
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 102–111

Research Article

Center and pseudo-isochronous conditions in a quasi
analytic system

Zheng Qingyu, Li Hongwei∗

School of Science, Linyi University, Linyi 276000, Shandong China.

Communicated by Yeol Je Cho

Abstract

The center conditions and pseudo-isochronous center conditions at origin or infinity in a class of non-analytic
polynomial differential system are classified in this paper. By proper transforms, the quasi analytic system
can be changed into an analytic system, and then the first 77 singular values and periodic constants are
computed by Mathematics. Finally, we investigate the center conditions and pseudo-isochronous center
conditions at infinity for the system. Especially, this system was investigated when λ = 1 in [Y. Wu, W.
Huang, H. Dai, Qual. Theory Dyn. Syst., 10 (2011), 123–138]. c©2016 All rights reserved.
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1. Introduction

It is well known that the study of limit cycles bifurcation from infinity and center problem is an important
part of the so called weakened 16 − th Hilbert problem. As far as limit cycles bifurcated from infinity are
concerned, there have been many results [2, 3, 6, 11, 14, 29] for special continuous systems. Bifurcation
of a periodic orbit from infinity has been also studied for polynomial planar vector fields, see for instance
Sotomayor and Paterlini [26], Blows and Rousseau [2], and Gunez, Saez and Szanto [4]. Other papers about
bifurcation of periodic orbits from infinity are due to Keith and Rand [7], Malaguti [22], A. K. Alomari[1]
and Sabatini [25], where they study the Rayleigh, Vanderpol and Lienard systems. But for general system
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it is still a hard work to solve its center problem. A special system with a singular point at infinity

dx

dt
= (δx− y)(x2 + y2)n +

2n∑
k=0

Xk(x, y),

dy

dt
= (x+ δy)(x2 + y2)n +

2n∑
k=0

Yk(x, y),

(1.1)

where
Xk(x, y) =

∑
α+β=k

Aαβx
αyβ, Yk(x, y) =

∑
α+β=k

Bαβx
αyβ, (1.2)

was discussed by Liu et al. in [8], where Xk(x, y) and Yk(x, y) are homogeneous polynomials of order k.
System (1.1) can be changed into

dξ

dτ
=
−δ

2n+ 1
ξ − η +

2n+1∑
k=1

[(
− 1

2n+ 1
ξ2 + η2

)
X2n+1−k(ξ, η)− 2n+ 2

2n+ 1
ξηY2n+1−k(ξ, η)

]

× (ξ2 + η2)(n+1)(k−1),

dη

dτ
= ξ − δ

2n+ 1
η +

2n+1∑
k=1

[(
ξ2 − 1

2n+ 1
η2
)
Y2n+1−k(ξ, η)− 2n+ 2

2n+ 1
ξηX2n+1−k(ξ, η)

]
× (ξ2 + η2)(n+1)(k−1),

(1.3)

by transformations

x =
ξ

(ξ2 + η2)n+1
, y =

η

(ξ2 + η2)n+1
, dt = (ξ2 + η2)n(2n+1)dτ. (1.4)

In [18, 19, 20, 21], Llibre studied the following systems

ż = (λ+ i)z + (zz̄)
d−5
2 (Az4+j z̄1−j +Bz3z̄2 + Cz2−j z̄3+j +Dz̄5), d = 2m+ 1 ≥ 5;

ż = iz + (zz̄)
d−4
2 (Az3z̄ +Bz2z̄2 + Cz̄4), d = 2m ≥ 4;

ż = (λ+ i)z + (zz̄)
d−3
2 (Az3 +Bz2z̄ + Czz̄2 +Dz̄3), d = 2m+ 1 ≥ 3;

ż = (λ+ i)z + (zz̄)
d−2
2 (Az2 +Bzz̄ + Cz̄2), d = 2m ≥ 2.

They obtained the conditions of centers and isochronous centers, but the d is restricted in order to make
the system to be polynomial system. d was restricted strictly in order to make those systems to be analytic
system. In fact, quasi-analytic systems have been widely used in modeling many practical problems in
science and engineering recently. For example, an axis-symmetric quasi-analytical model was presented
in order to simulate the behavior of a RFEC system during its operation [23]. A quasi-analytical model
to predict and analyze signals on layered samples measured by infrared scattering type scanning near-field
optical microscopy was modeled in [5]. A simple quasi-analytical model was developed to study the response
of ice-sheets to climate change in [24]. It is also noted that a type of quasi-analytic systems, described by

ẋ = δx− y +

∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 Xk(x, y),

ẏ = x+ δy +
∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 Yk(x, y),
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where
Xk(x, y) =

∑
α+β=k

Aαβx
αyβ, Yk(x, y) =

∑
α+β=k

Bαβx
αyβ,

has been studied by Liu et al. [10, 17]. As special cases, quasi-analytic quadratic systems have been studied
in [16] and cubic systems in [28]. As far as center conditions at origin are concerned, there are very few
results for the case of non-analytic systems, several special systems have been studied, see [10, 17].

The problems of center conditions and pseudo-isochronous center conditions for quasi-analytic system are
poorly-understood. In this paper, we investigate center conditions and pseudo-isochronous center conditions
for a class of quasi-analytic septic system

dx

dt
= (δx− βy) +X5(x, y)(x2 + y2)λ−2 − y(x2 + y2)2λ,

dy

dt
= (βx+ δy) + Y5(x, y)(x2 + y2)λ−2 + x(x2 + y2)2λ,

(1.5)

where
X5(x, y) =

∑
k+j=5

Akjx
kyj , Y5(x, y) =

∑
k+j=5

Bkjx
kyj ,

A50 = β03 + β12 + β21 + β30, A41 = −5α03 − 3α12 − α21 + α30,
A32 = −2(5β03 + β12 − β21 − β30), A23 = 2(5α03 − α12 − α21 + α30),
A14 = 5β03 − 3β12 + β21 + β30, A05 = −α03 + α12 − α21 + α30,
B50 = α03 + α12 + α21 + α30, B41 = 5β03 + 3β12 + β21 − β30,
B32 = −2 (5α03 + α12 − α21 − α30) , B23 = −2(5β03 − β12 − β21 + β30),
B14 = 5α03 − 3α12 + α21 + α30, B05 = β03 − β12 + β21 − β30,
λ ∈ R .

(1.6)

The paper will be organized as follows. Some preliminary results are given in Section 2. In Section 3, system
(1.5) is reduced to analytic system by some proper transformations. Furthermore, we compute the singular
point quantities and derive the center conditions of the origin for the transformed system. In Section 4, we
compute the period constants and discuss isochronous and pseudo-isochronous center conditions.

2. Some preliminary results

Complex center and isochronous center for the following system

dz

dT
= z +

∞∑
k=2

Zk(z, w) = Z(z, w),

dw

dT
= −w −

∞∑
k=2

Wk(z, w) = −W (z, w),

(2.1)

were defined in [9, 12, 13, 15]. The following theorems could be used to compute focal values and periodic
constants.

Theorem 2.1 ([9]). For system (2.1), we can derive successively the terms of the following formal series:

M(z, w) =

∞∑
α+β=0

cαβz
αwβ,

such that
∂(MZ)

∂z
− ∂(MW )

∂w
=

∞∑
m=1

(m+ 1)µm(zw)m,
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where c00 = 1,∀ckk ∈ R, k = 1, 2, · · · , and for any integer m, µm is determined by the following recursive
formulae:

c00 = 1; when (α = β > 0) or α < 0, or β < 0, cαβ = 0;

else;

cαβ =
1

β − α

α+β+2∑
k+j=3

[(α+ 1)ak,j−1 − (β + 1)bj,k−1]cα−k+1,β−j+1,

µm =
2m+2∑
k+j=3

(ak,j−1 − bj,k−1)cm−k+1,m−j+1.

Theorem 2.2 ([13]). For system (2.1), we can derive uniquely the following formal series:

f(z, w) = z +

∞∑
k+j=2

c′kjz
kwj , g(z, w) = w +

∞∑
k+j=2

d′kjw
kzj ,

where c′k+1,k = d′k+1,k = 0, k = 1, 2, · · · , such that

df

dT
= f(z, w) +

∞∑
j=1

p′jz
j+1wj ,

dg

dT
= −g(z, w)−

∞∑
j=1

q′jw
j+1zj ,

and when k − j − 1 6= 0, c′kj and d′kj are determined by the following recursive formulae:

c′kj =
1

j + 1− k

k+j+1∑
α+β=3

[(k − α+ 1)aα,β−1 − (j − β + 1)bβ,α−1]c
′
k−α+1,j−β+1,

d′kj =
1

j + 1− k

k+j+1∑
α+β=3

[(k − α+ 1)bα,β−1 − (j − β + 1)aβ,α−1]d
′
k−α+1,j−β+1,

and for any positive integer j, p′j and q′j are determined by the following recursive formulae:

p′j =

2j+2∑
α+β=3

[(j − α+ 2)aα,β−1 − (j − β + 1)bβ,α−1]c
′
j−α+2,j−β+1,

q′j =

2j+2∑
α+β=3

[(j − α+ 2)bα,β−1 − (j − β + 1)aβ,α−1]d
′
j−α+2,j−β+1.

In the above expression, we have let c′10 = d′10 = 1, c′01 = d′01 = 0, and if α < 0 or β < 0, let aαβ = bαβ =
c′αβ = d′αβ = 0.

Theorem 2.3 ([15]). (The extended symmetric principle) Let g denote an elementary Lie invariant of
system (2.1). If for all g the symmetric condition g = g∗ is satisfied, then the origin of system (2.1) is a
complex center. Namely, all singular point quantities of the origin are zero.

3. Singular point quantities and center conditions

System (1.5) with δ = 0 could be changed into its concomitant complex system

du

dT
= u(uv)λ + (uv)2(λ−1)(a03u

5 + a12vu
4 + a21u

3v2 + a30u
2v3)− βu(uv)3λ,

dv

dT
= −v(uv)λ − (uv)2(λ−1)(b03v

5 + b12v
4u+ b21u

2v3 + b30u
3v2) + βv(uv)3λ),

(3.1)
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by using transformation
u = x+ iy, v = x− iy, T = it, i =

√
−1, (3.2)

where
a30 = α30 + iβ30, a21 = α21 + iβ21, a12 = α12 + iβ12, a03 = α03 + iβ03,
b30 = α30 − iβ30, b21 = α21 − iβ21, b12 = α12 − iβ12, b03 = α03 − iβ03.

(3.3)

Then, by means of transformations

ξ = u
λ+1
2 v

λ−1
2 , η = v

λ+1
2 u

λ−1
2 ,

and (1.4)n=3, system (3.1) is reduced to

l
dz

dτ
= z + (

1

2
b03 +

1

14
b03λ)w9z6 +

1

2
(a30 + b12)w

8z7 +
λ

14
(b12 − a30)w8z7

+
1

2
(a21 + b21)w

7z8 +
λ

14
(b21 − a21)w7z8 +

1

2
(a12 + b30)w

6z9

+
λ

14
(a12 + b30)w

6z9 +
1

14
(7a03 − a03λ)w5z10 + βw14z15,

dw

dτ
= −w − (

1

2
a03 +

1

14
a03λ)z9w6 − 1

2
(b30 + a12)z

8w7 − λ

14
(a12 − b30)z8w7

− 1

2
(b21 + a21)z

7w8 − λ

14
(a21 − b21)z7w8 − 1

2
(b12 + a30)z

6w9

− λ

14
(b12 + a30)z

6w9 − 1

14
(7b03 − b03λ)z5w10 − βz14w15.

(3.4)

The singular point quantities at the origin of system (3.4) can be computed by using the recursive formulae
of Theorem 2.1 and simplify them with the constructive theorem of singular point quantities, we get the
following theorem.

Theorem 3.1. The first 77 singular point quantities at the origin of system (3.4) are as follows:

µ7 = −1

7
(a21 − b21)λ,

µ14 =
1

7
(a30a12 − b30b12)λ,

Case 1 a12b12 6= 0, then there exist k to make a30 = kb12, b30 = ka12,

µ21 =
λ

56
(a03b

2
12 − b03a212)(−1 + 3k)(−2− 2k − λ+ kλ),

µ28 = − λ2

14(λ− 2)
b21(a03b

2
12 − b03a212)(3k − 1),

µ35 = − λ2

336(λ− 2)3
(3k − 1)(a03b

2
12 − b03a212)(−32a03b03 − 28a03b03λ+ 32a12b12λ

2

+5a03b03λ
3 + a03b03λ

4 + 192β + 192λβ + 48λ2β),

µ42 = 0,

µ49 =
λ2

26880(λ− 2)5
(3k − 1)(a03b

2
12 − b03a212)(1024a203b

2
03 + 1920a203b

2
03λ

−13824a12a03b12b03λ
2 + 224a203b

2
03λ

2 − 11392a12a03b12b03λ
3 − 1584a203b

2
03λ

3
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+12800a212b
2
12λ

4 + 2432a12a03b12b03λ
4 − 1056a203b

2
03λ

4 + 4064a12a03b12b03λ
5

+864a12a03b12b03λ
6 + 206a203b

2
03λ

6 + 69a203b
2
03λ

7 + 7a203b
2
03λ

8),

µ56 = − 7λ2

576(λ− 2)5
(3k − 1)(a03b

2
12 − b03a212)(a03b212 + b03a

2
12)(λ− 1)

×(−32a03b03 − 24a03b03λ+ 32a12b12λ
2 + 4a03b03λ

2 + 6a03b03λ
3 + a03b03λ

4),

If a12b12 = −a03b03(−2+λ)(2+λ)2(4+λ)
32λ2

,

µ63 = − 24131
3674160(3k − 1)a303b

3
03(a03b

2
12 − b03a212)λ2(λ− 1).

If a03b
2
12 + b03a

2
12 = 0, then there exist m to make a03 = ma212, b03 = −mb212,

µ63 =
λ2

6773760000(λ− 2)3
(3k − 1)(λ− 1)a12b12a

2
03b

2
03(a03b

2
12 − b03a212)

×(−23257088a12b12m
2 + 6577280a12b12m

2λ− 23257088λ2 + 26650064a12b12m
2λ2

+75164416λ3 − 2764244a12b12m
2λ3 + 8304896λ4 − 10922212a12b12m

2λ4 − 18884608λ5

−916685a12b12m
2λ5 + 1341691a12b12m

2λ6 + 255854a12b12m
2λ7),

µ70 = 0,

µ77 = − 8λ11

6806835
(3k − 1)(a03b

2
12 − b03a212)(λ− 1).

Case 2 a12 = b12 = 0,

µ21 =
3λ

56
(a03a

2
30 − b03b230)(λ− 2),

µ28 =
3

14
(a03a

2
30 − b03b230)b21,

µ35 = − 1

56
(a03a

2
30 − b03b230)(4a30b30 − 3a03b03 + 24β),

µ42 = 0,

µ49 = − 1

560
(a03a

2
30 − b03b230)(−11a203b

2
03 − 19a03b03a30b30 + 50a230b

2
30),

µ56 =
1

96
(a03a

2
30 − b03b230)(a03a230 + b03b

2
30)(a03b03 − a30b30),

µ63 = − 1

560
a230b

2
30(a03a

2
30 − b03b230)(−50− 19a30b30m

2 + 11a230b
2
30m

4),

where µk=0, k 6= 7i, i ≤ 11, i ∈ N . In the above expression of µk, we have already let µ1= · · ·=µk−1=0,
k = 2, 3, · · · , 77.

Theorem 3.1 implies that

Theorem 3.2. The first 77 singular point quantities of system (3.4) are zero if and only if one of the
following conditions holds,

a21 = b21, a12 = b12 = 0, a230a03 = b03b
2
30; (3.5)

a21 = b21, a30 =
1

3
b12, b30 =

1

3
a12, a12b12 6= 0; (3.6)

a21 = b21, a30a12 = b30b12, a212b03 = b212a03, a12b12 6= 0. (3.7)
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λ = 1, β = 0, a21 = b21 = 0, a30 = −3b12, b30 = −3a12, a03b03 = 4a12b12, a12b12 6= 0. (3.8)

Correspondingly, the conditions in Theorem 3.2 are the center conditions of the origin.

In order to prove this Theorem, according to the technique used in [17], we can find out all the elementary
Lie invariants of system (3.4) firstly which are given in following Lemma.

Lemma 3.3. All the elementary Lie invariants of system (3.4) are as follows:

β, a21, b21, a30b30, a12b12, a03b03, a30a12, b30b12,

a230a03, a30b12a03, b
2
12a03, b

2
30b03, b30a12b03, a

2
12b03.

(3.9)

Proof. When condition (3.5) or (3.7) holds, system (3.4) satisfies the conditions of Theorem 2.3. If condition
(3.6) holds, system (3.4) has the first integral{

zwe3−3a03z
9w5−4a12z8w6−6b21z7w7−4b12z6w8−3b03z5w9−3z14w14β, λ = 2,

(zw)−
7(λ−2)
λ f1, λ 6= 2,

where

f1 = −24− 12λ(−12a03 + 3a03λ
2)z9w5 + (4a12λ

2 − 16a12)z
8w6 + (6b21λ

2 − 24b21)z
7w7

+ (4b12λ
2 − 16b12)z

6w8 + (3b03λ
2 − 12b03)z

5w9 − (24β − 12λβ)z10w10.

When condition (3.8) is satisfied, system (3.4) can be rewritten as

dz

dT
=

1

14
(14 + 6a03z

9w5 − 18a12z
8w6 − 10b12z

6w8 + 8b03z
5w9),

dw

dT
= − 1

14
(14 + 6b03z

5w9 − 18b12w
8z6 − 10a12w

6z8 + 8a03w
5z9).

(3.10)

By means of transformation

z =
u

(uv)
3
7

, w =
w

(uv)
3
7

,

system (3.10) is transformed into

du

dT
= u+ b03v

3 + b12v
2u− 3a12u

3 = U(u, v),

dv

dT
= −(v + a03u

3 + a12u
2v − 3b12v

3) = −V (u, v),

(3.11)

which has a integrating factor f
− 5

6
2 , where

f2 = 1− 6(b12u
2 + a12v

2)

+ 3(3b212u
4 − 2a12b03u

3v + 2a12b12u
2v2 − 2b12a03v

3u+ 3a412v
4)

+
1

2
(2a12u− a03v)(2b12v − b03u)(b03u

4 − 2b12u
3v − 2a12v

3u+ a03v
4)

(3.12)

and
df2
dt

= −12(b12u
2 − a12v2)f2 =

6

5
(
∂U

∂u
− ∂V

∂v
)f2. (3.13)
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4. Period constants and isochronous center conditions

In this section, we devote to discuss the isochronous center conditions for system (3.4). First of all, we
compute period constants according to Theorem 2.2 from the center conditions given in Section 4. Then the
sufficiency are proved by different means. The complex isochronous center conditions are given in following
Theorem.

Theorem 4.1. The origin of system (3.4) is a complex isochronous center if and only if one of the following
conditions holds

β = a21 = b21 = a12 = b12 = a30 = b30 = 0, λ = −2; (4.1)

β = a21 = b21 = a12 = b12 = a03 = b03 = 0, λ = 1, a30b30 6= 0; (4.2)

λ = −2, β = a21 = b21 = a03 = b03 = 0, a30 = 1
3b12, b30 = 1

3a12. (4.3)

β = a21 = b21 = a03 = b03 = 0, a30 = −b12, b30 = −a12; (4.4)

β = a21 = b21 = a03 = b03 = 0, a30 = 1+λ
λ−1b12, b30 = 1+λ

λ−1a12. (4.5)

Proof. When condition (4.1) is satisfied, system (3.4) could be rewritten as

dz

dT
=

1

14
z(14 + 9a03z

9w5 + 5b03z
5w9),

dw

dT
= − 1

14
w(14 + 5a03z

9w5 + 9b03z
5w9),

(4.6)

there exists a transformation

u =
z(1 + b03z

5w9)
5
56

(1 + a03z9w5)
9
56

, v =
w(1 + a03z

9w5)
5
56

(1 + b03z5w9)
9
56

,

such that system (4.6) is reduced to a linear system.
When condition (4.2) holds, system (3.4) becomes

dz
dT = 1

14z(14 + 8b30z
8w6 + 6a30z

6w8),

dw
dT = − 1

14w(14 + 6b30z
8w6 + 8a30z

6w8).

(4.7)

By means of a transformation

u =
z(1 + a30z

6w8)
3
14

(1 + b30z8w6)
2
7

, v =
w(1 + b30z

8w6)
3
14

(1 + a30z6w8)
2
7

, (4.8)

system (4.7) is reduced to a linear system.
When condition (4.3) is satisfied, system (3.4) is rewritten as

dz

dT
=

1

14
z(14 + 8a12z

8w6 +
32

3
b12z

6w8),

dw

dT
= − 1

14
w(14 + 8b12z

6w8 +
32

3
a12z

8w6),

(4.9)

it also could be reduced to a linear system by a transformation

u =
z(3 + 4b12z

6w8)
3
14

(3 + 4a12z8w6)
2
7

, v =
w(3 + 4a12z

8w6)
3
14

(3 + 4b12z6w8)
2
7

.
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When condition (4.4) is fulfilled, system (3.4) becomes

dz

dT
=

1

14
z(14− 2a12λz

8w6 + 2b12λz
6w8),

dw

dT
= − 1

14
w(14− 2b12λz

6w8 + 2b12λz
8w6),

(4.10)

we have for system (4.10) that
dθ

dt
=

1

2

(
1

z

dz

dT
− 1

w

dw

dT

)
= 1. (4.11)

When condition (4.5) is satisfied, system (3.4) could be rewritten as

dz
dT = 1

7(λ−1)z(7(λ− 1) + 8a12λz
8w6 + 6b12λz

6w8),

dw
dT = − 1

7(λ−1)w(5(λ− 1) + 8b12λz
6w8 + 6b12λz

8w6),

(4.12)

there exists a transformation

u =
z(−1 + λ+ 2b12λz

6w8)
3
14

(−1 + λ+ 2a12λz8w6)
2
7

, v =
w(−1 + λ+ 2a12λz

8w6)
3
14

(−1 + λ+ 2b12λz6w8)
2
7

,

such that system (4.12) is reduced to a linear system.
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