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Abstract

In this paper, we establish some common fixed point results for uniformly Cq-commuting asymptotically
S-nonexpansive maps in a Banach space with semi-convex structure. We also extend the main results of
Ćirić [Lj. B. Ćirić, Publ. Inst. Math., 49 (1991), 174-178] and [Lj. B. Ćirić, Arch. Math. (BRNO),
29 (1993), 145-152] to semi-convex structure and obtain common fixed point results for Banach operator
pair. The existence of invariant best simultaneous approximation in ordered semi-convex structure is also
established. c©2012. All rights reserved.
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1. Introduction

In best approximation theory, it is pertinent, viable, meaningful and potentially productive to know
whether some useful properties of the function being approximated is inherited by the approximating func-
tion. In this perspective, Meinardus [28] observed the general principle that could be applied, while doing

∗Corresponding author
Email addresses: nhusain@kau.edu.sa (N. Hussain ), hkpathak@sify.com (H. K. Pathak), tsatyaj@yahoo.co.in (S.

Tiwari)

Received 2011-2-14



N. Hussain, H.K. Pathak, S. Tiwari, J. Nonlinear Sci. Appl. 5 (2012), 294–306 295

so the author has employed a fixed point theorem as a tool to establish it. The result of Meinardus was
further generalized by Habiniak [15], Smoluk [38] and Subrahmanyam [39].

On the other hand, Al-Thagafi [2], Singh [36, 37], Hussain et al. [17, 19, 20], Hussain and Rhoades
[18], Jungck and Hussain [23], O’Regan and Hussain [30], Pathak et al. [31] and many others have used
fixed point theorems in approximation theory, to prove existence of best approximation. Various types of
applications of fixed point theorems may be seen in Klee [27], Meinardus [28] and Pathak and Hussain [32].
Some applications of the fixed point theorems to best simultaneous approximation are given by Sahney and
Singh [35]. For the detail survey of the subject we refer the reader to Cheney [6].

The class of asymptotically nonexpansive mappings was introduced by Goeble and Kirk [13] and further
studied by various authors (see [3, 26] and references therein). Recently, Beg et al. [3], have proved common
fixed point results for uniformly R-subweakly commuting pair {S, T}. In this paper, we introduce a more
general class of uniformly Cq-commuting selfmaps and study common fixed point results for uniformly Cq-
commuting asymptotically S-nonexpansive maps in a Banach space with semi-convex structure. We also
extend the main results of Ćirić [8, 9] to semi-convex structure. Recently, Chen and Li [5] introduced the
class of Banach operator pairs, as a new class of noncommuting maps and it has been further studied by
Hussain [16] and Pathak and Hussain [32]. We also obtain common fixed point and approximation results
for Banach operator pair (T, S) satisfying Ćirić type contractive condition.

2. Preliminaries and Definitions

Let X, ‖ · ‖ be a normed space, M a subset of of X. We shall use N to denote the set of positive integers,
cl(M) to denote the closure of a set M and wcl(M) to denote the weak closure of a set M . Let I : M →M
be a mapping. A mapping T : M → M is called an I-contraction if there exists 0 ≤ k < 1 such that
‖Tx− Ty‖ ≤ k‖Ix− Iy‖ for any x, y ∈M . If k = 1, then T is called I-nonexpansive. The map T is called
asymptotically I-nonexpansive if there exists a sequence {kn} of real numbers with kn ≥ 1 and limnkn = 1
such that ‖Tnx − Tny‖ ≤ kn‖Ix − Iy‖ for all x, y ∈ M and n = 1, 2, 3, .... The map T is called uniformly
asymptotically regular on M [3, 12], if for each η > 0, there exists N(η) = N such that ‖Tnx− Tn+1x‖ < η
for all n ≥ N and all x ∈M . The set of fixed points of T ( resp. I) is denoted by F (T )(resp. F (I)). A point
x ∈M is a coincidence point ( common fixed point) of I and T if Ix = Tx (x = Ix = Tx). The set of coinci-
dence points of I and T is denoted by C(I, T ). The pair {I, T} is called (1) commuting if TIx = ITx for all
x ∈M, (2) R-weakly commuting if for all x ∈M, there exists R > 0 such that ‖ITx−TIx‖ ≤ R‖Ix−Tx‖.
If R = 1, then the maps are called weakly commuting; (3) compatible if limn ‖TIxn − ITxn‖ = 0 whenever
{xn} is a sequence such that limn Txn = limn Ixn = t for some t in M ; (4) weakly compatible if they
commute at their coincidence points, i.e.,if ITx = TIx whenever Ix = Tx. The set M is called q-starshaped
with q ∈ M, if the segment [q, x] = {(1 − k)q + kx : 0 ≤ k ≤ 1} joining q to x is contained in M for all
x ∈ M. Suppose that M is q-starshaped with q ∈ F (I) and is both T - and I-invariant. Then T and I are
called (5) Cq-commuting [? 18] if ITx = TIx for all x ∈ Cq(I, T ), where Cq(I, T ) = ∪{C(I, Tk) : 0 ≤ k ≤ 1}
where Tk = (1 − k)q + kT ; (6) R-subweakly commuting on M if for all x ∈ M, there exists a real number
R > 0 such that ‖ITx− TIx‖ ≤ Rdist(Ix, [q, Tx]); (7) uniformly R-subweakly commuting on M \ {q} (see
[3]) if there exists a real number R > 0 such that ‖ITnx− TnIx‖ ≤ Rdist(Ix, [q, Tnx]), for all x ∈M \ {q}
and n ∈ N.
The ordered pair (T, I) of two self maps of a metric space (X, d) is called a Banach operator pair, if the set
F (I) is T -invariant, namely T (F (I)) ⊆ F (I). Obviously commuting pair (T, I) is a Banach operator pair
but not conversely in general, see [5]. If (T, I) is a Banach operator pair then (I, T ) need not be a Banach
operator pair (cf. Example 1 [5]).

Now we give the notion of convex structure introduced by Gudder [14](see also, Petrusel [33]). Let X
be a set and F : [0, 1] × X × X → X a mapping. Then the pair (X,F ) forms a convex prestructure. Let
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(X,F ) be a convex prestructure. If F satisfies the following conditions:

(i) F (λ, x, F (µ, y, z)) = F (λ + (1 − λ)µ, F (λ(λ + (1 − λ)µ)−1, x, y), z) for every λ, µ ∈ (0, 1) with
λ+ (1− λ)µ 6= 0 and x, y, z ∈ X.
(ii) F (λ, x, x) = x for any x ∈ X and λ ∈ (0, 1),

then (X,F ) forms a semi-convex structure. If (X,F ) is a semi-convex structure, then

(SC1) F (1, x, y) = x for any x, y ∈ X.

A semi-convex structure is said to be regular if

(SC2) λ ≤ µ⇒ F (λ, x, y) ≤ F (µ, x, y) where λ, µ ∈ (0, 1).

A semi-convex structure (X,F ) is said to form a convex structure if F also satisfies the conditions

(iii) F (λ, x, y) = F (1− λ, y, x) for every λ ∈ (0, 1) and x, y ∈ X.
(iv) if F (λ, x, y) = F (λ, x, z) for some λ 6= 1, x ∈ X then y = z.

Let (X,F ) be a convex structure. A subset Y of X is called (a) F-starshaped if there exist p ∈ Y so that
for any x ∈ Y and λ ∈ (0, 1), F (λ, x, p) ∈ Y . (b) F-convex if for any x, y in Y and λ ∈ (0, 1), F (λ, x, y) ∈ Y .
For F (λ, x, y) = λx + (1 − λ)y, we obtain the known notion of starshaped convexity from linear spaces.
Petrusel [33] noted with an example that a set can be a F -semi convex structure without being a convex
structure. Let (X,F ) be a semi-convex structure. A subset Y of X is called F semi-starshaped if there
exists p ∈ Y so that for any x ∈ Y and λ ∈ (0, 1), F (λ, x, p) ∈ Y . A Banach space X with semi-convex
structure F is said to satisfy condition (P1) at p ∈ K (where K is semi-starshaped and p is star centre) if
F is continuous relative to the following argument : for any x, y ∈ X,λ ∈ (0, 1)

‖ (F (λ, x, p)− F (λ, y, p) ‖≤ λ ‖ x− y ‖ .

3. Common Fixed Point Results

We begin with the definition of uniformly Cq-commuting mappings.

Definition 1. Let M be a q-starshaped subset of a normed space X. Let I, T : M → M be maps with
q ∈ F (I). Then I and T are said to be uniformly Cq-commuting on M if ITnx = TnIx for all x ∈ Cq(I, Tn)
and n ∈ N.

It is clear from Definition 1 that uniformly Cq-commuting maps on M are Cq-commuting but not con-
versely in general as the following example shows.

Example 1. Let X = R with usual norm and M = [1,∞). Let Tx = 2x−1 and Ix = x2, for all x ∈M . Let
q = 1. Then M is q-starshaped with Iq = q, Cq(I, T ) = {1} and Cq(I, T

2) = [1, 3]. Note that I and T are
Cq-commuting maps but not uniformly Cq-commuting because IT 2x 6= T 2Ix for all x ∈ (1, 3] ⊂ Cq(I, T 2).

Uniformly R-subweakly commuting maps are uniformly Cq-commuting but the converse does not hold
in general, to see this we consider the following example.
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Example 2. Let X = R with usual norm and M = [0,∞). Let Ix = x
2 if 0 ≤ x < 1 and Ix = x if x ≥ 1,

and Tx = 1
2 if 0 ≤ x < 1 and Tx = x2 if x ≥ 1. Then M is 1-starshaped with I1 = 1 and Cq(I, T ) = [1,∞]

and Cq(I, T
n) ⊆ [1,∞] for each n > 1. Clearly, I and T are uniformly Cq-commuting but not R-weakly

commuting for all R > 0. Thus I and T are neither R-subweakly commuting nor uniformly R-subweakly
commuting maps.

We can extend these concepts on F -starshaped set in the convex structure (X,F )(see [17, 18]).

Definition 2. Let (X,F,≤) be a ordered semi-convex structure and, T be a self-map on a nonempty subset
M of X. We define, Y Tnx

p = {F (λ, Tnx, p) : 0 ≤ λ ≤ 1}.

The following result improves and extends Lemma 3.3 [3].

Lemma 3. Let (X,F,≤) be a ordered semi-convex structure and S and T be self-maps on a nonempty subset
M of X. Suppose that M is F -starshaped with respect to an element p in F (S), S satisfies F (λ, Sx, p) =
S(F (λ, x, p)) and S(M) = M . Assume that T and S are uniformly Cp-commuting and satisfy for each n ≥ 1

‖Tnx− Tny‖ ≤ knmax

{
‖Sx− Sy‖, dist(Sx, Y Tnx

p ), dist(Sy, Y Tny
p ),

dist(Sx, Y Tny
p ), dist(Sy, Y Tnx

p )}

}
(1)

for all x, y ∈ M , where {kn} is a sequence of real numbers with kn ≥ 1 and limnkn = 1. For each n ≥ 1,
define a mapping Tn on M by

Tnx = F (µn, T
nx, p)

where µn = λn
kn

and {λn} is a sequence of numbers in (0, 1) such that limnλn = 1. Then for each n ≥ 1, Tn
and S have exactly one common fixed point xn in M such that

Sxn = xn = F (µn, T
nxn, p)

provided one of the following conditions hold;
(i) M is closed and for each n, clTn(M) is complete,
(ii) M is weakly closed and for each n, wclTn(M) is complete.

Proof. By definition,
Tnx = F (µn, T

nx, p).

As S and T are uniformly Cp-commuting and F (λ, Sx, p) = S(F (λ, x, p)) with Sp = p, then for each
x ∈ C(S, Tn) ⊆ Cp(S, Tn)

TnSx = F (µn, T
nSx, p)

= F (µn, ST
nx, p)

= S(F (µn, T
nx, p))

= STnx.

Hence S and Tn are weakly compatible for all n. Also by (1),

‖Tnx− Tny‖ = µn‖Tnx− Tny‖
≤ λn max{‖Sx− Sy‖, dist(Sx, Y Tnx

p ), dist(Sy, Y Tny
p ),

dist(Sx, Y Tny
p ), dist(Sy, Y Tnx

p )}
≤ λn max{‖Sx− Sy‖, ‖Sx− Tnx‖ , ‖Sy − Tny‖ ,
‖Sx− Tny‖ , ‖Sy − Tnx‖},
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for each x, y ∈M .
(i) As M is closed, therefore, for each n, clTn(M) ⊂M = S(M). By Theorem 2.1[23], for each n ≥ 1, there
exists xn ∈M such that xn = Sxn = Tnxn. Thus for each n ≥ 1, M ∩ F (Tn) ∩ F (I) 6= ∅.
(ii) As wclTn(M) ⊂M = S(M), for each n, by Theorem 2.1[23], the conclusion follows.

The following result extends the recent results due to Hussain and Rhoades [18] and Theorem 3.4 of
Beg et al. [3] to uniformly Cp-commuting asymptotically S-nonexpansive maps defined on nonstarshaped
domain.

Theorem 4. Let (X,F,≤) be a ordered semi-convex structure with F regular and, S and T be self-maps on
a nonempty subset M of X. Suppose that M is F -starshaped with respect to an element p in F (S), S satisfies
F (λ, Sx, p) = S(F (λ, x, p)) and S(M) = M . Assume that T and S are uniformly Cp-commuting maps, T is
uniformly asymptotically regular and asymptotically S-nonexpansive map. Then F (T )∩ F (S) 6= ∅, provided
one of the following conditions holds;
(i) M is closed, T is continuous and clT (M) is compact,
(ii) X is complete, M is weakly closed, S is weakly continuous, wclT (M) is weakly compact and I − T is
demiclosed at 0.

Proof. (i) Notice that compactness of clT (M) implies that clTn(M) is compact and hence complete. From
Lemma 3, for each n ≥ 1, there exists xn ∈ M such that xn = Sxn = Tnxn = F (µn, T

nxn, p). Hence
xn ∈ Cp(S, Tn).
Therefore

xn − Tn+1xn = Tnxn − Tn+1xn

= F (µn, T
nxn, p)− Tn+1xn

≤ F (limsup
n→∞

µn, T
nxn, p)− Tn+1xn

≤ F (1, Tnxn, p)− Tn+1xn

≤ Tnxn − Tn+1xn.

Applying the same argument as above, we also have

xn − Tnxn ≤ 0.

Since T is uniformly asymptotically regular on M it follows that
Tnxn − Tn+1xn → 0 as n→∞.
Therefore xn − Tn+1xn → 0 as n→∞.
Now

‖ xn − Txn ‖ ≤ ‖ xn − Tn+1xn ‖ + ‖ Tn+1xn − Txn ‖
≤ ‖ xn − Tn+1 ‖ +k1 ‖ S(Tnxn)− Sxn ‖ for some k1 ≥ 1

= ‖ xn − Tn+1xn ‖ +k1 ‖ Tnxn − xn ‖

Since S commutes with Tn on Cp(S, T
n) and xn ∈ Cp(S, Tn), xn = Sxn, therefore xn− Txn → 0 as n→∞

Since clT (M) is compact, there exists a subsequence {Txm} of {Txn} such that Txm → x0 as m →∞. By
the continuity of T , we have T (x0) = x0. Since T (M) ⊂ S(M), it follows that x0 = T (x0) = Sy, for some
y ∈ M. Taking the limit as m → ∞, we get Tx0 = Ty. Thus, Tx0 = Sy = Ty = x0. Since S and T are
uniformly Cq− commuting on M and y ∈ C(S, T ), therefore

‖ Tx0 − Sx0 ‖=‖ TSy − STy ‖= 0.

Hence we have y ∈ F (T ) ∩ F (S). Thus F (T ) ∩ F (S) 6= ∅.
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(ii) The weak compactness of wclT (M) implies that wclTn(M) is weakly compact and hence complete
due to completeness of X (see [23]). From Lemma 3, for each n ≥ 1, there exists xn ∈ M such that
xn = Sxn = F (µn, T

nxn, p). The analysis in (i), implies that ‖xn − Txn‖ → 0 as n → ∞. The weak
compactness of wclT (M) implies that there is a subsequence {xm} of {xn} converging weakly to y ∈M as
m→∞. As S is weakly continuous, so Sy = y. Also we have, Sxm − Txm = xm − Txm → 0 as m→∞. If
S − T is demiclosed at 0, then Sy = Ty. Thus F (T ) ∩ F (S) 6= ∅. This completes the proof.

Remark 1. Notice that the conditions of the continuity and linearity of S are not needed in Theorem 3.4
of Beg et al. [3]. The result is also true for affine mapping S.

Now we introduce the concept of upper semi-convex structure in a Banach space as follows:

Definition 5. (i) Let (X, ‖ · ‖) be a Banach space with semi-convex structure F . A continuous map
F : [12 , 1] ×X ×X → X is said to be an upper semi-convex structure on X if for all x, y in X, λ in
[12 , 1],

‖u− F (λ, x, F (λ, y, y))‖ ≤ λ‖u− x‖+ (1− λ)‖u− y‖

for all u in X.

(ii) Let (X, ‖ . ‖) be a Banach space with upper semi-convex structure F . Then the triplet (X,F, ‖ · ‖) is
called an upper semi-convex Banach space (or, in brief, USCBS).

(iii) Let (X,F, ‖ · ‖) be an upper semi-convex Banach space, K a subset of X and let ‘ ≤’ be an order
relation defined on X by

x ≤ y iff y − x ∈ K.

Then the triplet (X,F, ‖ · ‖) is said to be an ordered USCBS induced by (K,≤).

The following result extends main theorems in [8, 9, 11, 22].

Theorem 6. Let M be a nonempty, subset of an ordered USCBS (X,F, ‖ · ‖) induced by (M,≤) , and
T, S : M →M be weakly compatible pair satisfying the following condition:

‖ Tx− Ty ‖p≤ a ‖ Sx− Sy ‖p +(1− a)max{‖ Tx− Sx ‖p, ‖ Ty − Sy ‖p} (2)

for all x, y ∈M , where 0 < a < 1/2p−1 and p ≥ 1. If cl(T (M)) ∪ F
(

[12 , 1], T (M)× T (M)
)
⊆ S(M), where

F is a upper semi-convex structure on M and cl(T (M)) is complete, then T and S have a unique common
fixed point in M ; i.e., M ∩ F (T ) ∩ F (S) is singleton.

Proof. Let x be an arbitrary point of M . Choose points x1, x2, x3 in M and some λ ∈ [12 , 1] such that

Sx1 = Tx, Sx2 = Tx1, Sx3 = F (λ, Tx1, Tx2).

This choice is possible because Tx, Tx1, Tx2, F (λ, Tx1, Tx2) are in S(M).
By (2), we have

‖Sx1 − Sx2‖p = ‖Tx− Tx1‖p

≤ a ‖Sx− Sx1‖p + (1− a)max{‖Sx− Tx‖p, ‖Sx1 − Tx1‖p}
= a ‖Sx− Sx1‖2 + (1− a)max{‖Sx− Sx1‖2, ‖Sx1 − Sx2‖2}.

Hence we have
‖Sx1 − Sx2‖ ≤ ‖Sx− Sx1‖. (3)

Form (2) and (3),

‖Sx2 − Tx2‖p = ‖Tx1 − Tx2‖p
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≤ a ‖Sx1 − Sx2‖p + (1− a)max{‖Sx1 − Tx1‖p, ‖Sx2 − Tx2‖p}

≤ a ‖Sx− Sx1‖p + (1− a)max{‖Sx− Sx1‖p, ‖Sx2 − Tx2‖p}

which implies
‖Sx2 − Tx2‖ ≤ ‖Sx− Sx1‖ (4)

As f(x) = xp is increasing for x ≥ 0, we have from (2),

‖Sx1 − Tx2‖p = ‖Tx− Tx2‖p

≤ a ‖Sx− Sx2‖p + (1− a)max{‖Sx− Tx‖p, ‖Sx2 − Tx2‖p}
≤ a [‖Sx− Sx1‖+ ‖Sx1 − Sx2‖]p + (1− a)max{‖Sx− Sx1‖p, ‖Sx2 − Tx2‖p}.

Hence, using (3) and (4), we have

‖Sx1 − Tx2‖p ≤ (2pa+ 1− a) ‖Sx− Sx1‖p. (5)

Now using Definition (5) and convexity of f(x) = xp(p ≥ 1), we have

‖Sx1 − Sx3‖p = ‖Sx1 − F (λ, Tx1, Tx2)‖p

= ‖Sx1 − F (λ, Tx1, F (λ, Tx2, Tx2))‖p

≤ [λ ‖Sx1 − Tx1‖+ (1− λ) ‖Sx1 − Tx2‖]p

≤ λ ‖Sx1 − Sx2‖p + (1− λ) ‖Sx1 − Tx2‖p.

Hence, from (1) and (3), we obtain

‖Sx1 − Sx3‖p ≤ [1 + (1− λ)2pa{1− 2−p}]‖Sx− Sx1‖p. (6)

Further,

‖Sx2 − Sx3‖p = ‖Sx2 − F (λ, Tx1, Tx2)‖p

= ‖Sx2 − F (λ, Tx1, F (λ, Tx2, Tx2))‖p

≤ [λ ‖Sx2 − Sx2‖+ (1− λ) ‖Sx2 − Tx2‖]p

hence by (2) we get
‖Sx2 − Sx3‖ ≤ (1− λ) ‖Sx− Sx1‖. (7)

Now we choose x4 ∈M such that Sx4 = Tx3. Then from (2), (3) and (4) we have

‖Sx3 − Sx4‖p = ‖Tx3 − F (λ, Tx1, Tx2)‖p

= ‖Tx3 − F (λ, Tx1, F (λ, Tx2, Tx2))‖p

≤ [λ ‖Tx1 − Tx3‖+ (1− λ) ‖Tx2 − Tx3‖]p

≤ λ [a [‖Sx1 − Sx3‖p + (1− a)max{‖Sx1 − Sx2‖p, ‖Sx3 − Sx4‖p}]
+(1− λ) [a [‖Sx2 − Sx3‖p + (1− a)max{‖Sx2 − Tx2‖p, ‖Sx3 − Sx4‖p}]

≤ a [λ ‖Sx1 − Sx3‖p + (1− λ) ‖Sx2 − Sx3‖p] + (1− a)

max{‖Sx− Sx1‖p, ‖Sx3 − Sx4‖p}.

Hence, using (6) and (7), we have

‖Sx3 − Sx4‖p ≤ µpmax{‖Sx− Sx1‖p, ‖Sx3 − Sx4‖p},

where µp =
(
a λ[1 + (1− λ)2pa{1− 2−p}+ (1− λ)p] + (1− a)

)
. Since p ≥ 1, 0 < a <

(
1
2

)p−1
and λ ∈ [12 , 1],

we obtain µp < 1. To see this, we observe that

µp =
(
a λ[1 + (1− λ)2pa{1− 2−p}+ (1− λ)p] + (1− a)

)
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<
(
a λ[1 + 2(1− λ){1− 2−p}+ (1− λ)p] + (1− a)

)
, as a <

(1

2

)p−1
≤
(
a · 2−1[1 + 2 · 2−1{1− 2−p}+ 2−p] + (1− a)

)
= 1, as 1− λ ≤ 1

2
.

Therefore,
‖Sx3 − Sx4‖ ≤ µ ‖Sx− Sx1‖ (0 < k < 1). (8)

Now we shall consider the sequence {Sxn}∞n=0 which possess the properties (3), (4), (7) and (8); i.e., the
sequence {Sxn}∞n=0 is defined as follows:

Sx3k+1 = Tx3k;Sx3k+2 = Tx3k+1;Sx3(k+1) = F (λ, Tx3k+1, Tx3k+2), k = 0, 1, 2 · · ·

By induction it can easily be shown that from (8), (3) and (7) we have

‖Sx3k − Sx3k+1‖ ≤ µ ‖Sx3(k−1) − Sx3(k−1)+1‖ ≤ · · · ≤ µk ‖Sx− Sx1‖,

‖Sx3k+1 − Sx3k+2‖ ≤ ‖Sx3k − Sx3k+1‖ ≤ µk ‖Sx− Sx1‖,

‖Sx3k+2 − Sx3(k+1)‖ ≤ (1− λ) ‖Sx3k − Sx3k+1‖ ≤ (1− λ)µk ‖Sx− Sx1‖. (9)

Hence for m > n > N , we have

‖Sxm − Sxn‖ ≤
∞∑
i=N

‖Sxi − Sxi+1‖ ≤
(

(3− λ)µ[N/3]/(1− µ)
)
‖Sx− Sx1‖,

where [N/3] means the greatest integer not exceeding N/3. Take x0 = x, then it follows from the above
inequality that the sequence {Sxn}∞n=0 is a Cauchy sequence in M , hence convergent. So, let lim

n→∞
Sxn = u.

As Tx3k = Sx3k+1, Tx3k+1 = Sx3k+2, from (4) and (9) we have

‖Tx3k+2 − Sx3k+2‖ ≤ ‖Sx3k − Sx3k+1‖ ≤ µp‖Sx− Sx1‖.

Therefore,
lim
n
Sxn = lim

n
Txn = u ∈ cl(T (M)) ⊆ S(M),

which implies that there exists some y ∈M such that u = Sy. For each n ≥ 1,

‖u− Ty‖ ≤ ‖u− Txn‖+ ‖Txn − Ty‖

≤ [‖u− Txn‖+ a
1
p ‖Sxn − Sy‖+ (1− a)

1
p max{‖Txn − Sxn‖, ‖Ty − Sy‖}].

Taking the limit as n→∞ yields

‖u− Ty‖ ≤ (1− a)
1
p ‖u− Ty‖,

which implies that Sy = u = Ty. Since S and T are weakly compatible, T 2y = TSy = STy. Using (2),

‖TTy − Ty‖p ≤ a‖STy − Sy‖p + (1− a) max{‖TTy − STy‖p, ‖Ty − Sy‖p},

which implies that TTy = Ty. Since TTy = STy, Ty = u is a common fixed point of T and S. Condition
(2) ensures that u is the unique common fixed point of T and S; i.e., M ∩ F (T ) ∩ F (S) is singleton.

Theorem 7. Let (X,F, ‖ · ‖) be an ordered USCBS induced by (M,≤), where F is a upper semi-convex
structure on M and let T, S : M → M be Cp-commuting mappings. Let M be F -starshaped with respect to
an element p ∈ F (S) and S satisfies F (λ, Sx, p) = S(F (λ, x, p)) for each x ∈M . If M = S(M), and for all
x, y ∈M , and all k ∈ (0, 1),

‖ Tx− Ty ‖≤‖ Sx− Sy ‖ +
1− k
k

max{dist(Sx, Y Tx
p ), dist(Sy, Y Ty

p )}, (10)
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then M ∩ F (S) ∩ F (T ) 6= ∅, provided one of the following conditions holds;

(i) T is continuous and cl(T (M)) is compact;
(ii) S is weakly continuous, wcl(T (M)) is weakly compact and either S−T is demiclosed at 0 or X satisfies
Opial’s condition.

Proof. Define Tn : M →M by
Tnx = F (kn, Tx, p)

for some p ∈ F (S) and all x ∈M and a fixed sequence of real numbers kn(0 < kn < 1) converging to 1. As
S and T are Cp-commuting and F (λ, Sx, p) = S(F (λ, x, p)) with Sp = p, then for each x ∈ Cp(S, T )

TnSx = F (kn, TSx, p)

= F (kn, STx, p)

= S(F (kn, Tx, p))

= STnx.

Thus STnx = TnSx for each x ∈ C(S, Tn) ⊂ Cp(S, T ). Hence S and Tn are weakly compatible for all n.
Also

‖ Tnx− Tny ‖ = kn ‖ Tx− Ty ‖

≤ kn{‖ Sx− Sy ‖ +
1− kn
kn

max{‖ Sx− Tnx ‖, ‖ Sy − Tny ‖}}

= kn ‖ Sx− Sy ‖ +(1− kn)max{‖ Sx− Tnx ‖, ‖ Sy − Tny ‖}

for each x, y ∈M and 0 < kn < 1.
(i) By Theorem 6, for each n ≥ 1, there exist an xn ∈M such that xn = Sxn = Tnxn. The compactness of
cl(T (M)) implies that there exists a subsequence Txm such that Txm → z as m→∞. Also

limxm = limTm(xm) = limF (km, T (xm), p) = F (1, z, p) = z.

As z ∈ cl(T (M)) ⊂ S(M), z = Su for some u ∈M and hence Su = z = Tz. Further, for each m,

‖Txm − Tu‖ ≤ ‖Sxm − Su‖+
1− km
km

max{‖Sxm − Tmxm‖, ‖Su− Tmu‖}}

= ‖xm − z‖+
1− km
km

max{‖Sxm − Tmxm‖, ‖Su− Tmu‖}},

which, on letting m→∞, implies that Su = z = Tz = Tu. Since S and T are also weakly compatible, we
have Sz = STu = TSu = Tz = z. This shows that M ∩ F (S) ∩ F (T ) 6= ∅.
(ii) Proof is similar to the proof of Theorem 2.4 [19], here we use Theorem (6) instead of Theorem 2.1 [19]

Theorem (7) extends Theorem 2.2 in [2] and Theorems 2.3 and 2.4 in [19].

Lemma 8. Let M be a nonempty subset of an ordered USCBS (X,F, ‖ · ‖) induced by (M,≤) , and T, S :
M → M be a pair of maps satisfying inequality (2), F (S) is nonempty and F is an upper semi-convex
structure on F (S). Suppose that cl(T (M)) is complete and clT (F (S)) ⊆ F (S), then T and S have a unique
common fixed point in M .

Proof. By our assumptions, T (F (S)) ⊆ F (S) and F (S) is nonempty, and has an upper semi-convex
structure. The completeness of cl(T (M)) implies that cl(T (F (S))) is complete. Further for all x, y ∈ F (S),
we have by inequality 2,

‖Tx− Ty‖ ≤ a ‖ Sx− Sy ‖p +(1− a) max{‖ Tx− Sx ‖p, ‖ Ty − Sy ‖p}
= a ‖ x− y ‖p +(1− a) max{‖ Tx− x ‖p, ‖ Ty − y ‖p}

By Theorem 6, T has a unique fixed point y in F (S) and consequently M ∩ F (T ) ∩ F (S) is singleton.
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Corollary 9. Let M be a nonempty subset of an ordered USCBS (X,F, ‖ · ‖) induced by (M,≤) , and
T, S : M →M be a pair of maps satisfying inequality (2), F (S) is nonempty and closed and F is an upper
semi-convex structure on F (S). Suppose that cl(T (M)) is complete, (T, S) is a Banach operator pair, then
T and S have a unique common fixed point in M.

The following result extends and improves Theorem 3.3 of [5] and Theorems 2.2 and 2.4 in [16].

Theorem 10. Let (X,F, ‖ · ‖) be an ordered USCBS induced by (M,≤) and let T, S : M → M be pair of
self-mappings. Assume that F (S) is F -starshaped with respect to an element p ∈ F (S), where F is an upper
semi-convex structure on F (S), clT (F (S)) ⊆ F (S) [resp. wclT (F (S)) ⊆ F (S)], cl(T (M)) is compact [resp.
wcl(T (M)) is weakly compact and either id − T is demiclosed at 0 or X satisfies Opial’s condition] and
(T, S) satisfies (10), for all x, y ∈M , and all k ∈ (0, 1), then M ∩ F (S) ∩ F (T ) 6= ∅.

Proof. Define Tn : F (S)→ F (S) as in Theorem 7. As F (S) is F -starshaped with respect to an element p
in F (S), for each x ∈ F (S) Tnx = F (kn, Tx, p) ∈ F (S), since Tx ∈ F (S) and F (S) is F -starshaped with
respect to p ∈ F (S). Thus clTn(F (S)) ⊆ F (S) for each n. Also

‖ Tnx− Tny ‖ = kn ‖ Tx− Ty ‖

≤ kn{‖ Sx− Sy ‖ +
1− kn
kn

max{‖ Sx− Tnx ‖, ‖ Sy − Tny ‖}}

= kn ‖ Sx− Sy ‖ +(1− kn) max{‖ Sx− Tnx ‖, ‖ Sy − Tny ‖}

for each x, y ∈ F (S) and 0 < kn < 1.
If cl(T (M)) is compact, for each n ∈ N, cl(Tn(M)) is compact and hence complete. By Lemma 8, for each
n ≥ 1, there exist an xn ∈M such that xn = Sxn = Tnxn. The compactness of cl(T (M)) implies that there
exist a subsequence Txni such that Txni → z ∈ cl(T (F (S))) ⊆ F (S) as i→∞. Since T is continuous, so

z = limTxni = limT (Tni(xni)) = limT (F (kni , T (xni), p)) = T (F (1, z, p)) = T (z).

This shows that M ∩ F (S) ∩ F (T ) 6= ∅.
Similarly we obtain the proof of second part.

Corollary 11. Let (X,F, ‖ · ‖) be an ordered USCBS induced by (M,≤) and let T, S : M → M be pair
of self-mappings. Assume that (T, S) is a Banach operator pair on M and F -starshaped with respect to
an element p ∈ F (S), where F is an upper semi-convex structure on F (S). If , F (S) is closed [resp.
weakly closed], cl(T (M)) is compact [resp. wcl(T (M)) is weakly compact and either id − T is demiclosed
at 0 or X satisfies Opial’s condition] and (T, S) satisfies (9), for all x, y ∈ M , and all k ∈ (0, 1), then
M ∩ F (S) ∩ F (T ) 6= ∅.

We now furnish a non-trivial example to validate Theorem (6).

Example 3. Let X = R be equipped with usual norm ‖ · ‖ = | · |. Let F : [12 , 1]×X×X → X be defined by
F (λ, x, y) = λx+(1−λ)y for all x, y in M and λ in [12 , 1]. Clearly, F is an upper semi-convex structure on X.
Take M = [−1, 1]. Let T, S : M → M be a pair of self-mappings on M such that Tx = 1

3 |x| and Sx = −x.

Obviously, T and S are weakly compatible pair of mappings. Also cl(T (M)) ∪ F
(

[12 , 1], T (M), T (M)
)
⊆

S(M) and q = 0 is the starcenter. For all x, y ∈M , p ≥ 1 and 0 < a = 1
3p <

1
2p−1 , we have

‖Tx− Ty‖p = |Tx− Ty|p =
1

3p
| |x| − |y| |p ≤ 1

3p
|x− y|p =

1

3p
| − x+ y|p =

1

3p
‖Sx− Sy‖p

≤ 1

3p
‖Sx− Sy‖p + (1− 1

3p
) max{‖Tx− Sx‖p, ‖Ty − Sy‖p}.

Thus, all the conditions of Theorem 6 are satisfied. Clearly, 0 is the unique fixed point of S and T in M
i.e., M ∩ F (T ) ∩ F (S) is singleton.
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4. Best Simultaneous Approximation Results

Let M be a subset of a Banach space (X, ‖ . ‖). The set PM (u) = {x ∈ M :‖ x − u ‖= dist(u,M)} is
called the set of best approximants to u ∈ X out of M , where dist(u,M) = inf{‖ y−u ‖: y ∈M}. Suppose
A ,G, are bounded subsets of X, then we write

rG(A) = infg∈Gsupa∈A ‖ a− g ‖

centG(A) = {g0 ∈ G : supa∈A ‖ a− g0 ‖= rG(A)}.

The number rG(A) is called the Chebyshev radius of A w.r.t G and an element y0 ∈ centG(A) is called a
best simultaneous approximation of A w.r.t G. If A = {u}, then rG(A) = d(u,G) and centG(A) is the set of
all best approximations, PG(u), of u out of G. We also refer the reader to Cheney [6], Klee [27] and Milman
[29] for further details.

Sahab et al. [34], Jungck and Sessa [24] and Al-Thagafi [2] generalized main result of Singh [37] to nonex-
pansive mapping T with respect to continuous mapping S in the context of best approximation in normed
linear space. In this section, as an application of our common fixed point results, we prove the corresponding
results in semi-convex structure in the context of best simultaneous approximation for more general pair of
mappings.
In the following result we extend corresponding results in [2, 3, 18, 24] to asymptotically S-nonexpansive
maps defined on F -starshaped domain.

Theorem 12. Let (X,F,≤) be an ordered semi-convex structure with F regular and, G and A are nonempty
subsets of X such that centG(A), set of best simultaneous approximations of elements in A by G, is nonempty.
Let T and S are self mapping on centG(A). Suppose that centG(A) is F-starshaped with respect to an
element p in F (S), F (λ, Sx, p) = S(F (λ, x, p)) for all x ∈ centG(A) and S(centG(A)) = centG(A). As-
sume that T and S are uniformly Cp−commuting, T is uniformly asymptotically regular and asymptotically
S−nonexpansive. Then F (T ) ∩ F (S) ∩ centG(A) 6= ∅, provided one of the following conditions holds:
(i) centG(A) is closed and clT (centG(A)) is compact.
(ii)X is complete, centG(A) is weakly closed, S is weakly continuous, wclT (centG(A) is weakly compact and
I − T is demiclosed at 0.

Proof. In both of the cases (i) -(ii), Lemma 4 implies that, for each n ≥ 1, there exists xn ∈ centG(A) such
that xn = Sxn = F (µn, T

nxn, p). The result now follows from Theorem 4.

Corollary 13. ([40], Theorem 2.3). Let K be a nonempty subset of a normed space X and y1, y2 ∈ X.
Suppose that T and S are self-mappings of K such that T is asymptotically S−nonexpansive. Suppose that
the set F (S) is nonempty. Let the set D, of best simultaneous K-approximates to y1 and y2, is nonempty
compact and starshaped with respect to an element p in F (S) and D is invariant under T . Assume further
that T and S are commuting, T is uniformly asymptotically regular on D, S is affine with S(D) = D. Then
D contains a T− and S−invariant points.

Another extension of Theorem 2.3 due to Vijayraju [40] is presented below;

Theorem 14. Let K be a nonempty subset of a normed space X and y1, y2 ∈ X. Suppose that T and
S are self-mappings of K. Assume that the set D, of best simultaneous K-approximants to y1 and y2, is
nonempty and invariant under T and S, (T, S) is a Banach operator pair on D, D0 := F (S) ∩D is closed
and F -starshaped with respect to an element p ∈ D0, where F is an upper semi-convex structure on D0. If
cl(T (D0)) is compact and (T, S) satisfies (10), for all x, y ∈ D0, and all k ∈ (0, 1), then D contains a T−
and S−invariant point.

Proof. Proof is similar to that of Theorem 12 instead of applying Theorem 4 we apply Corollary 11 to
obtain the conclusion.
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Remark 2. As an application of Theorems 7 and corolary 9, best simultaneous approximation results similar
to Theorem 12 can be established which extend the recent results of Akbar and A. R. Khan [1], Al-Thagafi [2],
Chen and Li [5], Habiniak [15], Hussain, O’Regan and Agarwal [17], Hussain and Rhoades [18], Hussain,
Rhoades and Jungck [19], Jungck and Sessa [24], Khan et al. [25], Sahab, Khan and Sessa [34], Sahney
and Singh [35], Singh [36, 37], Smoluk [38], Subrahmanyam [39] and Vijayraju [40] to ordered semi-convex
structure (X,F,≤).
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