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1. Introduction

Variational inequality problems were initially studied by Stampacchia [I7] in 1964. Variational inequal-
ities have applications in diverse disciplines such as physical, optimal control, optimization, mathematical
programming, mechanics and finance, see [12], [16], [I7], [29] and the references therein. The main purpose
of this paper is devoted to find the minimum norm solution of some system of variational inequality and
fixed point problems.

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively. Let C be a nonempty
closed convex subset of H.
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Definition 1.1. A mapping F : C — H is called (-inverse strongly monotone if there exists a real number
¢ > 0 such that

(Fx — Fy,x —y) > (||Fz — FyHZ, Va,y € C.

Definition 1.2. A mapping R : C — H is called k-contraction, if there exists a constant x € [0,1) such
that |R(z) — R(y)|| < ||z — y|| for all 2,y € C.

Definition 1.3. A mapping N : C — C is said to be nonexpansive if
[Nz = Ny|| < |lz - yl,Vz,y € C.
We use Fiz(N) to denote the set of fixed points of N.

Definition 1.4. We call Projc : H — C is the metric projection if Projc : H — C assigns to each point
z € C the unique point Projcx € C satisfying the property

|# — Projex|| = inf ||z — y|| =: d(, C).
yeC

Let F: C — H be a nonlinear mapping. Recall that the classical variational inequality is to find z* € C
such that

(Fx*,z —2*) >0 for all x € C. (1.1)

The set of solutions of the variational inequality is denoted by VI(F,C). The variational inequality
problem has been extensively studied in the literature. Related works, please see, e.g. [I]-[11], [13], [15],
[19]-[28], [30]-[34] and the references therein. For finding an element of Fiz(N) N VI(F,C), Takahashi and
Toyoda [19] introduced the following iterative scheme:

2™ = G + (1= )N Proje(a” — naFa™),n 2 0, (1.2)

where Projc is the metric projection of H onto C, {(, } is a sequence in (0, 1), and {n,, } is a sequence in (0, 2¢).
Takahashi and Toyoda showed that the sequence {z"} converges weakly to some z € Fix(N)NVI(F,C).
Consequently, Nadezhkina and Takahashi [I1] and Zeng and Yao [34] proposed some so-called extragradient
methods for finding a common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of a variational inequality problem.
Recently, Ceng, Wang and Yao [3] considered a general system of variational inequality of finding 2* € C
such that . . . .
{(nIFy +az* —y*,x—2") >0,Ve € C, (SVT)

(€Gx* +y* — 2", x —y*) >0,V € C,

where F, G : C — H are two nonlinear mappings, y* = Projc(z*—£Gz*), n > 0 and £ > 0 are two constants.
The solutions set of SVI is denoted by (2.
If take F = G, then SVI reduces to finding z* € C such that

(MFy* + z* —y*,x — ") > 0,Vx € C,

(EFx* +y* — 2", x —y*) > 0,Vz € C,
which is introduced by Verma [20] (see also Verma [21]). Further, if we add up the requirement that «* = y*,
then SVI reduces to the classical variational inequality problem (1.1). For finding an element of Fiz(N)N<,
Ceng, Wang and Yao [3] introduced the following relaxed extragradient method:

y" = Projc(z"™ — £Ga™), (1.3)
Lt = ¢t + Bpx™ + N Proje(y™ — nFy™),n > 0. ’
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They proved the strong convergence of the above method to some element in Fiz(N) N §Q.

On the other hand, in many problems, it is needed to find a solution with minimum norm. A typical
example is the least-squares solution to the constrained linear inverse problem, see [14].

It is our purpose in this paper that we construct two methods, one implicit and one explicit, to find
the minimum norm element in Fiz(N) N 2; namely, the unique solution z* to the quadratic minimization
problem:

¥ =arg min |z|%
zE€Fiz(N)NQ

We obtain two strong convergence theorems.

2. Preliminaries
Let C be a nonempty closed convex subset of H. The following lemmas are useful for our main results.

Lemma 2.1. Given x € H and z € C.

(i) z = Projcz if and only if there holds the relation:

(x —z,y—2) <0 forallyeC.
(i) z = Projcx if and only if there holds the relation:
Iz —2|* < [lz =yl = [ly — 2> for ally € C.
(iii) There holds the relation
(Projcx — Projcy, = —y) > ||Projcx — Projey|*  for all z,y € H.
Consequently, Projc is nonexpansive and monotone.

Lemma 2.2 ([3]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let the mapping
F:C — H be (-inverse strongly monotone. Then, we have

(I = nF)a — (I = nF)y[* < |l = y|I* + n(n — 20)[|Fz — Fy||*, Va,y € C.
In particular, if 0 < n < 2(, then I — nF is nonexpansive.

Lemma 2.3 ([3]). z* is a solution of SVI if and only if x* is a fized point of the mapping U : C — C defined
by

U(z) = Projc[Projc(x — {Gz) — nFProjc(x — £Gz)],Vz € C,

where y* = Projc(z* — £Ga™).
In particular, if the mappings F,G : C — H are (-inverse strongly monotone and d-inverse strongly
monotone, respectively, then the mapping U is a nonexpansive mapping provided n € (0,2¢) and & € (0,29).

Lemma 2.4 ([I8]). Let {z"} and {y"} be bounded sequences in a Banach space X and let {5,,} be a sequence
in [0,1] with 0 < lirginf §n < limsupd, < 1. Suppose 2" = (1 — 6,)y™ + 62" for all integers n > 0 and
n—oo

n—oo

tim sup(ly™+ = y"| "+ —2") < 0. Then, lim [ly" — "] = 0.
N—00 n—o0

Lemma 2.5 ([10]). Let C be a closed convex subset of a real Hilbert space H and let N : C — C be a
nonexpansive mapping. Then, the mapping I — N is demiclosed. That is, if {z"} is a sequence in C such
that " — x* weakly and (I — N)z™ — y strongly, then (I — N)z* = y.



Y. Liu, Z. Yao, Y. C. Liou, L. J. Zhu, J. Nonlinear Sci. Appl. 9 (2016), 61-74 64

Lemma 2.6 ([23]). Assume {a"} is a sequence of nonnegative real numbers such that
a"t! < (1 - '}’n)an + 0nYn,

where {vn} is a sequence in (0,1) and {5, } is a sequence such that
(1) 3oy Yn = 00;
(2) Hmsup,_,o. 0n < 0 or Y 07 | [0p7n| < 00.

Then lim,,_,o a™ = 0.

3. Main results

In this section we will introduce two schemes for finding the unique point x* which solves the quadratic
minimization
lz*)? = min [l (3.1)
zEFiz(N)NQ

Let C be a nonempty closed convex subset of a real Hilbert space H. Let R : C — H be a s-contraction. Let
the mappings F,G : C — H be (-inverse strongly monotone and é-inverse strongly monotone, respectively.
Suppose 1 € (0,2¢) and £ € (0,20). Let N : C — C be a nonexpansive mapping.

For each t € (0,1), we study the following mapping T* given by

T'z = NProjc[tR(z) + (1 — t)Projc(I — nF)Projc(I — £G)x],Vx € C.

Since the mappings N, Projc, I — nF and I — (G are nonexpansive, we can check easily that
| Ttz — Tty| < [1 — (1 — k)t]||x — y|| which implies that T is a contraction. Then there exists a unique fixed
point a! of T? in C such that

2t = Projc (2! — £Gat),

y' = Projc(2' — nFz"), (3:2)
2t = NProjc[tR(z") + (1 — t)y'].
In particular, if we take R = 0, then (3.2) reduces to

2t = Projc(s' — £Gat),
y' = Projc(z' — nFz"), (3.3)
z' = NProjc[(1 — t)y'].

We next prove that the implicit methods (3.2)) and (3.3) both converge.

Theorem 3.1. Suppose I' := Fix(N)NQ # 0. Then the net {x'} generated by the implicit method ({3.2))
converges in norm, as t — 07, to the unique solution x* of the following variational inequality

zrel, ([-Rzx*,z—2z")>0, zel. (3.4)

In particular, if we take R = 0, then the net {x'} defined by (3.3) converges in norm, ast — 0%, to the
minimum norm element in I', namely, the unique solution x* to the quadratic minimization problem:

* . 2
2" = argmin ||| (3.5)

Proof. First, we prove that {x'} is bounded. Take u € T'. From Lemma we have u = Nu and

u = Projc[Projc(u — §Gu) — nFProjc(u — EGu).
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Put v = Projc(u — £Gu). Then u = Projc(v — nFv). From Lemma we note that
Iz = v|| = [[Projc(a’ — £Ga') — Projc(u — §Gu)l| < [|2" —ull,
and
ly* = ull = | Projc(z" — nFz") — Proje(v — nFv)|| < [|2* —vll.
It follows from that

=" = ull = [N Projc[tR(z") + (1 — t)y'] — N Projcu]
< [tR(z") —u) + (1 = )(y" — )
< tR(z") = R(u)| + tIR(u) — ull + (1 = )|y" — ull
< thlla’ — ull + tIR(u) — ull + (1 = t)]|2" —u
=11 = m)tlla’ — ull + t|R(w) — ul,

that is,

IR(w) — ul|

! —ul| <
11—k

Hence, {z'} is bounded and so are {y'}, {2} and {R(z")}. Now we can choose a constant M > 0 such that
sup | 2[R(2") — ullly’ — ull + [R(z") — u]]?,2¢]|2* — 2* = (u - v)],
t
212" = ' + (w =) Iy’ - R} < M

Since F is (-inverse strongly monotone and G is d-inverse strongly monotone, we have from Lemma [2.2] that

ly* = ul® = [|(1 = nF)z" — (I - nF)w]|?

< |12 = ol* +n(n — 20)||F2" — Ful?, (3.6)
and
12 = ol = | = €G)a’* — (I - £G)ul®
< Jlz’ =l + (€ - 20)[|Ga’ — Gul)*. (3.7)
Combining (3.6)) with . ) to get

ly" — ull® = [|(I — nF)2" — (I — nF)vl|?
< |l* = ul® +n(n — 20)||F" — Fo|?
+ £(€ — 20)||Gat — Gul®. (3.8)

From and (| ., we have

2t —ul? < [[(1 = 6)(y" —u) + t(R(z") — ) ||?
= (1=1)lly" = ull® + 261 = t)(R(z") — u,y" — ) + £*|R(z") — ul|?
= |yt — ul® +tM (3.9)
< [zt = ull® + n(n — 2¢)|[Fz" — Fo?
+ £(€ — 20)||Gat — Gul|® + tM,
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that is,
n(2¢ — n)||Fz' — Fo|* + £(26 — €)||Ga’ — Gu||* < tM — 0.
Since n(2¢ —n) > 0 and £(26 — &) > 0, we derive

lim ||Fz* — Fu|| = 0 and lim ||Ga" — Gul| = 0.
t—0 t—0

From Lemma and (3.2), we obtain

12 = v||* = || Projc(a’ — €Ga') — Proje(u — £Gu)|?
< ((2" = £Ga’) — (u — EGu), 2" —v)

= 2 (I ~ €62") — (u— EGW> + |12 ~ v
~ (2" = w) - £(Ga’ — Gu) — (' = v)?)
< 2 (It = ulP + 12" = ol = |a* ~ ) ~ £(Ga* — Gu) — (u—v)|)
= 2 (la =l + 1 — ol ~ fla* — # — (w — )|
+ 2¢(zt — 2t — (u —v), Gz’ — Gu) — €2||Ga’ — Gu||2>,
and
ly' = ull = IProjc (=" = nF=") — Projc(v — )|
< <zt — ant —(v— an),yt —u)
= 2 (I =t = (0~ F ) + ' — ul?
— Izt = 2t — (v — o) — (' — w)|?)
< 5 (12 = ol + I =l = 12 — 4 + (=) P
+o(Fat — Fu, 2t — gt + (u—v)) — 2| F2t — Fv||2)
< 5 (It = ulP + Iyt —ulP =12~ ' + @ = o)
+2(Fzt — Fo, 2t —yt + (u— v)>>.
Thus, we have
2 = ol < flo* = wll® — fJo* - 2" = (u = 0)|2 + M||Ga’ - Gul|,
and

ly* = ull® < fla* —ul]* = |2 = y" + (u—v)||* + M||Fz" — Fo|.

By (3.9) and (3.11f), we have
" = ul® < [ly* —ol* + tM
< |2t =l +tM
<l = uf? = fla* = 2 = (u—v)|* + (|Ga’ — Gul| + t)M.

(3.10)

(3.11)

(3.12)
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It follows that
2" = 2" = (u = )|* < (|G2* — Gul| + t) M.
Since ||Gz! — Gu|| — 0, we deduce that

lim ||z* — 2' — (u — )| = 0. (3.13)

t—0

From and , we have
2" =l < lly" —ul® +tM
< lat =l = 12" = ' + (u = 0)[I* + ([|F2" — Fol| + ) M.
It follows that
12 = 4" + (u—v)|* < (|F2" — Fol| + )M,

which implies that

lim ||2* — y* + (u — )| = 0. (3.14)
t—0
Thus, combining (3.13]) with (3.14)), we deduce that
lim ||z* — o] = 0. (3.15)
t—0

We note that
|z* — Ny'|| = ||[NProjc[tR(z") + (1 — t)y'] — N Projcy’||
<tM — 0.
Hence,
1INy =o'l < INy' = 2'[| + [|=" = ]| — 0.
Therefore,
|z* — Nzt|| — 0. (3.16)
At the same time, from and Lemma we have

ot — U(ah)|| = | N Proje[R(z') + (1 — U(z1)] — NProje[U()]|
< tM 0. (3.17)
Next we show that {z'} is relatively norm compact as t — 0. Let {t"} C (0,1) be a sequence such that
t" — 0 as n — co. Put 2" := 2" and y" := 3. From (3.15)-(3.17)), we have
|l —y"|| = 0, ||z" — N2"|| = 0 and ||z — U(z")|| — 0. (3.18)

From , we get
2" = ul|* = |N Projc[tR(z") + (1 — t)y'] — Nu|/?
< ly* —u—ty" + tR(a")|?
= [ly" —ul® = 2t(y", " — u) + 26(R(z"), " — w) + *[ly" — R(")|]?
= ly" — ul]® = 2t(y" —u, " —u) — 2t(u,y" — u)
+26(R(z") — R(u), 4" — u) + 2t(R(u),y" —u) + *[|ly" — R(z")||?
<[1—2(1 — w)t]||lz" —ul|® + 2t(R(u) — u,y" — u)
+ 2y — R
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It follows that

1 t

o' =l < 1 (= Rw)u =) + gl ~ R

< 1w R@u— g+t

u — u), u
=1-x R Y )
In particular,

lo" —ull < ——(u— R(uw)yu— ") + M, wel (3.19)
r —U u — u),u — _— u . .

By the boundedness of {z"}, without loss of generality, we assume that {z"} converges weakly to a point
x* € C. Tt is clear that y™ — x* weakly. From (3.18]) we can use Lemma to get x* € I'. We substitute

x* for u in (3.19) to get
tn

n __ *2< M

1
(o R, —y") +

So the weak convergence of {y"} to x* implies that " — z* strongly. We prove the relative norm compact-
ness of the net {z'} as ¢t — 0. In (3.19)), we take the limit as n — oo to get

o~ ul < o~ R(w)u—a%), weT. (3.20)
Which implies that z* solves the following variational inequality

zrel, (I-Ruu—z")>0, uel.
It equals to its dual variational inequality

el (I -R)z*,u—2*) >0, uel.

Therefore, 2* = (ProjrR)z*. This shows that x* is the unique fixed point in T" of the contraction ProjrR.
This is sufficient to conclude that the entire net {x'} converges in norm to z* as t — 0.
Setting R = 0, then (3.20]) is reduced to

|z* —ul|® < (u,u—z*), wuel.
Equivalently,
|z*||? < (2*,u), ueTl.
This implies that
2" < flull, wel.
Therefore, £* is the minimum norm element in I'. This completes the proof. O

Below we introduce an explicit scheme for finding the minimum-norm element in I'.

Theorem 3.2. Suppose I := Fixz(N)NQ # 0. For given xy € C arbitrarily, let the sequences {z"}, {y™}
and {z"} be generated iteratively by

2" = Po(a" — £Gz"),
y" = Po(2" —nFz"), (3.21)
2"t =§,2" + (1 = 0,)N Projc[CnR(z™) + (1 — ¢n)y"],n > 0,

where {(n} and {0y} are two sequences in [0, 1] satisfying the following conditions:
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(1) lim ¢, =0 and > ¢, = o0o;
n—oo n=0

(u)O<hmmf5 <limsupd, < 1.

n—o0

Then the sequence {z"} converges strongly to x* which is the unique solution of variational inequality (3.4)).
In particular, if R = 0, then x* is the minimum norm element in I.

Proof. First, we prove that the sequences {z"}, {¢"} and {z"} are bounded.
Let v = Projc(u — §Gu) and u = Projc(v — nFv). From (3.21)), we get

1y" — ull = [Projc(z" — nFz") — Projc(v — nFv)|

< 2" =l
— |[Proje(a" — £Ga™) — Proje(u — £Gu)|
< Hxn - u”v

and

Iz = ul| = [|8n (2" — u) + (1 = 8a) (N Proje[aR(2") + (1 = Ga)y"] — w)|
< Opllz" —ull + (1= 0n)[[Gn(R(2") = u) + (1 = Gu)(y" — )|
< Onflz” = ull + (1 = 0n)[GalR(z™) = R(w)[| + GullR(u) = ull + (1 = Ga)lly™ — ull]
< Onfla” —ull + (1= 0n)[Curll2” — ull + Gal[R(w) — ull + (1 = Gu)|l2™ — ]
=1 = (1 =r)A = dn)alll2" — ull + G (1 = 6n) [R(w) — ull

)
LIORT
1-— b

< max{[|z" — ul, ————

By induction, we obtain, for all n > 0,
R(u) —
o =l < maxc{ g -, L2,
1-k
Hence, {2"} is bounded. Consequently, we deduce that {y"} ,{z"}, {R(z")}, {Fz"} and {Gz"} are all
bounded. Let M > 0 is a constant such that

sup {Hy”H + IR, 20y = Ry = ull + lly" - R@")[1%,
n
("™ = ull + 2"t = ull), 2€[|2" — 2" = (u = )|, 20]|z" = y" + (u = V)],
2|[Fz" = Foll[[2" = ¢" + (u = v)[|, 26]|2" = 2" = (u = v)[[[|G2™ — GUHH} <M

Next we show lim ||y — Ny"| = 0.
n—oo
Define 2"*! = §,2™ + (1 — &, )u™ for all n > 0. It follows from (3.21]) that

[u"* —w™|| = |NProjc[¢uaR(@") + (1 = ¢ura)y™ '] = NProje[¢aR(z") + (1 = ¢)y"]|
< GnraR@™) + (1 = Gur)y™ ! = GR(™) — (1= Ga)y"|
< y™ =y [+ Gara (™ + IRE DD + (g™l + IR
< [|Proje (2"t — nFz"*) — Projc(2" — nF2")|| + M (Cot1 + Cn)
<" = 2" 4 M (Gnra + Gn)
= ||Projc(z™! — £Ga" ) — Proje(2" — £€Ga™)|| + M (Cng1 + Cn)
< 2™ = 2" + M(Gor1 + Gn)-
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This together with (i) imply that
lim sup (Hu”'H — | = [zt - :v”H) <0.
n—oo

Hence by Lemma [2.4] we get lim |u" — 2"|| = 0. Consequently,
n—oo

lim 2" — 2| = lim (1 — &y)|[u” — 2| = 0.
n—o0

n—oo
By the convexity of the norm || - ||, we have
2" = wl® = (2" = u) + (1= ) (u" — w)|?
< Gnll2” — ull® + (1 = &) [Ju” — ul®
< Gnfl2” —ull® + (1= Ga)lly"™ —w = Ga(y" — R(™))|?
< Gnll2” = ull® + (1= Ga)ly"™ — wl® + G M. (3.22)

From Lemma and (3.21)), we have
ly™ = ull® < [l2" = ol + n(n — 20)||F2" — Fo|®
< Jl2" — ul]* + (€ — 20)||Ga™ — Gul|* +n(n — 20)|[F=" — Fol|*. (3.23)
Substituting (3.23) into (3.22]), we have

27— ) < Gl — wl + (1 = 8)[la" — ul® + (€ — 20)|Ga” — Gu?
+n(n — 20)||[F2" — Fo||?] + (.M
= [l2" — ul* + (1 — 6,)§(€ — 26)[|G2™ — Gul?
(1= 8)n(n — 20)[F" — Bol + GuM.

Therefore,

(1= 8a)n(2¢ = n)lIF=" — Ful|* + (1 — 6,)&(20 - €)|Ga" — Gul|?
< la™ = ull = ll2™* = ull + G M
< (2" = all + |2 = )" — 2" + G M
< (la" = a" " + ) M.

Since liminf(1 — §,,)n(2¢ —n) > 0, lini)inf(l —6,)E(26 — &) > 0, ||z — 2| = 0 and ¢, — 0, we derive

n—oo
lim ||Fz" —Fv|| =0and lim [|Gz" — Gu| = 0.
n—oo n—oo
From Lemma and (3.21), we obtain

2" = v]]? = | Po(" — £Ga") - Po(u - £Gu)?

< ((@" = §Ga") — (u— €Gu), 2" — )
= 2 ("~ €6a™) — (u— EGu)P +]}2" — vl]* ~ (" — ) ~ £(Ga" ~ Gu) ~ (" ~ V)|
< %(Hw” — |2+ |[2" — 0|2 — ||(a" — 2") — £(Ga" — Gu) — (u — U)H2>
1
)
+

(Hfﬂ" —ul? + 2" = o]~ [|l2" — 2" = (u = 0)|?

26(z" — 2" — (u —v),Gz" — Gu) — £2||Gz" — GU”2),
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and
ly" — ul| = ||Projc(" — nFz") — Projc(v — nFv)||?
< (2" = nFz" — (v —nFv),y" —u)
1
= 5 (ll=" = nF=" — (0 = ) |2 + Iy — )l
— ||z = nF" — (v = o) — (5" — w)[?)
1
<3 (HZ" =+ lly" = ull® = 2" ="+ (u = 0)|?
+ 2(F2" — Fu, 2" =y + (u— v)) — 7?[F=" — Fo|?)
1
<3 (Hl‘” =l ly" =l = 2" =y (u = v)|?
+2n(Fz" — Fu, 2" —y" + (u — v)>>
Thus, we deduce
2" = v]* < Jla™ = ul* = [la" = 2" = (u —v)|?
+2¢][2" = 2" — (u = V) [||Ga" — Gull
< la™ = ul® — |2 — 2" = (u = v)||* + M|Ga" — Gul (3.24)
and
ly™ = ull® < [la™ = ull® = [|z" = y" + (u—v)||* + M[|F2" — Fo|. (3.25)
By (3.22)) and (3.24)), we have
2™+ —ul|? < balla™ = ull® + (1= 8n)lly" — ull® + CuM
< Gulla™ —ull® + (1 8a)[[2" — v]|* + G M
< Gulla™ = ull® + (1= &) (2" — ul? — [la" = 2" = (u— )|
+ M[|Ga" — Gull] + ¢ M
< Jlz” = uf]? = (1= da)[la” = 2" = (u = 0)||* + (|Gz" — Gul| + () M.
It follows that
(1= dn)fl2" = 2" = (= v)|* < (2" = 2"|| +]|Gz" — Gul| + ) M.
Since liminf(1 — §,) > 0, ¢, — 0, |21 — 27| — 0 and ||G2™ — Gu|| — 0, we deduce that
n—oo
lim [[z" — 2" — (u —v)|| = 0. (3.26)
n—oo

From (3.22)) and (3.25)), we have
Iz = ul* < ulla™ = ull® + (1= 8n)lly™ — ull® + ¢uM
< Gnl2” = ull® + (1= Ga) [l = ull? = [|]2" = 5" + (u = )|
+ M||Fz" — Fol|]] + (.M

<l = ul® = (1= 8a)[[2" =y + (u = 0)||* + (|[F" — Fol| + () M.

It follows that

(1= on)ll2" =" + (u—w)|* < (2" = 2" + [F2" — Fo|| + )M,
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which implies that

lim [|z2" —y" + (u —v)|| = 0. (3.27)
n—oo
Thus, from (3.26) and (3.27)), we deduce that
lim ||z" —y"| = 0.
n—oo
Hence,
INy"™ —u"|| = ||NProjcy"™ — NProjc[¢nR(z™) + (1 — (u)y"]|| < (M — 0.
Therefore,

[INy" —y"[| < [[Ny" —u"[| + [[u” — 2™ + [l" — y"[| = 0.
Next we prove

limsup(z* — R(z),z* — y") <0,

n—o0

where z* = PrR(z*).
Indeed, we can choose a subsequence {yy, } of {y"} such that

limsup(z* — R(z*), 2" —y") = lim (2" — R(z"), 2™ — yn,).
1—00

n—oo

Without loss of generality, we may further assume that y,, — 2z weakly, then it is clear that z € I'. Therefore,

limsup(z* — R(z"), 2" —y") = lim (z* — R(z¥), 2" — z) <0.

n—oo 1— 00
From (3.21)), we have
lz™* = 2*||* < Sulla™ — 27||* +

< Opllz™ —x ||2

+ (1= 0n)lIGa(R(z") = &™) + (1 = Ga) (" — 27)I?
+ (1= 0a)[(1 = ) lly" — 2"
+2Ga(1 = Ga)(R(z") — 2™,y — 2%) + G?[IR(2") — 2”||]
= Onll2™ — 2" | + (1 = 60)[(1 = Ga)?[ly" — 2"
+2Gn J(R(z") = R(z)",y" —27)
(R(z

—_—~

Cn
- Cn

+2¢n JR(z") — 2", y" — 2*) + G2 R(2") — 2*]?]
<[1 =201 = R)(1 = 6)Gal 2" — "]
+ 2Cn( - Cn)( - 5n)<R(x*) - J?*, yn - $*> + (1 - 5n)§n2M

= (1= ")lla" = z*|* + 8"4",

where 7" = 2(1 — k)(1 — 0,,)(, and 6"/ = 1 C") (R(z)* — x*, y"™ —x*) + 2(1 H) It is clear that z " =0
=0
and limsup § < 0. Hence, all conditions of Lemma are satisfied. Therefore, we immediately deduce that
TL—>OO

" = .

Finally, if we take R = 0, by the similar argument as that Theorem we deduce immediately that z*
is a solution of (3.5). This completes the proof. O
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