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Abstract

This paper is dedicated to provide explicit theta function representation of algebro-geometric solutions for
the generalized nonlinear Schrodinger hierarchy. Our main tools include zero-curvature equation to derive
the generalized nonlinear Schrodinger hierarchy, the hyper-elliptic curve with genus of N, the Abel-Jacobi
coordinates, the meromorphic function, the Baker-Akhiezer functions, and the Dubrovin-type equations for
auxiliary divisors. With the help of these tools, the explicit representations of the Baker-Ahhiezer func-
tions, the meromorphic function, and the algebro-geometric solutions are obtained for the whole generalized
nonlinear Schréodinger hierarchy. (©2016 All rights reserved.
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1. Introduction

Algebro-geometric solution (also called quasi-periodic solution or finite gap solution), as an important
feature of integrable system, was originally researched on the KdV equation based on the inverse spectral
theory [1 Bl [ 5], subsequently, algebro-geometric method developed in literatures such as [1, 3], [4] [5] 19|
20, 25], in the late 1970s. As a degenerated case of the algebro-geometric solution, the elliptic function
solution and multi-soliton solution may be worked out [I 22 25]. The inverse spectral theory has been
extended to the whole (1+1) dimensional integrable hierarchy by Gesztesy and Holden, such as the AKNS
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hierarchy, the Camassa-Holm hierarchy, and so on [9, 10 11l 12]. In recent years, Fan and his co-authors
[15] 16l 17, 18, 29, B0, B1] investigated the Ruijsenaars-Toda Hierarchy, the Degasperis-Procesi hierarchy,
derivative Burgers hierarchy, etc., and obtained their algebro-geometric solutions.

As is well-known, the nonlinear Schrodinger equation is

g + Ugg + 2|ul*u =0, (1.1)

it arises from a wide variety of fields, such as plasma physics, the theory of deep water waves, and nonlinear
fibre optics, etc. The discovery of the integrability of the equation by the inverse scattering transformation
approach has promoted the understanding of the generality of this method to a large extent. So far, there
has been much research on the Eq. . such as its soliton solutions, conserved quantities, Darboux
transformation, Bécklund transformation, and others have been studied in [2] 6] 14}, 21, 24].

In this paper, we are going to investigate the generalized nonlinear Schréodinger (GNLS) hierarchy [7],
and the first non-trival member is GNLS equation (¢t = t)

ipr = $Pae — P24 + 207(pq)2p + 27°P ¢,

(1.2)

i = —3Gze + P2* + 207 (pq)eq — 27°P*°,

where v is a constant.

Geng discussed the soliton solutions of the equation by Darboux transformation [8], Yan studied
its N-Hamiltonian structures and finite-dimensional involutive systems and integrable systems [27], Qin
investigated algebro-geometric solutions for equation by variable separation method [26]. However, to
the best of authors knowledge, the algebro-geometric solutions for the whole GNLS hierarchy are still not
presented yet. The main aim of the present paper is to uniformly construct algebro-geometric solutions of
the entire GNLS hierarchy.

The present paper is organized as follows. In Section [2] based on the Lenard gradient and the stationary
zero-curvature equation, we obtain the GNLS hierarchy associated with a 2 x 2 matrix spectral problem.
In Section 3] we introduce a Lax matrix and an algebraic curve Ky with genus N, by which we discuss
nonlinear recursion relations of the corresponding homogeneous coefficients, and a direct relation between
the elliptic variables and the potentials is established. Then the hierarchy is decomposed into solvable
ordinary differential equations. In Section [ all the flows of the GNLS hierarchy are straighten out under
the Abel-Jacobi coordinates. The meromorphic function ¢ and the Baker-Akhiezer function v are introduced
on the hyperelliptic curve Kpn. Then we study the meromorphic function ¢ such that ¢ satisfies nonlinear
differential equations, and discuss the properties of the Baker-Akhiezer function . We present the explicit
theta function representations for the meromorphic function and the Baker-Akhiezer function. In particular,
we give the algebro-geometric solutions for the whole GNLS hierarchy.

2. The GNLS hierarchy

In this section, we shall derive the hierarchy associated with the following spectral problem [7],
i\ — iypq P > < U1 )
= U , U — . . s = s 21
v v ( q —iA +ivpq v V2 (21)

where p and g are two potentials, v is a constant,\ is a constant spectral parameter. We now introduce the
Lenard gradient sequence {S;}, j =0,1,2... to derive the hierarchy

KSj1=JS;, j=1,23,..., Sjlpg=0=0, S-1=(-1,0, 0)F,J5_1 =0, (2.2)
where S; = (aj, bj,¢;j) and operators (0 = 0/0x)
2p 0+ 2ivpq 0 0 22 0
K=| -2 0 0—2ivpq |, J=| 0 0 —=2i |. (2.3)
0 q —p 9 q —p

After direct calculation from the recursion relation (2.2) we get
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0 —3p4
So= | ip |, S1= P +ivpiq |, (2.4)
iq —34s + i7pg?

i(pzq Plz) — vp q
Sy = 4pm + Qp q+ ﬂppxq + 27]7 @ + iV |- (2.5)
— e + £pq* — 5YD2q — $74%Ps + i77P? 3
Consider the auxiliary problem:

V(T) V(T)
_ V(r) 7 V(r) _ 11 12 7 2.6
Y, ¥ vy (2.6)

where
(1") r—+1 .
Vi = 2iva, —i Y aj AT
=0
(r) ‘7“+1 .
v =i z b AT (2.7)
7“+1 .
g —Z Z C AT+17‘7.

Then the compatibility condition of Eq. (2.1) and Eq. (2.6) is Uy, — Vx(r) +[U, V(T)] = 0, which is equivalent
to
= (2 — 4iypd~1q)brs1 + 4iypd'perya,

(2.8)
Gi, = 4iyqd " gbry1 + (=2 — 4iygd~'p)er 1.
The first non-trival member is GNLS equation
Pty = —5Pza + 10°q + 2v(pq)ap — 2i7°P3¢2,
(2.9)

Gty = Lqua — PG + 27(pq)2q + 2iv?p?¢>.
which is just Eq. (1.2)) when t; = t.

3. Evolution of elliptic variables

Assume that (2.1)) and (2.6 have two basic solutions x = (x1,x2)? and ® = (®1,®3)?. Then we define
a matrix W of three functions g, f, h by

Lo . _ (9 [ _ (0 -1
W—§(¢X + x®" o = (h e , o= 10 , (3.1)
which satisfies the Lax equations
W, =[UW], W, =[V" w]. (3.2)
Therefore, 0,detW =0, 0;.detW = 0. Then Eq. (3.1) and Eq. (3.2) can be written as
fo = 2i(A = vpq) f — 2pg,
9z = ph —qf, (3.3)
he = 2qg9 — 2i(A — pq)h,
and
gt'r h‘/l f‘/21 ? (34)
he, =2gVi7 —2nv),
Supposing that the functions g, f, h are finite-order polynomials in A:

T
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N+1 ' N+1 ' N+1 '
F=YfadTT g =g AN b= by AN (3.5)
j=0 j=0 j=0

Substituting (3.5)) into (3.3) yields:

f—l = Oah—l = 079—1 = _17
fj,m = —ngj — Q’L"}/quj + 2ifj+1, hj@ = 2qgj + 2i7pth + 2hj+1, -1 S j S N — 1, (36)
gj,l‘ :ph] - qf]7 -1 SJ S N?fN,CC = OagN,J} = 07

which is equivalent to

KQ]—lsz](]:0717277N)7 JQ—lzoa KQN:07 Q]:(g]7f]7hj)T (37)
It is easy to see that JQ_1 = 0 has the general solution
Q_l = OzoS_l, (3.8)

where g is constant of integration. Without loss of generality, let oy = 1, and acting with the operator

(J7VK) 1 upon (B.§)), we obtain from (2.4) and (3.7) that:

k+1
Qk:ZajSkij k:(),l,...,N, (3.9)

§=0

where «ag, aq,...,an11 are integral constants. The first few members in (3.9) are
Qo = ip ) (3.10)
iq
—3pg — a3

Q1= 3Pz + iypiq +ipoy |, (3.11)

—2qu + ivpg® +iqen
where {q;}endenote integration constants. For subsequent use we introduce the homogeneous coefficients
Jk, fr and hy defined by the vanishing of the integration constants {«;} for I =1,2,...,k(k € Np),

g 1=9g-1= —1JAL71A= hoy=0,f1=f1=0,

! ; (3.12)
Ik = Gklay=0,=1,...k> ft = frlay=01=1,...k» "k = Pk|ay=01=1,....k-
Defining oy = 1, then we obtain
k k k
gk =Y o_fi fr=Y an_ifj e = ar_jh;. (3.13)
j=—1 §=0 3=0

Next, we consider the function detW, which is a (2N+2) th-order polynomial in A with constant coefficients
of the z-flow and t,-flow, we have

2N+1
—detW = g* + fh= ] (A= X)) = R(N). (3.14)
j=0

We introduce the hyperelliptic curve Ky of arithmetic genus N defined by

2N+1

Kv:y?= [] A=X)=RM. (3.15)
Jj=0
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The curve K can be compactified by joining two points at infinity Pso+, where Pyt # Poo_. And
the compactification is also denoted by Ky for notational simplicity. Here we assume that the zeros A; of
R(\) in are mutually distinct, which means A\; # A\, when j # k,0 < j, k < 2N + 1. Then the hyper
elliptic curve K becomes nonsingular. We can determine the integration constants ax(0 < k < N) by the
constants Ag, ..., Aan41 from the following theorem. We shall give some elementary results before giving
the theorem.

Let {)\j}j=01,.2nv+1 C C for some N € Ny and £ € C, [{] < min{)\al, .. .,)\2*]%,+1}, and abbreviate
A= ()\0, RN /\QN_H), then

2N+1 . o)
[T a-xo 2= Z (3.16)
7=0 —0
where
| 2N+ 2N+1
co(A) =1,61(Q) = 2 Z )\]702() 42/\)\k+ Z )\
;~ (2]0)' (22N 41)! JJo Jo2N+1 (317)
C(d) = : Z o 2%(joh)2- (32N+1')2>\ )\2N+1
J0,--J2N+1=0
Jo+-.-tjaen1=k
Similarly, we have
2N+1 ) 0
IT =292 =3 aeh, (3.18)
J=0 =0
where
2N+1 L 2Vl
cod) =1,e1(d) = —3 Z Ajsead) =1 2 N —§ 2 A,
]<I<: j=0
_ (2J0)!'-~(232N+1)!>\é°--~/\J2§VN+J51 (3.19)
Ck(A) - Z 22k(j0!)2,,.(j2N+1[)2(2]-071)“.(2]-2]\,4_171).

J05+2J2N+1=0
jot+...+jen+1=k

A comparison of the coefficients of ¥ in the following equation

2N+1 2N+1 00
1= J] a=xn92 )| JT a-x8" (Z er (A > (Zc ) (3.20)
k=

Jj=0 Jj=0

NI
I\J‘H

we get

¢j(A)ék—j(A) = 0o k € No. (3.21)

.
o

Theorem 3.1.
a;=c(A),l=0,...,N. (3.22)

Proof. Tt will be convenient to introduce the notion of a degree, deg(.), to effectively distinguish between
homogeneous and nonhomogeneous quantities. One defines

deg(p) = 1,deg(q) = 1,deg(9;) = 2, (3.23)
implying R X
deg(fr) = 2k + 1,deg(hy) = 2k + 1,deg(gr) = 2k, k € Ny, (3.24)

by using the linear recursion relation (3.6) and induction on k. Next, dividing f(\), h(A), g(\) by R()\)%
near infinity respectively, one obtains

o0

(3.25)

—T (A
R(N2 =0 j=0 =0
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9N _ N, _n—1- N N+1—j _ S o\~
T = > G(A)A 7Y gi1A T =3 G
RNZ =0 =0 =0

for some coefficients f;, §;, b to be determined next. Noticing (3.3]) and -, we get

fk e = —2pJK — 2i'yquk + 2z‘fk+1,
Mo = = 290k + 2@7pqhk + 2hg4, (3.26)
Grw = phi — afi, k= —1,0,1,....

Here we have chosen that f_l = f_l =0,g_1 = g-1 = —1, 71_1 = iL_l =0, fo = fo=1p,go = go = 0 and
ho = hg = iq. Moreover, one can prove inductively that

deg(fi) = 2k +1,deg(hy,) = 2k + 1, deg(ji,) = 2k. (3.27)

Hence, g, fl and 711 are equal to g, fl and iLl, respectively, for all [ € Ny. Thus we proved

S S~ ot =3 i
R 1=0 1=0

(2
PO Sy At = 3 Ryt

B3 zgo -1 Eo ! ; (3.28)
IV IR S W

b = 0

Using (3.20)), we compute that

k . k 1
> Chm(A) fm = 22 ch-m(A )Zfzcm 1) = Zfz ch mCh—s—1(A)Es(A) = fi, (3:29)
m=0 m=0 =0
where k = 0,..., N, which together with (3.13) implies (3.21]) holds. Hence Theorem is proved. O]

If we write f and h as finite products which take the following form

N
=i 11 OA = 1),
e (3.30)
7j=1

where the roots {1} i1 and {1/]} ", are called elliptic variables, from which we obtain

9=, = VR(r), gla=v, = V R(). (3.31)
Noticing (3.3] and , we get

N
Felampe = =2091r=p, = —ippine | [ (e = 11y), (3.32)
j=1
Gk
N
h:c‘)\:uk = 2qg|>\:,,k = —iqyk’m H(I/k — l/j), (333)

Jk

which means
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R R
M@:—mw—iﬂiﬂ%@:%?f—giﬁlgng. (3.34)
[T (kx = 5) IT (e — v)
ik ik
In a way similar to the calculation of (3.33)), we obtain the evolution of {y;} and {v;} along the t, — flow :
-/ R v AV R(vg vy
ks, = —22%, b= 22#' (3.35)
p 11 (1 — nj) q [T (v — )
j=1 j=1
ik ik

where 1 < k < N.

4. Algebro-geometric solutions

In the section, we shall construct algebro-geometric solutions for the whole GNLS hierarchy ([2.8]). First
we will recall the hyper-elliptic curve ICn of arithmetic genus N defined by

Ky :y>—R(\) =0. (4.1)

We can lift the roots {Mj}é’vﬂ and {Vj}é-v:l to Kn by introducing

ﬁj(xatv‘) = (Nj(xvtT)ﬂ _G(Mj(xatT)vxvtT))v (4'2)
vi(z,t) = (vj(z, t,), G(vj(z, t,), x, b)), (4.3)

where j = 1,---, N, (2,t,) € R?2. Now we introduce the Baker-Akhiezer function 1) = (1, 19)” by

%(P,xwo,tmto,r) = U(Avxatr)w(Paxv‘TOatT?tO,’l‘)a
¢tr(P7xa$07tT,tO,r) = V(T)()\,.CE,[J;T)’IIZ)(P,SU,I[),tr,tOJ),

4.4
W2, )P,y 0, b to.) = y(PYG(P, 2,20, by o) (4
Y(P, x0, 20, o, to,) = 1, (x,1,) € R%
Closely associated with ¢(P, z, zo, t,,to,) is the meromorphic function ¢(P,z,t,) on Ky, defined by
Y1(P, @, 0, tr,to,r)
P,a,t,) = ") pe Ky, 45
¢( 1”) 1/}2(P,$,l’0,tr,t077«) N ( )
which implies from (4.4) that
y—g h
d)(P’x)t ) = = (46)
' foytyg
where P = (\,y) € Kn \ {Poot, Poo_1}, (7,t,) € R2. Hence the divisor of ¢(-,z,t,) reads [10]
o, tr) = Dp, p(atr) — PP fiatn) (4.7)
where
N N
Ditaty) = 3 ftj(x, 1), Dyiar,y = Y (@, tr). (4.8)
j=1 j=1

The holomorphic sheet exchange map * is defined by

x: Ky = Ky, P = ()\,y) — P* = (A,—y),P,P* e n.
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With these preparations, we can compute that the meromorphic function ¢ satisfies the Riccati-type non-
linear differential equations

G — 2i7pa0 + pd® = q — 2iAp, by, = Vay) — 2V 6 — VIS, (4.9)
as well as
G(P)p(P*) = =%, 6(P) + ¢(P*) = =27, 6(P) — ¢(P*) = 2%. (4.10)
After direct calculation, we can derive the properties of ¢(P, z, zo, tr, to,)
’(/Jl(P,(L',CL’O,tT,th) = €exp (f;O (ZA—Z’YP (xlvtT‘)Q(x,7t7“) +p(m,7t1”)¢(P7x,7t7’)) dx’
+ Jyr (VDO w0, ) + Vi (N 0, $)(P, w0, 5) ) ds) (4.11)
1
_ [ fOatn) 12 (P)p(e tr) tr y(PIV3 (Az0,9)
=[] e [ffo oty 4 fo, SRy d5|
and
¢1(P; Z,Xo, t'f‘y tO,r)wl(P*7 x,xo, t?‘v tO,T) = ]%957(%7 (412)
Ua(P,, 20, b, to, JUa (P, 2, 20, b o) = — Fiaesies, (4.13)
* * _ g()\7 Z, tT)
@Z)l(P’ €, X0, tT? tO,T)¢2(P y Ly LO, t?‘v tO,T) + @Z’l(P y Ly TQ, tT’ tOJ’)wQ(Pv T, Zo, tT? toﬂ“) - _277 (414)
f(A7 Zo, tO,'r)
V1(P, x, xo, tr, tor) Y2 (P, 2, z0, b, tor) — Y1 (P*, 2, 70, tr, Lo, )2 (P, 2, 2o, tr, tor) = S S, (4.15)
f(A\ o, tor)
Next, let us introduce the Riemann surface I' of the hyperelliptic curve X and equip I with canonical basis
cycles: ay,...,an; bi,...,by, which are independent and have intersection numbers as follows
a; © aj; :O,biobj :O,Giobj = 523
For the present, we will choose our basis as the following set
~ N=1ax
Wy = ,1 <1 <N, (4.16)
R(X)

which are N linearly independent homomorphic differentials on I'. By using the cycles a and b, the period
matrices A and B can be constructed from

Aij:/ c~uz~, Bij:/ (,Nul
a; b;

It is possible to show that matrices A and B are invertible [I3] 23]. Now we define the matrices C and
by C = A~',7 = A~'B. The matrix 7 can be shown to be symmetric (155 = 7j1) and it has positive definite
imaginary part (Imr > 0). If we normalize w; into the new basis wj,

N
wj=Y Cuw,1<j<N, (4.17)
=1

N
/ wj = E le/ &v)l :5]’1'7/ Wi = Tjj-
a; =1 a; b;

then we have
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Define the Abel-Jacobi coordinates

N

A (z,tr) e Z\=1gy
Z/ wj = chﬂ />\(P0) oy (4.18)

=11=1

(2, t,) Z/ Mw] ZZ /Po)j_lﬂ (4.19)

k=11=1

where 1 < j < N. Without loss of generality, we choose the branch point Py = (Ao, 0), jo € {0,...,2N 41},
as a convenient base point, and \(F) is its local coordinate. From (3.33)), (3.34)), (4.18) and (4.19]) we obtain
the following two lemmas.

Lemma 4.1. (Straightening Out of the x-Flow).
M) _ 9 2 _ 9 :
8zpj = 2ZCJN,8xpj =2iCjN,1 < j <N, (4.20)

where ' ‘ ‘
Cy = (Cins-e s Cn)pD = (0, ), i = 1,2,

Proof. 1t can be calculated from (3.33)), (4.18)), (4.19)) that

N N . 1—1
1 g, —2iCj1p
RN I WSLHES o) iR a2
k=1 I=1 =1 k=1 T (e — 1)
j=1
ik
N N -1 N N 5.~ -1
2 v, Vg, 21C5 v
dup =3 > Cn kR Loy (4.22)
k=1 I1=1 (70 R gt I (v — vj)
j=1
ik
which implies
9opS") = —2iC;n, 009 = 2iCin,1 < j < N, (4.23)

with the help of the following equalities

N k! N, 1<I<N,
Doy = > pit ey, 1> N. (4.24)
k=1 1T (ke — ) i14-Fin=I—N,i; >0
=1
ik
Thus we complete the proof of the lemma. 0

Lemma 4.2. (Straightening Out of the t,.-Flow).

3tr =2 Z YNCN v 11> (4.25)
1=0
0,0 = =2 Cy i, (4.26)
=0

where : ; i
;= (Cljy-..,CNj)7£(Z) = (Pgl)v-'-ﬂpg\lf))f I<js N,
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and the recursive formula:
Yo = —i,m = ia1, 72 = —i(af — ag), Yk = — Zaj’mj-
j=1
Proof. From (3.9) we obtain
k
—ife =YV, (4.27)
j=0
which implies
k
Vigk =3 fi (4.28)
§=0
From ({3.34), (4.18) and (4.28),we have
N N -1 N N . I—1y,(r)
—2iCjipy " Vip” (pk)
atrp(l) = 3 Zc.l“k Pty S % 2iC ik, Vip
’ s R GV T = o R 'lj—vll(ﬂk*ﬂj)
J:
v N i#k
2%t _
= XY (L V)
I=1k=1p 'Hl (he—pj) s=0
]:
i#k
N N —2ngl#k 1 r s (429)
= XX 7 > (2 mfs—t)iy
I=1k=1p Hl(uk—uj) 5=01=0
]:
J'#k
,
= ZO_QZ%Z]CS tz 4,N—(r— s+lTl
t—
r Y r—t k
= Zo = Z Z N—r—t)+kJ1 T k1,
t=
with
To=1,T;= > itk > 1 (4.30)
Jit++in=k,ji>0
Then we get
1 " —2i’)/l !
%Pﬁ- )= > foCiN—rs1 =2 NCjN-rsi (4.31)
=0 P 1=0
with the help of the formula [28]
> 1Y, =01<k<r, (4.32)
Ji1+j2=k,j; >0
where
N
fo=ip,fi=—ipY mfo=(-DFip > T;T;,=0,1<k<N. (4.33)
=1 J1<<Jk,ji>1
Thus the proof of lemma is completed. O

From the above two lemmas, we have the following theorem.
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Theorem 4.3.
PN = —2iCyx + Q. t, —i—p(() ),

P 4.34
P( ) = 2iCNz — Q8 + P(()Z)’ ( )

where Q. =23 mC; n_pyy,7 =0,..., N — 1, constants p(()i) cRN,i=1,2.
=0 o

Let T be the lattice generated by 2N vectors d;, 7, where §; = (0,...,0,1,0,...,0) and 7; = 7J;. The
—— N —

j—1 NZj
complex torus J = C¥ /T is called Jacobian variety of I'. Now we introduce the Abel map A(P) : DiV (") —
J

P
A(P) = / w A P ) = AP, (4.35)
Po k k
& pl)
where P, P, € Ky, w = (w1, ws, ...,wy) . Consider two special divisors Y. P.”,i = 1,2, and

k=1
N
A (Z P,§’> ZA (P Z / -
with P,gl) = fig(z,t,) and P}gz) = Uk(z,t,), whose components are

N P;Ei) '
O R B e A
k=170

The Riemann theta function is defined as [10} 13} 23]
6(P,D) =0(A— A(P)+ A(D), (4.36)

where P € K, D € Div(T'), and A = (Aq,...,Ay) is defined by

A= 1+T]] Z /w,/ wj,j=1,...,N.

i=1,i#7

Then according to (4.35) and the definition of Riemann theta function in (4.36)), we have
0(P, Dya,)) = 0(A — A(P) + p)), (4.37)

O(P, Dy(z.1y) = 0(A — A(P) + p?). (4.38)

Lemma 4.4. Suppose that p(z,t,),q(z,t,) € C°(R?) satisfy the hierarchy of nonlinear Eq. ([2.8). Let
A € C\{0},(0<j<2N+1), and P = ()\ Y) € KN\ (Poots Pxo—). Then

b = =L (4.39)

~4¢4+0(¢?) as P — P,
¢—0

¢ D5 + 27 + O(C) as P — P, ‘

Proof. Introducing the local coordinate ¢ = A~! near Py, from Theorem we have

2N+1 . .
y = HFH(A A)5=$CN1H(1—CA)5
j=0 (4.40)

Cjo F¢ N1 +041C+042C2+043C3+O(§4)) as P — Py.
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From (3.5) and (3.6]), we can derive

f_l = (f())\N + fl)\N_l 4+t fN)—l
— —1+,Npq _ £—1 2
So fo R fo fic+O(E) -
=y (B apa = )+ OE) as P P,
g = g M4 gAY + g AT 4 AN+ O

cio CNYg 1 4+ goC + g1C? + 9283 + O(¢Y)) as P — Poor. (4.42)

Then according to the definition of ¢ in (4.6]), we finally obtain that

¢(P>xvt?") = y;g

SCMF( 4 an€ + o + as¢® + 0(¢Y)

+(g9-1 + 90¢ + 91¢% + 9263 + O(¢H))] (4.43)

L+ (%2 —9pg — 1) + O(¢?)) ‘
g’( +0(¢?) as P — Py,

€50 %§_1+I;—§+2i7q+0(C) as P — Py _.

Thus proves the lemma. O

Lemma 4.5. Under the same supposition in Lemma in the special case of (3.9) when ay = 1,
ap=0,1 <k <N, we have that

B expliC  (z — x0) + it — tor) + O(1)] as P — Py,
Vi(P @, 20, b tor) ¢—0 { exp[—i¢ Nz — x0) —i¢ "Lty — to,) + O(1)] as P — Po_.

Proof. In the special case of when ag = 1,a;, = 0,1 < k < N, we derive that f; = b;, h; = ¢j,—1 < j.
Introducing the local coordinate ¢ = A~! near P+, we obtain from that
exp(f (iX —iyp(P, 2, t,)q(P, 2’ t,) + p(a', t,.)p(P, 2, t,.))dx’
exp[f (i¢~t —iyp(P, 2’ t,)q(P, 2, t,.)
+p(P, ' t,)(—4¢ + O(gZ))qu as P — Py,
o | eaplfy (¢!~ ivp(P,! tr) (P2’ tr) (4.44)
+p(P, 2’ t,)(— ﬂg +5 Pe 4 2iyg+ O((€)))dx'] asP — Ps—

exp(i¢ (x — :1;0) +0(1)) as P — Poot,
0 | ZEEeap(—i¢H(w — o) + O(1)) as P — P
Then in the special case of -, combining , , , , and yields
o (A O, ) + Vi (A 20, 5)8(P. 2o, 5))ds)
— eap [fto (5 A75075)1/1(2)@ z0,5) + h L)) g

t Z:obj( o) ()
— T :I:.]: tr s L0,
e N = e I K
L =0
+ Z b;i(¢tzo,8)¢
tr 1 j:O Pt (Z0,8) (4.45)
= +i(T" 0] d
C%U exp to,r ZC Z fl(4717x075)cl + 2p(xo,s) + (C) 5
i=0

_ "t s -—r—1 ‘_ r+1 br+1(4 ,%0,5) P, (%0,5)
o exp |:j;40,r +i( (1-¢ fo(C T )+ Spzos) T O(C)) ds}
p i, (i F it ey 4 5eted) +0(0)) ds|
¢

fo(¢—V0,5)
B exp(i¢™""1(t, —to,) + O(1)) as P — Paoy,
o | exp(—i¢ "Nt —to,) + O(1)) as P — Po_.
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Hence, combining with the definition of 7 in , we can arrive at . Next, we shall derive the
representation of ¢,v¥,p and ¢ in terms of the Riemann theta function. Let w§w+’ p.._ be the normal
differential of the third kind holomorphic on Ky \{Ps+, Pso—} with simple poles at P4 and P_ and
residues 1 and -1, respectively, which can be expressed as

N

3 1
wﬁsoL,pm_ = Hl(A — Bj)dA, (4.46)
]:

where 3; € C,j = 1,..., N are constants that are determined by

/ W) p =0,j=1,.. N
.

J

3)

If the local coordinate near P+ is given by ¢ = A~!, then we have the asymptotic expansions of w Py P
near Poo:

w(3) = qECNﬂ QJHI(l _ g)\.)—% . (_CfN—2) IJ—V[ (1= ¢B;)dC
Pt =0 j=0 ! j=1 J
2N+1 L N
So £ (=) 2 1;[1(1 —(B;)d¢ (4.47)

Jj=0
= +(¢C'+0()) as P— Pyy.
¢—0

Therefore,
P
3
/Po wg%)o%Poof So +(In¢ — lnwy + O(C)) as P — Pyx (4.48)
for some constant wy € C. Next, let wg; .7 € No, be normalized differentials of the second kind with a
unique pole at P+ and principal part near Py+ is —(~27"d(, and satisfying
/wgolhzo,j:L...,N. (4.49)
Then we can define Q(()z) and Qf?_)l by
2 2 2
Q(() ) = wggo)oﬁo - wggo)o_’o, (4.50)
r—1
Qf?_)l = Z ar_1—s(s+ 1)(w§3201+’3 - wgol_,s), (4.51)
s=0
where a,_1_g are the integral constants in (3.9)). Therefore,
/ 952’207/ o® =0,j=1,...,N. (4.52)
aj a;
P o
/ Q(() ) = :|:(C_1 + ep,0 + 6071C + O(CQ)) as P — Pyot, (4.53)
Py ¢—0
P r—1
/ QTQ_1 = £ Z Qr_1—sC 154 er—10+0(() | as P— Psx (4.54)
Po ¢=0 s=0

for some constants ego,€0,1,€r—1,0 € C. If Dj(py,) and Dy(y .y in (4.7) are assumed to be nonspecial [13],
then according to the Riemanns vanishing theorem [10] [13], the definition and asymptotic properties of the
meromorphic function ¢(P,z,t,), ¢ has the expressions of the following type:

0(P, Do t,)) P
Pz t.)=C(z,t,)——————exp </ W > , 4.55
¢( ) ( )9(P7 Dg(x’tr)) PO Poo+7Poo— ( )

where C(x,t,) is independent of P € Ky. O
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Theorem 4.6. Let P = (\,y) € Kn\(Poots Poo—), (7,t.), (w0, t0,) € M where M C R? is open and
connected. Suppose p,q € C®(M) satisfy the hierarchy of nonlinear equations , and assume that
N, 0<j<2N+1 in satisfy \j € C\{0} and \; # A\ as j # k. Moreover, suppose that Dg(54,), or
equivalently, Dy .y s nonspecial for (z,t;). Then ¢,1,v2 admit the following representation: B

0(Paoy, Dis(o.t))0(P, Dyas,
O 1) = Gt D)1 ”))'exp</ .

+ 2iep,0T + 21,1 0t ) , (4.56)
H(POO*’ Dg(m,))é?(P Du(x tT)) “Poct,Poc- T r

Q(PooJraDZZ(mo to T))H(P DA(a: tr)) P 2)
Y1 (P, x, ty, o, tro) = = —— - exp (2 </ Q7 —eopo)(x — 1:0>> (4.57)
0(Poc+t> Dia,t,))0(P, Diao to ) Py 0

P 2
- erp <’L </ 19531 — er—l,(])(tr - tO,r)) )
Po

Q(POO-HD (o, tor))e(PD (mt,«))

¢2(P,$,t7«,1’0,t0,7«) C(] (4.58)

( l/(ac tT))G( (xo,to,r))

P o
- exp ( < —|— 6070> (l’ — xo) +1 < Qi—)l + er_1,0> (tr — to,r)>
Py
- exp (/ wPoo+,P + 2ueq0z0 + QieT_1,0t0,r> ,
Py
where
—21 9(P00—7Dﬁ(w0 to r))
Cp = £70.%0, 9 — ier_10to,), 4.59
0= Lo to, T H(Poo+7Dg(xo,t0,r)))exp( ieo,0T0 — 2ier—1,0tor) (4.59)
H(Poo—i—aDA(xO;tO 7"))9<Poo 7DA(:):,tr)> . .

p(z,t.) = p(xo, tor) o(P STIi l: ) xp(—2ieg0xo — 2ie,—1,0to,r), (4.60)

00— 7 xo to, r e o] 7 z,tr

H(Poo ’ (Hfo,to 7"))0 oo+ My(x,t, ) . .

q(z,tr) = q(xo, o) 0P t )H(P + ((tt); exp(2iep,0xo + 2ie,—10tor), (4.61)

[o ok =} Z/ :EO 0, r V Z,lr

4 (P, Dy(0,t0,))0(Poo—s Di(aorto.r))
p(xo, tor)q(xo,to,) = —5 - = - (4.62)
Wi O(Poo—, Dp(ag t0,))0(Poots Do o))

Proof. First, we shall consider the theta function representation - 4.57) for v1. Without loss of generality, in
the following, we only consider the spemal case of . for ag =1, = 0,1< k < N 4+ 1. We temporarily
assume that yu;(z,t ) # pjr(z,t,) as j # 7 and (:U tr) € M for appropriate M C M and define the right-hand
side of (4.57 - ) to be 1/11 In order to prove ¥ = 1/11, we investigate the local zeros and poles of 11 defined by

(1. From @33). (3D, (). and (IT). we have

v(2', t) (P2 L)) = —Opln(X\ — (2’ t)) + O(1), (4.63)
P—fij (2! )
Vi (A z0.8)$(P,ao,s) = —ddn(h— pi(wo,5)) + O(1), (4.64)
P‘)Nj(xms)
()‘_/J'](xvt'r))o(l)v P — ﬁ](xvt'r) #ﬁj(xﬁatno%
Y1 (P, x, tr, o, tro) = O(1), P — pj(x,t,) = pj(xo, tro), (4.65)

(A = (20, tr0))1O(1), P — fij(wo, tro) # fj(z,t),
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with P = (\,y) € Kn, (z,t,), (zo,t0,) € M, and O(1) # 0. Hence 91 and 1)1 share the same singularities
and zeros on Ky \(Peo+, Poo—), which are all simple by hypothesis @ Next, we study the behavior of
11 and 1 near P4, taking into account (4.38)), (4.53)), (4.54) and @, then shows that ¢; and 11 have
identical exponential behavior up to order O(1) near Py+. Thus, 1)1 and 1 share the same singularities
and zeros. Then the Riemann-Roch-type uniqueness proves that v, = ;. Hence holds subject to

(4.63]). Inserting (4.48) into (4.55) and comparing with (4.39)) one finds

g = C(x ; )ﬁ Q(POO_,_, Dﬁ(x,tr)) pe— 27 9(P00—7 DE(x,tr)) (4 66)
" w0 0(Poot, Daat,)) C(z,tr)wo 0(Poo—, Dy(yt,)) ’

Re-examining the asymptotic behavior of ¥ near Py _ yields

¢1(P, z,tr, T, to’r) = &(gz)’f;)) exp(—i<_1<x — $0> + O(l)) . %ew})(—ig—l—r&r N t[),r) + 0(1))
%exp[—i(‘l(m —x0) — ity — tor) + O(1)].
(4.67)
A comparison of (4.57)) and (4.68)) then proves (4.60)). Inserting (4.60) into the second equation of (4.67)),
we have

—2i  0(Poot, Da(et,))0(Poo—s Do, to.))
Clz,t,) = = =" . exp(2iego(x — x0) + 2i€,_10(tr —to,)), (4.68
( ) q(‘xo7 t(],r)wo Q(Poo_, DE(IJT))G(POOJ,_, DQ(xUJO,T)) p( 070( 0) 170( 07 )) ( )

together with the first equation of (4.67) yields (4.61)), (4.62). Given C(z,t,), we can determine ¢ in ({4.5))
from (4.55) and 19 in (4.58) from 1y = ¢1p1. So we complete the prove of the theorem on M. Finally the

extension of all these results from M to M then follows by continuity of the Abel map A(P) and nonspecialty
of D544,y on M. Hence, we obtain the algebro-geometric solutions of the whole GNLS hierarchy. O
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