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Abstract

In this paper, we solve the quadratic ρ-functional equations

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
, (1)

where ρ is a fixed non-Archimedean number or a fixed real or complex number with ρ 6= −1, 2, and

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) = ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y)), (2)

where ρ is a fixed non-Archimedean number or a fixed real or complex number with ρ 6= −1, 12 .
Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic ρ-functional equations

(1) and (2) in non-Archimedean Banach spaces and in Banach spaces. c©2016 All rights reserved.

Keywords: Hyers-Ulam stability, non-Archimedean normed space, fixed point, quadratic ρ-functional
equation.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [28] concerning the
stability of group homomorphisms.

The functional equation f(x + y) = f(x) + f(y) is called the Cauchy equation. In particular, every
solution of the Cauchy equation is said to be an additive mapping. Hyers [15] gave a first affirmative partial
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answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive
mappings and by Rassias [23] for linear mappings by considering an unbounded Cauchy difference. Gajda
[11] following the same approach as in Rassias [23], gave an affirmative solution to this question for p > 1. It
was shown by Gajda [11], as well as by Rassias and Šemrl [24] that one cannot prove a Rassias’ type theorem
when p = 1. The counterexamples of Gajda [11], as well as of Rassias and Šemrl [24] have stimulated several
mathematicians to invent new definitions of approximately additive or approximately linear mappings, cf.
Găvruta [12], who among others studied the Hyers-Ulam stability of functional equations (cf. the books of
Czerwik [8, 9], Hyers, Isac and Th. M. Rassias [16]). The hyperstability of the Cauchy equation was proved
by Brzdek [3].

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation
is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [25] for
mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [7] noticed that the
theorem of Skof is still true if the relevant domain E1 is replaced by an Abelian group. See [13, 14, 26, 27]
for more functional equations. The survey on the Hyers-Ulam stability of functional equations was given by
Brillouet-Bulluot, Brzdek and Cieplinski [2].

The functional equation

2f

(
x+ y

2

)
+ 2

(
x− y

2

)
= f(x) + f(y)

is called a Jensen type quadratic equation.
A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element having the 0

valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.

A field K is called a valued field if K carries a valuation. The usual absolute values of R and C are examples
of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle
inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,

then the function | · | is called a non-Archimedean valuation, and the field is called a non-Archimedean
field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example of a non-Archimedean valuation
is the function | · | taking everything except for 0 into 1 and |0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call it simply a
field.

Definition 1.1 ([19]). Let X be a vector space over a field K with a non-Archimedean valuation | · |. A
function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖rx‖ = |r|‖x‖ (r ∈ K,x ∈ X);

(iii) the strong triangle inequality

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X

holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

We recall a fundamental result in fixed point theory.
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Theorem 1.2 ([4, 10]). Let (X, d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant α < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th. M. Rassias [17] were the first to provide applications of stability theory of
functional equations for the proof of new fixed point theorems with applications. By using fixed point
methods, the stability problems of several functional equations have been extensively investigated by a
number of authors (see [5, 6, 20, 21, 22]).

In Section 2, we solve the quadratic functional equation (1) in vector spaces and prove the Hyers-Ulam
stability of the quadratic functional equation (1) in non-Archimedean Banach spaces by using the fixed point
method.

In Section 3, we solve the quadratic functional equation (2) in vector spaces and prove the Hyers-Ulam
stability of the quadratic functional equation (2) in non-Archimedean Banach spaces by using the fixed point
method.

In Section 4, we prove the Hyers-Ulam stability of the quadratic functional equation (1) in Banach spaces
by using the fixed point method.

In Section 5, we prove the Hyers-Ulam stability of the quadratic functional equation (2) in Banach spaces
by using the fixed point method.

2. Quadratic ρ-functional equation (1) in non-Archimedean Banach spaces

Throughout Sections 2 and 3, assume that X is a non-Archimedean normed space and that Y is a
non-Archimedean Banach space. Let |2| 6= 1 and let ρ be a fixed non-Archimedean number with ρ 6= −1, 2.

Lemma 2.1. Let X and Y be vector spaces. A mapping f : X → Y satisfies

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0 (2.1)

for all x, y ∈ X if and only if the mapping f : X → Y satisfies

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) = 0 (2.2)

for all x, y ∈ X.

Proof. Assume that f : X → Y satisfies (2.1). Letting x = y = 0 in (2.1), we get f(0) = 0. Letting y = x
in (2.1), we get f(2x)− 4f(x) = 0 and so f(2x) = 4f(x) for all x ∈ X. Thus f

(
x
2

)
= 1

4f(x) for all x ∈ X.
So f : X → Y satisfies (2.2). Assume that f : X → Y satisfies (2.2). Letting x = y = 0 in (2.2), we get
f(0) = 0. Letting y = 0 in (2.2), we get 4f

(
x
2

)
= f(x) for all x ∈ X, and so f(2x) = 4f(x) for all x ∈ X.

So f : X → Y satisfies (2.1).

We solve the quadratic ρ-functional equation (1) in vector spaces.

Lemma 2.2. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
(2.3)

for all x, y ∈ X, then f : X → Y is quadratic.
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Proof. Assume that f : X → Y satisfies (2.3).
Letting x = y = 0 in (2.3), we get −2f(0) = 2ρf(0). So f(0) = 0. Letting y = x in (2.3), we get

f(2x)− 4f(x) = 0 and so f(2x) = 4f(x) for all x ∈ X. Thus

f
(x

2

)
=

1

4
f(x) (2.4)

for all x ∈ X.
It follows from (2.3) and (2.4) that

f(x+ y) + f(x− y)− 2f(x)− 2f(y) =ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
=
ρ

2
(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X.

Now we prove the Hyers-Ulam stability of the quadratic ρ-functional equation (2.3) in non-Archimedean
Banach spaces.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(x

2
,
y

2

)
≤ L

|4|
ϕ (x, y) (2.5)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)− ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
‖ ≤ ϕ(x, y) (2.6)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

|4|(1− L)
ϕ (x, x) (2.7)

for all x ∈ X.

Proof. Letting y = x in (2.6), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x) (2.8)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}

and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, x) , ∀x ∈ X} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [18]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.
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Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ εϕ (x, x)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥4g

(x
2

)
− 4h

(x
2

)∥∥∥ ≤ |4|εϕ(x
2
,
x

2

)
≤ |4|ε L

|4|
ϕ (x, x) ≤ Lεϕ (x, x)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.8) that ∥∥∥f(x)− 4f

(x
2

)∥∥∥ ≤ ϕ(x
2
,
x

2

)
≤ L

|4|
ϕ(x, x)

for all x ∈ X. So d(f, Jf) ≤ L
|4| .

By Theorem 1.2, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q
(x

2

)
(2.9)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (2.9) such that there exists a µ ∈ (0,∞) satisfying

‖f(x)−Q(x)‖ ≤ µϕ (x, x)

for all x ∈ X;
(2) d(J lf,Q)→ 0 as l→∞. This implies the equality liml→∞ 4nf

(
x
2n

)
= Q(x) for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies

‖f(x)−Q(x)‖ ≤ L

|4|(1− L)
ϕ(x, x)

for all x ∈ X.
It follows from (2.5) and (2.6) that∥∥∥∥Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)− ρ

(
2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)∥∥∥∥
= lim

n→∞
|4|n

∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
− 2f

( y

2n

)
−ρ

(
2f

(
x+ y

2n+1

)
+ 2f

(
x− y
2n+1

)
− f

( x
2n

)
− f

( y

2n

))∥∥∥∥
≤ lim

n→∞
|4|nϕ

( x
2n
,
y

2n

)
= 0

for all x, y ∈ X. So

Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y) = ρ

(
2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)
for all x, y ∈ X. By Lemma 2.2, the mapping Q : X → Y is quadratic.
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Corollary 2.4. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying
f(0) = 0 and∥∥∥∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)− ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥ (2.10)

≤ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

|2|r − |4|
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.3 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = |2|2−r and we get desired result.

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ |4|Lϕ
(x

2
,
y

2

)
for all x, y ∈ X Let f : X → Y be a mapping satisfying f(0) = 0 and (2.6). Then there exists a unique
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

|4|(1− L)
ϕ (x, x)

for all x ∈ X.

Proof. It follows from (2.8) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

|4|
ϕ(x, x) (2.11)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.3.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (2.11) that d(f, Jf) ≤ 1

|4| . So

‖f(x)−Q(x)‖ ≤ 1

|4|(1− L)
ϕ(x, x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 2.6. Let r > 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
f(0) = 0 and (2.10). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

|4| − |2|r
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.5 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = |2|r−2 and we get desired result.
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3. Quadratic ρ-functional equation (2) in non-Archimedean Banach spaces

Let |2| 6= 1 and let ρ be a fixed non-Archimedean number with ρ 6= −1, 12 .
We solve the quadratic ρ-functional equation (2) in vector spaces.

Lemma 3.1. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) = ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y)) (3.1)

for all x, y ∈ X, then f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (3.1). Letting x = y = 0 in (3.1), we get 2f(0) = −2ρf(0). So
f(0) = 0. Letting y = 0 in (3.1), we get

4f
(x

2

)
− f(x) = 0 (3.2)

and so f
(
x
2

)
= 1

4f(x) for all x ∈ X.
It follows from (3.1) and (3.2) that

1

2
(f(x+ y) + f(x− y)− 2f(x)− 2f(y)) =2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

=ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X.

We prove the Hyers-Ulam stability of the quadratic ρ-functional equation (3.1) in non-Archimedean
Banach spaces.

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(x

2
,
y

2

)
≤ L

|4|
ϕ (x, y)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)− ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ‖ ≤ ϕ(x, y) (3.3)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

1− L
ϕ (x, 0)

for all x ∈ X.

Proof. Letting y = 0 in (3.3), we get ∥∥∥4f
(x

2

)
− f(x)

∥∥∥ ≤ ϕ (x, 0) (3.4)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}



C. Park, S. O. Kim, J. Nonlinear Sci. Appl. 9 (2016), 1858–1871 1865

and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, 0) , ∀x ∈ X} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [18]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

It follows from (3.4) that d(f, Jf) ≤ 1. By Theorem 1.2, there exists a mapping Q : X → Y satisfying
the following:

(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q
(x

2

)
(3.5)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (3.5) such that there exists a µ ∈ (0,∞) satisfying

‖f(x)−Q(x)‖ ≤ µϕ (x, 0)

for all x ∈ X;

(2) d(J lf,Q)→ 0 as l→∞. This implies the equality liml→∞ 4nf
(
x
2n

)
= Q(x) for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies ‖f(x)−Q(x)‖ ≤ 1

1−Lϕ(x, 0) for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 3.3. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying
f(0) = 0 and

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)− ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ‖ ≤ θ(‖x‖r + ‖y‖r)

(3.6)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ |2|rθ
|2|r − |4|

‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = |2|2−r and we get desired result.

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ |4|Lϕ
(x

2
,
y

2

)
for all x, y ∈ X Let f : X → Y be a mapping satisfying f(0) = 0 and (3.3). Then there exists a unique
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

1− L
ϕ (x, 0)

for all x ∈ X.
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Proof. It follows from (3.4) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

|4|
ϕ(2x, 0) ≤ Lϕ(x, 0) (3.7)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 3.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (3.7) that d(f, Jf) ≤ L. So d(f,Q) ≤ L

1−Ld(f, Jf), which implies

‖f(x)−Q(x)‖ ≤ L

1− L
ϕ(x, 0)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 3.2.

Corollary 3.5. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying
f(0) = 0 and (3.6). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ |2|rθ
|4| − |2|r

‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = |2|r−2 and we get desired result.

4. Quadratic ρ-functional equation (1) in Banach spaces

Throughout Sections 4 and 5, assume that X is a normed space and that Y is a Banach space. Let ρ be
a fixed real or complex number with ρ 6= −1, 2.

We prove the Hyers-Ulam stability of the quadratic ρ-functional equation (2.3) in Banach spaces.

Theorem 4.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(x

2
,
y

2

)
≤ L

4
ϕ (x, y) (4.1)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)− ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
‖ ≤ ϕ(x, y) (4.2)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

4(1− L)
ϕ (x, x) (4.3)

for all x ∈ X.
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Proof. Letting x = y in (4.2), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x) (4.4)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}

and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, x) , ∀x ∈ X} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [18]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

It follows from (4.4) that ∥∥∥f(x)− 4f
(x

2

)∥∥∥ ≤ ϕ(x
2
,
x

2

)
≤ L

4
ϕ(x, x),

for all x ∈ X. So d(f, Jf) ≤ L
4 .

By Theorem 1.2, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q
(x

2

)
(4.5)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (4.5) such that there exists a µ ∈ (0,∞) satisfying

‖f(x)−Q(x)‖ ≤ µϕ (x, x)

for all x ∈ X;

(2) d(J lf,Q)→ 0 as l→∞. This implies the equality liml→∞ 4nf
(
x
2n

)
= Q(x) for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies ‖f(x)−Q(x)‖ ≤ L

4(1−L)ϕ(x, x) for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 4.2. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying
f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)− ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
‖ ≤ θ(‖x‖r + ‖y‖r)

(4.6)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

2r − 4
‖x‖r

for all x ∈ X.
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Proof. The proof follows from Theorem 4.1 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = 22−r and we get desired result.

Theorem 4.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X Let f : X → Y be a mapping satisfying f(0) = 0 and (4.2). Then there exists a unique
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4(1− L)
ϕ (x, x)

for all x ∈ X.

Proof. It follows from (4.4) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(x, x) (4.7)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 4.1.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (4.7) that d(f, Jf) ≤ 1

4 . So

‖f(x)−Q(x)‖ ≤ 1

4(1− L)
ϕ(x, x)

for all x ∈ X.
The rest of the proof is similar to the proofs of Theorems 2.3 and 4.1.

Corollary 4.4. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
f(0) = 0 and (4.6). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2r
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 4.3 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = 2r−2 and we get desired result.

5. Quadratic ρ-functional equation (2) in Banach spaces

Let ρ be a fixed real or complex number with ρ 6= −1, 12 .
In this section, we prove the Hyers-Ulam stability of the quadratic ρ-functional equation (3.1) in Banach

spaces.

Theorem 5.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(x

2
,
y

2

)
≤ L

4
ϕ (x, y)

for all x, y ∈ X.
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Let f : X → Y be a mapping satisfying f(0) = 0 and

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)− ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ‖ ≤ ϕ(x, y) (5.1)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

1− L
ϕ (x, 0) (5.2)

for all x ∈ X.

Proof. Letting y = 0 in (5.1), we get ∥∥∥4f
(x

2

)
− f(x)

∥∥∥ ≤ ϕ (x, 0) (5.3)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}
and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, 0) , ∀x ∈ X} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [18]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

It follows from (5.3) that d(f, Jf) ≤ 1.
By Theorem 1.2, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q
(x

2

)
(5.4)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (5.4) such that there exists a µ ∈ (0,∞) satisfying

‖f(x)−Q(x)‖ ≤ µϕ (x, 0)

for all x ∈ X;

(2) d(J lf,Q)→ 0 as l→∞. This implies the equality liml→∞ 4nf
(
x
2n

)
= Q(x) for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies ‖f(x)−Q(x)‖ ≤ 1

1−Lϕ(x, 0) for all x ∈ X.

The rest of the proof is similar to the proofs of Theorems 2.3 and 4.1.

Corollary 5.2. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying
f(0) = 0 and

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)− ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ‖ ≤ θ(‖x‖r + ‖y‖r)

(5.5)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2rθ

2r − 4
‖x‖r

for all x ∈ X.
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Proof. The proof follows from Theorem 5.1 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = 22−r and we get desired result.

Theorem 5.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X Let f : X → Y be a mapping satisfying f(0) = 0 and (5.1). Then there exists a unique
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

1− L
ϕ (x, 0)

for all x ∈ X.

Proof. It follows from (5.3) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(2x, 0) ≤ Lϕ(x, 0) (5.6)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 5.1.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (5.6) that d(f, Jf) ≤ L. So

‖f(x)−Q(x)‖ ≤ L

1− L
ϕ(x, 0)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 5.4. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying
f(0) = 0 and (5.5). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2rθ

4− 2r
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 5.3 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = 2r−2 and we get desired result.
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