δ2 + λ1(L1 + ||φ||Bϑ

) + 2λ2 + T + µn(r + `−1||φ||Bϑ
+ |φ(0)|)

]
≤ r

where T = bq(n+1)
Γ(q+1) [(ML+K)(L+ λ1L1 + λ2) +K1L1 +K1b(P1L1 + P2) +K2]

and L = r + ||φ||Bϑ
+ |φ(0)| , L1 = `(r + |φ(0)|) + ||φ||Bϑ

.

Theorem 3.1. Suppose that conditions (H1) − (H7) are satisfied with δ1 + λ1` < 1 then system 1.1 has a
solution.

Proof 1. Define Θ : Bϑ′ → Bϑ′ by

Θy(t) = 0, t ∈ (−∞, 0]

Θy(t) = [−g(y + φ̂)− u(0, φ)] + u(t, yt + φ̂t)

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

− 1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

− 1

Γ(q)

∫ t

tk

(t− s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, ys + φ̂s, ,H(ys + φ̂s))ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1f(s, ys + φ̂s, ,H(ys + φ̂s))ds

+
∑

0<tk<t

Ik(y(t−k ) + φ̂(t−k )), t ∈ J.

Clearly, y is a fixed point of Θ then y+ φ̂ is a solution of the system 1.1. We shall show that Θ satisfies the
hypotheses of Theorem 2.5.
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Define the Banach space (Bϑ′′ , ||.||Bϑ′ ) induced by Bϑ′ ,
Bϑ′′ =

{
y ∈ Bϑ′ : y0 = 0 ∈ Bϑ

}
with norm ||y||Bϑ′ = sup

{
|y(s)| : s ∈ [0, b]

}
.

Set Br =
{
y ∈ Bϑ′′ : ||y||Bϑ′ ≤ r

}
for some r > 0 then Br, for each r, is bounded, closed convex subset of X.

For any y ∈ Br, by Lemma 2.6, we have

||yt + φ̂t||Bϑ
≤ ||φ||Bϑ

+ `[r + |φ(0)|],

||y + φ̂||Bϑ′ ≤ r + ||φ||Bϑ
+ |φ(0)| ,

supt∈J

∣∣∣y(t) + φ̂(t)
∣∣∣ ≤ r + `−1||φ||Bϑ

+ |φ(0)| .

Now we proceed in Two steps.
Step I:We claim that there exists a positive integer r ∈ N such that Θ(Br) ⊂ Br.

There exists a positive number r such that Br is clearly a closed bounded convex set in Bϑ′ .
For each positive integer r, there exist yr ∈ Br and t(r) ∈ (−∞, b] such that

||Θ(yr)(t(r))|| ≤ ||[−g(yr + φ̂)− u(0, φ)]||+ ||u(t(r), yt(r) + φ̂t(r))||

+
1

Γ(q)

∑
0<tk<t(r)

∫ tk

tk−1

(tk − s)q−1||A(s, yr + φ̂)(yr + φ̂)(s)||ds

+
1

Γ(q)

∫ t(r)

tk

(t(r)− s)q−1||A(s, yr + φ̂)(yr + φ̂)(s)||ds

− 1

Γ(q)

∑
0<tk<t(r)

∫ tk

tk−1

(tk − s)q−1||A(s, yr + φ̂)u(s, yrs + φ̂s)||ds

− 1

Γ(q)

∫ t(r)

tk

(t(r)− s)q−1||A(s, yr + φ̂)u(s, yrs + φ̂s)||ds

+
1

Γ(q)

∑
0<tk<t(r)

∫ tk

tk−1

(tk − s)q−1||f(s, yrs + φ̂s, H(yrs + φ̂s))||ds

+
1

Γ(q)

∫ t(r)

tk

(t(r)− s)q−1||f(s, yrs + φ̂s, H(yrs + φ̂s))||ds

+
∑

0<tk<t(r)

||Ik(yr(t−k ) + φ̂(t−k ))||

≤ δ1L+ δ2 + λ1(L1 + ||φ||Bϑ
) + 2λ2

+
bq(n+ 1)

Γ(q + 1)
[(ML+K)(L+ λ1L1 + λ2) +K1L1

+K1b(P1L1 + P2) +K2] + µn(r + `−1||φ||Bϑ
+ |φ(0)|)

≤ r

where L = r + ||φ||Bϑ
+ |φ(0)| , L1 = `(r + |φ(0)|) + ||φ||Bϑ

.
Using (H7) , for some positive integer r , Θ(Br) ⊂ Br.
Step II:Now we claim that the operator Θ = Θ1 + Θ2 is condensing , that is Θ1 is a contraction and Θ2 is
compact.

The operators Θ1 and Θ2 are defined on Br respectively by,

(Θ1y)(t) =


0, t ∈ (−∞, 0]

[−g(y + φ̂)− u(0, φ)] + u(t, yt + φ̂t), t ∈ J.
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(Θ2y)(t) =



0 , t ∈ (−∞, 0]

1
Γ(q)

∑
0<tk<t

∫ tk
tk−1

(tk − s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

+ 1
Γ(q)

∫ t
tk

(t− s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

− 1
Γ(q)

∑
0<tk<t

∫ tk
tk−1

(tk − s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

− 1
Γ(q)

∫ t
tk

(t− s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

+ 1
Γ(q)

∑
0<tk<t

∫ tk
tk−1

(tk − s)q−1f(s, ys + φ̂s, H(ys + φ̂s))ds

+ 1
Γ(q)

∫ t
tk

(t− s)q−1f(s, ys + φ̂s, ,H(ys + φ̂s))ds

+
∑

0<tk<t
Ik(y(t−k ) + φ̂(t−k )), t ∈ J.

We take y1, y2 ∈ Br arbitrarily.
By (H2) and (H6), we have

||(Θ1y1)(t)− (Θ1y2)(t)|| ≤ δ1||y1 − y2||Bϑ′ + λ1`||y1 − y2||Bϑ′

since ||yt||Bϑ
≤ `||y||Bϑ′

||(Θ1y1)(t)− (Θ1y2)(t)|| ≤ (δ1 + λ1`)||y1 − y2||Bϑ′

≤ ||y1 − y2||Bϑ′

since δ1 + λ1` < 1. Therefore Θ1 is a contraction.
Next, we prove that Θ2 is continuous on Br.
Let

{
ym
}∞
k=0
⊆ Br, with ym → y in Br . By (H1), (H3), (H4) and (H5) we have

||(Θ2y)(t)− (Θ2ym)(t)|| ≤ 1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1||A(s, y + φ̂)(y + φ̂)(s)

−A(s, ym + φ̂)(ym + φ̂)(s)||ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1||A(s, y + φ̂)(y + φ̂)(s)

−A(s, ym + φ̂)(ym + φ̂)(s)||ds

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1||A(s, y + φ̂)u(s, ys + φ̂s)

−A(s, ym + φ̂)u(s, yms + φ̂s)||ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1||A(s, y + φ̂)u(s, ys + φ̂s)

−A(s, ym + φ̂)u(s, yms + φ̂s)||ds

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1||f(s, ys + φ̂s, H(ys + φ̂s))

−f(s, yms + φ̂s, H(yms + φ̂s))||ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1||f(s, ys + φ̂s, H(ys + φ̂s))

−f(s, yms + φ̂s, ,H(yms + φ̂s))||ds
+
∑

0<tk<t

||Ik(y(t−k ) + φ̂(t−k ))− Ik(ym(t−k ) + φ̂(t−k ))||
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≤ (n+ 1)bq

Γ(q + 1)
[(M [r + ||φ||Bϑ

+ |φ(0)|] +K)(1 + `λ1)

+M(r + |φ(0)|+ ||φ||Bϑ
+ λ1[`(r + |φ(0)|)

+||φ||Bϑ
] + λ2) +K1`(1 +

P1b

(q + 1)
)]||y − ym||Bϑ′

+
∑

0<tk<t

||Ik(y(t−k ) + φ̂(t−k ))− Ik(ym(t−k ) + φ̂(t−k ))||.

||(Θ2y)(t)− (Θ2ym)(t)|| → 0 as m→∞
Thus , Θ2 is continuous.

Next, we prove that
{

Θ2y : y ∈ Br
}

is a family of equicontinuous functions.
Let 0 < t1 < t2 ≤ b. Then

||(Θ2y)(t2)− (Θ2y)(t1)|| ≤ I1 + I2 + I3 + I4 + I5 + I6 + I7

where

I1 =
1

Γ(q)
[||

∑
0<tk<t2

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

−
∑

0<tk<t1

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)(y + φ̂)(s)ds||],

I2 =
1

Γ(q)

[
||
∫ t2

tk

(t2 − s)q−1A(s, y + φ̂)(y + φ̂)(s)ds−
∫ t1

tk

(t1 − s)q−1A(s, y + φ̂)(y + φ̂)(s)ds||
]
,

I3 =
1

Γ(q)
[||

∑
0<tk<t2

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

−
∑

0<tk<t1

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds||],

I4 =
1

Γ(q)

[
||
∫ t2

tk

(t2 − s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds−
∫ t1

tk

(t1 − s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds||
]
,

I5 =
1

Γ(q)

[
||
∑

0<tk<t2

∫ tk

tk−1

(tk − s)q−1f(s, ys + φ̂s, H(ys + φ̂s))ds

−
∑

0<tk<t1

∫ tk

tk−1

(tk − s)q−1f(s, ys + φ̂s, H(ys + φ̂s))ds||
]
,

I6 =
1

Γ(q)

[
||
∫ t2

tk

(t2 − s)q−1f(s, ys + φ̂s, H(ys + φ̂s))ds−
∫ t1

tk

(t1 − s)q−1f(s, ys + φ̂s, H(ys + φ̂s))ds||
]
,

I7 = ||
∑

0<tk<t2

Ik(y(t−k ) + φ̂(t−k ))−
∑

0<tk<t1

Ik(y(t−k ) + φ̂(t−k ))||.

Clearly I1, I2, I3, I4, I5, I6, I7 tends to 0 when t1 → t2.
Therefore, we conclude that limt1→t2Ii = 0, i = 1, 2, 3, 4, 5, 6, 7. Hence Θ2Br is equicontinuous.
Next , we claim that Θ2Br is precompact.
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Let 0 < t ≤ b be fixed and let ε be a real number satisfying 0 < ε < b. For y ∈ Br , we define

(Θε
2y)(t) =

1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

+
1

Γ(q)

∫ t−ε

tk

(t− s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

− 1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

− 1

Γ(q)

∫ t−ε

tk

(t− s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, ys + φ̂s, H(ys + φ̂s))ds

+
1

Γ(q)

∫ t−ε

tk

(t− s)q−1f(s, ys + φ̂s, ,H(ys + φ̂s))ds

+
∑

0<tk<t

Ik(y(t−k ) + φ̂(t−k ))

since the operator A(t,x) is compact for t > 0, for every ε sufficiently small, 0 < ε < b,

||(Θ2y)(t)− (Θε
2y)(t)|| = || 1

Γ(q)

∫ t

t−ε
(t− s)q−1A(s, y + φ̂)(y + φ̂)(s)ds

− 1

Γ(q)

∫ t

t−ε
(t− s)q−1A(s, y + φ̂)u(s, ys + φ̂s)ds

+
1

Γ(q)

∫ t

t−ε
(t− s)q−1f(s, ys + φ̂s, ,H(ys + φ̂s))ds||

≤ 1

Γ(q + 1)
[(ML+K)(`−1L1 + λ1L1 + λ2)

+(K1L1 +K1b(P1L1 + P2) +K2)]εq.

Therefore, letting ε→ 0, we see that there are relatively compact sets arbitrarily close to the set
{

(Θ2y)(t) :
y ∈ Br

}
. Hence

{
(Θ2y)(t) : y ∈ Br

}
is relatively compact in Bϑ′ .

As a consequence of the above steps and the Arzela-Ascoli Theorem, we can conclude that Θ2 is a
compact operator. These arguments enable us to conclude that Θ = Θ1 + Θ2 is a condensing map on Br
and Theorem 2.5 gives the conclusion that the system 1.1 has a solution.

4. An Example

Consider the following fractional integrodifferential equation with impulsive condition of the form
Dq
t (x(t)− e−tx

(9+et)(1+x)) = 1
4sinx(t)[x(t)− e−tx

(9+et)(1+x) ] + 1
(t+2)2

|x|
(1+|x|) + 1

4

∫ s
0 e

−xs
3 ds

∆x|t= 1
2

=
|x( 1

2
)−|

3+|x( 1
2

)−|

x(0) + x
5+x = x0

(4.1)

where 0 < q ≤ 1 Take J = [0, 1], b = 1

Let A(t, x) = 1
4sinx(t) , H(xs) =

∫ s
0 e

−xs
3 ds,
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f(t, x,H(xs)) = 1
(t+2)2

|x|
(1+|x|) + 1

4

∫ s
0 e

−xs
3 ds,

u(t, x) = e−tx
(9+et)(1+x) , where t ∈ J , x ∈ X = R.

If x, y ∈ X and t ∈ J then we have

||A(t, x)−A(t, y)|| ≤ 1
4 ||x− y||, ||H(xs)−H(ys)|| ≤ 1

3 ||x− y||,

||f(t, x,H(xs))− f(t, y,H(ys))|| ≤ 1
4 [||x− y||+ ||H(xs)−H(ys)||],

||Ik(x)− Ik(y)|| ≤ 1
3 ||x− y||, ||u(t, xt)− u(t, yt)|| ≤ 1

10 ||xt − yt||, ||g(x)− g(y)|| ≤ 1
5 ||x− y||.

here P1 = 1
3 , K1 = 1

4 , µ = 1
3 , λ1 = 1

10 , δ1 = 1
5 .

Let ϑ(t) = et, therefore ` =
∫ 0
−∞ ϑ(t)dt =

∫ 0
−∞ e

tdt = 1 < +∞
hence δ1 + λ1` = 3

10 < 1.
For some q ∈ [0, 1], all the hypotheses of the Theorem 2.5 are satisfied. Hence the problem 4.1 has a solution.
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