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Abstract

This paper is dedicated to provide explicit theta function representation of algebro-geometric solutions for
the generalized nonlinear Schrödinger hierarchy. Our main tools include zero-curvature equation to derive
the generalized nonlinear Schrödinger hierarchy, the hyper-elliptic curve with genus of N , the Abel-Jacobi
coordinates, the meromorphic function, the Baker-Akhiezer functions, and the Dubrovin-type equations for
auxiliary divisors. With the help of these tools, the explicit representations of the Baker-Ahhiezer func-
tions, the meromorphic function, and the algebro-geometric solutions are obtained for the whole generalized
nonlinear Schrödinger hierarchy. c©2016 All rights reserved.
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1. Introduction

Algebro-geometric solution (also called quasi-periodic solution or finite gap solution), as an important
feature of integrable system, was originally researched on the KdV equation based on the inverse spectral
theory [1, 3, 4, 5], subsequently, algebro-geometric method developed in literatures such as [1, 3, 4, 5, 19,
20, 25], in the late 1970s. As a degenerated case of the algebro-geometric solution, the elliptic function
solution and multi-soliton solution may be worked out [1, 22, 25]. The inverse spectral theory has been
extended to the whole (1+1) dimensional integrable hierarchy by Gesztesy and Holden, such as the AKNS
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hierarchy, the Camassa-Holm hierarchy, and so on [9, 10, 11, 12]. In recent years, Fan and his co-authors
[15, 16, 17, 18, 29, 30, 31] investigated the Ruijsenaars-Toda Hierarchy, the Degasperis-Procesi hierarchy,
derivative Burgers hierarchy, etc., and obtained their algebro-geometric solutions.
As is well-known, the nonlinear Schrödinger equation is

iut + uxx + 2|u|2u = 0, (1.1)

it arises from a wide variety of fields, such as plasma physics, the theory of deep water waves, and nonlinear
fibre optics, etc. The discovery of the integrability of the equation by the inverse scattering transformation
approach has promoted the understanding of the generality of this method to a large extent. So far, there
has been much research on the Eq. (1.1). such as its soliton solutions, conserved quantities, Darboux
transformation, Bäcklund transformation, and others have been studied in [2, 6, 14, 21, 24].

In this paper, we are going to investigate the generalized nonlinear Schrödinger (GNLS) hierarchy [7],
and the first non-trival member is GNLS equation (t1 = t)

ipt = 1
2pxx − p

2q + 2iγ(pq)xp+ 2γ2p3q2,

iqt = −1
2qxx + pq2 + 2iγ(pq)xq − 2γ2p2q3,

(1.2)

where γ is a constant.
Geng discussed the soliton solutions of the equation (1.2) by Darboux transformation [8], Yan studied

its N -Hamiltonian structures and finite-dimensional involutive systems and integrable systems [27], Qin
investigated algebro-geometric solutions for equation (1.2) by variable separation method [26]. However, to
the best of authors knowledge, the algebro-geometric solutions for the whole GNLS hierarchy are still not
presented yet. The main aim of the present paper is to uniformly construct algebro-geometric solutions of
the entire GNLS hierarchy.

The present paper is organized as follows. In Section 2, based on the Lenard gradient and the stationary
zero-curvature equation, we obtain the GNLS hierarchy associated with a 2 × 2 matrix spectral problem.
In Section 3, we introduce a Lax matrix and an algebraic curve KN with genus N , by which we discuss
nonlinear recursion relations of the corresponding homogeneous coefficients, and a direct relation between
the elliptic variables and the potentials is established. Then the hierarchy is decomposed into solvable
ordinary differential equations. In Section 4, all the flows of the GNLS hierarchy are straighten out under
the Abel-Jacobi coordinates. The meromorphic function φ and the Baker-Akhiezer function ψ are introduced
on the hyperelliptic curve KN . Then we study the meromorphic function φ such that φ satisfies nonlinear
differential equations, and discuss the properties of the Baker-Akhiezer function ψ. We present the explicit
theta function representations for the meromorphic function and the Baker-Akhiezer function. In particular,
we give the algebro-geometric solutions for the whole GNLS hierarchy.

2. The GNLS hierarchy

In this section, we shall derive the hierarchy associated with the following spectral problem [7],

ψx = Uψ, U =

(
iλ− iγpq p

q −iλ+ iγpq

)
, ψ =

(
ψ1

ψ2

)
, (2.1)

where p and q are two potentials, γ is a constant,λ is a constant spectral parameter. We now introduce the
Lenard gradient sequence {Sj}, j = 0, 1, 2 . . . to derive the hierarchy

KSj−1 = JSj , j = 1, 2, 3, . . . , Sj |(p,q)=0 = 0, S−1 = (−1, 0, 0)T , JS−1 = 0, (2.2)

where Sj = (aj , bj , cj) and operators (∂ = ∂/∂x)

K =

 2p ∂ + 2iγpq 0
−2q 0 ∂ − 2iγpq
∂ q −p

 , J =

 0 2i 0
0 0 −2i
∂ q −p

 . (2.3)

After direct calculation from the recursion relation (2.2) we get
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S0 =

 0
ip
iq

 , S1 =

 −1
2pq

1
2px + iγp2q
−1

2qx + iγpq2

 , (2.4)

S2 =

 i
4(pxq − pqx)− γp2q2

− i
4pxx + i

2p
2q + 3

2γppxq + 1
2γp

2qx + iγ2p3q2

− i
4qxx + i

2pq
2 − 3

2γpqxq −
1
2γq

2px + iγ2p2q3

 . (2.5)

Consider the auxiliary problem:

ψtr = V (r)ψ, V (r) =

(
V

(r)
11 V

(r)
12

V
(r)
21 −V (r)

11

)
, (2.6)

where

V
(r)
11 = 2iγar − i

r+1∑
j=0

aj−1λ
r+1−j ,

V
(r)
12 = −i

r+1∑
j=0

bj−1λ
r+1−j ,

V
(r)
21 = −i

r+1∑
j=0

cj−1λ
r+1−j .

(2.7)

Then the compatibility condition of Eq. (2.1) and Eq. (2.6) is Utr −V
(r)
x + [U, V (r)] = 0, which is equivalent

to
ptr = (2− 4iγp∂−1q)br+1 + 4iγp∂−1pcr+1,

qtr = 4iγq∂−1qbr+1 + (−2− 4iγq∂−1p)cr+1.
(2.8)

The first non-trival member is GNLS equation

pt1 = − i
2pxx + ip2q + 2γ(pq)xp− 2iγ2p3q2,

qt1 = i
2qxx − ipq

2 + 2γ(pq)xq + 2iγ2p2q3.
(2.9)

which is just Eq. (1.2) when t1 = t.

3. Evolution of elliptic variables

Assume that (2.1) and (2.6) have two basic solutions χ = (χ1, χ2)
T and Φ = (Φ1,Φ2)

T . Then we define
a matrix W of three functions g, f, h by

W =
1

2
(ΦχT + χΦT )σ =

(
g f
h −g

)
, σ =

(
0 −1
1 0

)
, (3.1)

which satisfies the Lax equations
Wx = [U,W ], Wtr = [V (r),W ]. (3.2)

Therefore, ∂xdetW = 0, ∂trdetW = 0. Then Eq. (3.1) and Eq. (3.2) can be written as

fx = 2i(λ− γpq)f − 2pg,
gx = ph− qf,
hx = 2qg − 2i(λ− γpq)h,

(3.3)

and
ftr = 2fV

(r)
11 − 2gV

(r)
12 ,

gtr = hV
(r)
12 − fV

(r)
21 ,

htr = 2gV
(r)
21 − 2hV

(r)
11 .

(3.4)

Supposing that the functions g, f, h are finite-order polynomials in λ:
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f =
N+1∑
j=0

fj−1λ
N+1−j , g =

N+1∑
j=0

gj−1λ
N+1−j , h =

N+1∑
j=0

hj−1λ
N+1−j . (3.5)

Substituting (3.5) into (3.3) yields:

f−1 = 0, h−1 = 0, g−1 = −1,
fj,x = −2pgj − 2iγpqfj + 2ifj+1, hj,x = 2qgj + 2iγpqhj + 2hj+1,−1 ≤ j ≤ N − 1,
gj,x = phj − qfj ,−1 ≤ j ≤ N, fN,x = 0, gN,x = 0,

(3.6)

which is equivalent to

KQj−1 = JQj(j = 0, 1, 2, . . . , N), JQ−1 = 0, KQN = 0, Qj = (gj , fj , hj)
T . (3.7)

It is easy to see that JQ−1 = 0 has the general solution

Q−1 = α0S−1, (3.8)

where α0 is constant of integration. Without loss of generality, let α0 = 1, and acting with the operator
(J−1K)k+1 upon (3.8), we obtain from (2.4) and (3.7) that:

Qk =

k+1∑
j=0

αjSk−j , k = 0, 1, . . . , N, (3.9)

where α0, α1, . . . , αN+1 are integral constants. The first few members in (3.9) are

Q0 =

 −α1

ip
iq

 , (3.10)

Q1 =

 −1
2pq − α2

1
2px + iγp2q + ipα1

−1
2qx + iγpq2 + iqα1

 , (3.11)

where {αl}l∈Ndenote integration constants. For subsequent use we introduce the homogeneous coefficients
ĝk, f̂k and ĥk defined by the vanishing of the integration constants {αl} for l = 1, 2, . . . , k(k ∈ N0),

ĝ−1 = g−1 = −1, ĥ−1 = h−1 = 0, f̂−1 = f−1 = 0,

ĝk = gk|αl=0,l=1,...,k, f̂k = fk|αl=0,l=1,...,k, ĥk = hk|αl=0,l=1,...,k.
(3.12)

Defining α0 = 1, then we obtain

gk =

k∑
j=−1

αk−j ĝj , fk =

k∑
j=0

αk−j f̂j , hk =
k∑
j=0

αk−j ĥj . (3.13)

Next, we consider the function detW , which is a (2N+2) th-order polynomial in λ with constant coefficients
of the x-flow and tr-flow, we have

− detW = g2 + fh =
2N+1∏
j=0

(λ− λj) = R(λ). (3.14)

We introduce the hyperelliptic curve KN of arithmetic genus N defined by

KN : y2 =

2N+1∏
j=0

(λ− λj) = R(λ). (3.15)
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The curve KN can be compactified by joining two points at infinity P∞±, where P∞+ 6= P∞−. And
the compactification is also denoted by KN for notational simplicity. Here we assume that the zeros λj of
R(λ) in (3.15) are mutually distinct, which means λj 6= λk, when j 6= k, 0 ≤ j, k ≤ 2N + 1. Then the hyper
elliptic curve KN becomes nonsingular. We can determine the integration constants αk(0 ≤ k ≤ N) by the
constants λ0, . . . , λ2N+1 from the following theorem. We shall give some elementary results before giving
the theorem.
Let {λj}j=0,1,...,2N+1 ⊂ C for some N ∈ N0 and ξ ∈ C, |ξ| < min{λ−10 , . . . , λ−12N+1}, and abbreviate
λ = (λ0, . . . , λ2N+1), then

2N+1∏
j=0

(1− λjξ)−
1
2 =

∞∑
k=0

ĉk(λ)ξk, (3.16)

where

ĉ0(λ) = 1, ĉ1(λ) = 1
2

2N+1∑
k=0

λj , ĉ2(λ) = 1
4

∑
j<k

λjλk + 3
8

2N+1∑
j=0

λ2j ,

ĉk(λ) =
∑

j0,...,j2N+1=0
j0+...+j2N+1=k

(2j0)!···(2j2N+1)!
22k(j0!)2···(j2N+1!)2

λj00 · · ·λ
j2N+1

2N+1 .
(3.17)

Similarly, we have
2N+1∏
j=0

(1− λjξ)
1
2 =

∞∑
k=0

ck(λ)ξk, (3.18)

where

c0(λ) = 1, c1(λ) = −1
2

2N+1∑
k=0

λj , c2(λ) = 1
4

∑
j<k

λjλk − 1
8

2N+1∑
j=0

λ2j ,

ck(λ) =
∑

j0,...,j2N+1=0
j0+...+j2N+1=k

(2j0)!···(2j2N+1)!λ
j0
0 ···λ

j2N+1
2N+1

22k(j0!)2···(j2N+1!)2(2j0−1)···(2j2N+1−1)
.

(3.19)

A comparison of the coefficients of ξk in the following equation

1 =

2N+1∏
j=0

(1− λjξ)
1
2

 ·
2N+1∏

j=0

(1− λjξ)−
1
2

 =

( ∞∑
k=0

ck (λ) ξk

)
·

( ∞∑
k=0

ĉk (λ) ξk

)
(3.20)

we get
k∑
j=0

cj(λ)ĉk−j(λ) = δk,0 k ∈ N0. (3.21)

Theorem 3.1.
αl = cl(λ), l = 0, . . . , N. (3.22)

Proof. It will be convenient to introduce the notion of a degree, deg(.), to effectively distinguish between
homogeneous and nonhomogeneous quantities. One defines

deg(p) = 1, deg(q) = 1, deg(∂x) = 2, (3.23)

implying
deg(f̂k) = 2k + 1, deg(ĥk) = 2k + 1, deg(ĝk) = 2k, k ∈ N0, (3.24)

by using the linear recursion relation (3.6) and induction on k. Next, dividing f(λ), h(λ), g(λ) by R(λ)
1
2

near infinity respectively, one obtains

f(λ)

R(λ)
1
2

=
∞∑
j=0

ĉj(λ)λ−N−1−j
N+1∑
j=0

fj−1λ
N+1−j =

∞∑
l=0

f̆l−1λ
−l,

h(λ)

R(λ)
1
2

=
∞∑
j=0

ĉj(λ)λ−N−1−j
N+1∑
j=0

hj−1λ
N+1−j =

∞∑
l=0

h̆l−1λ
−l,

(3.25)
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g(λ)

R(λ)
1
2

=
∞∑
j=0

ĉj(λ)λ−N−1−j
N+1∑
j=0

gj−1λ
N+1−j =

∞∑
l=0

ğl−1λ
−l,

for some coefficients f̌l, ǧl, ȟl to be determined next. Noticing (3.3) and (3.24), we get

f̆k,x = −2pğk − 2iγpqf̆k + 2if̆k+1,

h̆k,x = 2qğk + 2iγpqh̆k + 2h̆k+1,

ğk,x = ph̆k − qf̆k, k = −1, 0, 1, . . . .

(3.26)

Here we have chosen that f̆−1 = f̂−1 = 0, ğ−1 = ĝ−1 = −1, h̆−1 = ĥ−1 = 0, f̆0 = f̂0 = ip, ğ0 = ĝ0 = 0 and
h̆0 = ĥ0 = iq. Moreover, one can prove inductively that

deg(f̆k) = 2k + 1, deg(h̆k) = 2k + 1, deg(ğk) = 2k. (3.27)

Hence, ğl, f̆l and h̆l are equal to ĝl, f̂l and ĥl, respectively, for all l ∈ N0. Thus we proved

f(λ)

R(λ)
1
2

=
∞∑
l=0

f̂l−1λ
−l =

∞∑
l=0

f̂lλ
−l−1,

h(λ)

R(λ)
1
2

=
∞∑
l=0

ĥl−1λ
−l =

∞∑
l=0

ĥlλ
−l−1,

g(λ)

R(λ)
1
2

=
∞∑
l=0

ĝl−1λ
−l.

(3.28)

Using (3.20), we compute that

k∑
m=0

ck−m(λ)f̂m =
k∑

m=0
ck−m(λ)

m∑
l=0

flĉm−l(λ) =
k∑
l=0

fl
k−l∑
s=0

ck−mĉk−s−l(λ)ĉs(λ) = fk, (3.29)

where k = 0, . . . , N, which together with (3.13) implies (3.21) holds. Hence Theorem 3.1 is proved.

If we write f and h as finite products which take the following form

f = ip
N∏
j=1

(λ− µj),

h = iq
N∏
j=1

(λ− νj),
(3.30)

where the roots {µj}Nj=1 and {νj}Nj=1 are called elliptic variables, from which we obtain

g|λ=µk =
√
R(µk), g|λ=νk =

√
R(νk). (3.31)

Noticing (3.3), (3.29) and (3.30), we get

fx|λ=µk = −2pg|λ=µk = −ipµk,x
N∏
j=1
j 6=k

(µk − µj), (3.32)

hx|λ=νk = 2qg|λ=νk = −iqνk,x
N∏
j=1
j 6=k

(νk − νj), (3.33)

which means
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µk,x = −2i

√
R(µk)

N∏
j=1
j 6=k

(µk − µj)
, νk,x = 2i

√
R(νk)

N∏
j=1
j 6=k

(νk − νj)
, 1 ≤ k ≤ N. (3.34)

In a way similar to the calculation of (3.33), we obtain the evolution of {µj} and {νj} along the tr − flow :

µk,tr = −2i

√
R(µk)V

(r)
12

p
N∏
j=1
j 6=k

(µk − µj)
, νk,tr = 2i

√
R(νk)V

(r)
21

q
N∏
j=1
j 6=k

(νk − νj)
. (3.35)

where 1 ≤ k ≤ N .

4. Algebro-geometric solutions

In the section, we shall construct algebro-geometric solutions for the whole GNLS hierarchy (2.8). First
we will recall the hyper-elliptic curve KN of arithmetic genus N defined by

KN : y2 −R(λ) = 0. (4.1)

We can lift the roots {µj}Nj=1 and {νj}Nj=1 to KN by introducing

µ̂j(x, tr) = (µj(x, tr),−G(µj(x, tr), x, tr)), (4.2)

ν̂j(x, tr) = (νj(x, tr), G(νj(x, tr), x, tr)), (4.3)

where j = 1, · · · , N, (x, tr) ∈ R2. Now we introduce the Baker-Akhiezer function ψ = (ψ1, ψ2)
T by

ψx(P, x, x0, tr, t0,r) = U(λ, x, tr)ψ(P, x, x0, tr, t0,r),

ψtr(P, x, x0, tr, t0,r) = V (r)(λ, x, tr)ψ(P, x, x0, tr, t0,r),
W (λ, x, tr)ψ(P, x, x0, tr, t0,r) = y(P )ψ(P, x, x0, tr, t0,r),
ψ(P, x0, x0, t0,r, t0,r) = 1, (x, tr) ∈ R2.

(4.4)

Closely associated with ψ(P, x, x0, tr, t0,r) is the meromorphic function φ(P, x, tr) on KN , defined by

φ(P, x, tr) =
ψ1(P, x, x0, tr, t0,r)

ψ2(P, x, x0, tr, t0,r)
, P ∈ KN , (4.5)

which implies from (4.4) that

φ(P, x, tr) =
y − g
f

=
h

y + g
, (4.6)

where P = (λ, y) ∈ KN \ {P∞+, P∞−}, (x, tr) ∈ R2. Hence the divisor of φ(·, x, tr) reads [10]

φ(·, x, tr) = DP∞+,ν̂(x,tr) −DP∞−,µ̂(x,tr), (4.7)

where

Dµ̂(x,tr) =

N∑
j=1

µ̂j(x, tr), Dν̂(x,tr) =

N∑
j=1

ν̂j(x, tr). (4.8)

The holomorphic sheet exchange map ∗ is defined by

∗ : KN → KN , P = (λ, y)→ P ∗ = (λ,−y), P, P ∗ ∈ KN .
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With these preparations, we can compute that the meromorphic function φ satisfies the Riccati-type non-
linear differential equations

φx − 2iγpqφ+ pφ2 = q − 2iλφ, φtr = V
(r)
21 − 2V

(r)
11 φ− V

(r)
12 φ

2, (4.9)

as well as
φ(P )φ(P ∗) = −h

f , φ(P ) + φ(P ∗) = −2 gh , φ(P )− φ(P ∗) = 2 yf . (4.10)

After direct calculation, we can derive the properties of ψ(P, x, x0, tr, t0,r)

ψ1(P, x, x0, tr, t0,r) = exp
(∫ x

x0
(iλ− iγp (x′, tr) q (x′, tr) + p (x′, tr)φ (P, x′, tr)) dx

′

+
∫ tr
t0,r

(
V

(r)
11 (λ, x0, s) + V

(r)
12 (λ, x0, s)φ(P, x0, s)

)
ds
)

=
[

f(λ,x,tr)
f(λ,x0,t0,r)

] 1
2 · exp

[∫ x
x0

y(P )p(x′,tr)
f(λ,x′,tr)

dx′ +
∫ tr
t0,r

y(P )V
(r)
12 (λ,x0,s)

f(λ,x0,s)
ds

]
,

(4.11)

and
ψ1(P, x, x0, tr, t0,r)ψ1(P

∗, x, x0, tr, t0,r) = f(λ,x,tr)
f(λ,x0,t0,r)

, (4.12)

ψ2(P, x, x0, tr, t0,r)ψ2(P
∗, x, x0, tr, t0,r) = − h(λ,x,tr)

f(λ,x0,t0,r)
, (4.13)

ψ1(P, x, x0, tr, t0,r)ψ2(P
∗, x, x0, tr, t0,r) + ψ1(P

∗, x, x0, tr, t0,r)ψ2(P, x, x0, tr, t0,r) = −2
g(λ, x, tr)

f(λ, x0, t0,r)
, (4.14)

ψ1(P, x, x0, tr, t0,r)ψ2(P
∗, x, x0, tr, t0,r)− ψ1(P

∗, x, x0, tr, t0,r)ψ2(P, x, x0, tr, t0,r) = −2
y

f(λ, x0, t0,r)
. (4.15)

Next, let us introduce the Riemann surface Γ of the hyperelliptic curve KN and equip Γ with canonical basis
cycles: a1, . . . , aN ; b1, . . . , bN , which are independent and have intersection numbers as follows

ai ◦ aj = 0, bi ◦ bj = 0, ai ◦ bj = δij .

For the present, we will choose our basis as the following set

ω̃l =
λl−1dλ√
R(λ)

, 1 ≤ l ≤ N, (4.16)

which are N linearly independent homomorphic differentials on Γ. By using the cycles a and b, the period
matrices A and B can be constructed from

Aij =

∫
aj

ω̃i, Bij =

∫
bj

ω̃i.

It is possible to show that matrices A and B are invertible [13, 23]. Now we define the matrices C and τ
by C = A−1, τ = A−1B. The matrix τ can be shown to be symmetric (τij = τji) and it has positive definite
imaginary part (Imτ > 0). If we normalize ω̃l into the new basis ωj ,

ωj =

N∑
l=1

Cjlω̃l, 1 ≤ j ≤ N, (4.17)

then we have ∫
ai

ωj =

N∑
l=1

Cjl

∫
ai

ω̃l = δji,

∫
bi

ωj = τji.
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Define the Abel-Jacobi coordinates

ρ
(1)
j (x, tr) =

N∑
k=1

∫ µ̂k(x,tr)

P0

ωj =

N∑
k=1

N∑
l=1

Cjl

∫ µk

λ(P0)

λl−1dλ√
R(λ)

, (4.18)

ρ
(2)
j (x, tr) =

N∑
k=1

∫ ν̂k(x,tr)

P0

ωj =

N∑
k=1

N∑
l=1

Cjl

∫ νk

λ(P0)

λl−1dλ√
R(λ)

, (4.19)

where 1 ≤ j ≤ N . Without loss of generality, we choose the branch point P0 = (λj0, 0), j0 ∈ {0, . . . , 2N+1},
as a convenient base point, and λ(P0) is its local coordinate. From (3.33), (3.34), (4.18) and (4.19) we obtain
the following two lemmas.

Lemma 4.1. (Straightening Out of the x-Flow).

∂xρ
(1)
j = −2iCjN , ∂xρ

(2)
j = 2iCjN , 1 ≤ j ≤ N, (4.20)

where
CN = (C1N , . . . , CNN ), ρ(i) = (ρ

(i)
1 , . . . , ρ

(i)
N ), i = 1, 2.

Proof. It can be calculated from (3.33), (4.18), (4.19) that

∂xρ
(1)
j =

N∑
k=1

N∑
l=1

Cjl
µl−1k µk,x√
R(µk)

=
N∑
l=1

N∑
k=1

−2iCjlµ
l−1
k

N∏
j=1
j 6=k

(µk − µj)
, (4.21)

∂xρ
(2)
j =

N∑
k=1

N∑
l=1

Cjl
νl−1k νk,x√
R(νk)

=

N∑
l=1

N∑
k=1

2iCjlν
l−1
k

N∏
j=1
j 6=k

(νk − νj)
, (4.22)

which implies

∂xρ
(1)
j = −2iCjN , ∂xρ

(2)
j = 2iCjN , 1 ≤ j ≤ N, (4.23)

with the help of the following equalities

N∑
k=1

µl−1k
N∏
j=1
j 6=k

(µk − µj)
=

 δlN , 1 ≤ l ≤ N,∑
i1+···+iN=l−N,ij≥0

µi11 · · ·µ
iN
N , l > N. (4.24)

Thus we complete the proof of the lemma.

Lemma 4.2. (Straightening Out of the tr-Flow).

∂trρ
(1) = 2

r∑
l=0

γlCN−r+l, (4.25)

∂trρ
(2) = −2

r∑
l=0

γlCN−r+l, (4.26)

where
Cj = (C1j , . . . , CNj), ρ

(i) = (ρ
(i)
1 , . . . , ρ

(i)
N ), 1 ≤ j ≤ N,
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and the recursive formula:

γ0 = −i, γ1 = iα1, γ2 = −i(α2
1 − α2), γk = −

k∑
j=1

αjγk−j .

Proof. From (3.9) we obtain

− ifk =
k∑
j=0

αjV
(r)
12,k−j , (4.27)

which implies

V
(r)
12,k =

k∑
j=0

γlfk−l. (4.28)

From (3.34), (4.18) and (4.28),we have

∂trρ
(1)
j =

N∑
k=1

N∑
l=1

Cjl
µl−1
k µk,tr√
R(µk)

=
N∑
l=1

N∑
k=1

−2iCjlµ
l−1
k V

(r)
12 (µk)

p
N∏
j=1
j 6=k

(µk−µj)

=
N∑
l=1

N∑
k=1

−2iCjlµ
l−1
k

p
N∏
j=1
j 6=k

(µk−µj)
(
r∑
s=0

V
(r)
12,sµ

r−s
k )

=
N∑
l=1

N∑
k=1

−2iCjlµ
l−1
k

p
N∏
j=1
j 6=k

(µk−µj)

r∑
s=0

(
s∑
t=0

γtfs−t)µ
r−s
k

=
r∑
t=0

−2iγt
p

r∑
s=t

fs−t
r−s∑
l=0

Cj,N−(r−s)+lΥl

=
r∑
t=0

−2iγt
p

r−t∑
k=0

k∑
l=0

Cj,N−(r−t)+kflΥk−l,

(4.29)

with

Υ0 = 1,Υk =
∑

j1+···+jN=k,ji≥0
µj11 · · ·µ

jN
N , k ≥ 1. (4.30)

Then we get

∂trρ
(1)
j =

r∑
l=0

−2iγl
p

f0Cj,N−r+l = 2
r∑
l=0

γlCj,N−r+l (4.31)

with the help of the formula [28] ∑
j1+j2=k,ji≥0

Υj1Υj2 = 0, 1 ≤ k ≤ r, (4.32)

where

f0 = ip, f1 = −ip
N∑
l=1

µl, fk = (−1)kip
∑

j1<···<jk,ji≥1
Υj1Υj2 = 0, 1 ≤ k ≤ N. (4.33)

Thus the proof of lemma is completed.

From the above two lemmas, we have the following theorem.
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Theorem 4.3.
ρ(1) = −2iCNx+ Ωrtr + ρ

(1)
0 ,

ρ(2) = 2iCNx− Ωrtr + ρ
(2)
0 ,

(4.34)

where Ωr = 2
r∑
l=0

γlCj,N−r+l, r = 0, . . . , N − 1, constants ρ
(i)
0 ∈ RN , i = 1, 2.

Let T be the lattice generated by 2N vectors δj , τj , where δj = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−j

) and τj = τδj . The

complex torus J = CN/T is called Jacobian variety of Γ. Now we introduce the Abel map A(P ) : DiV (Γ)→
J

A(P ) =

∫ P

P0

ω,A

(∑
k

nkPk

)
=
∑
k

nkA(Pk), (4.35)

where P, Pk ∈ KN , ω = (ω1, ω2, . . . , ωN )>. Consider two special divisors
N∑
k=1

P
(i)
k , i = 1, 2, and

A

(
N∑
k=1

P
(i)
k

)
=

N∑
k=1

A
(
P

(i)
k

)
=

N∑
k=1

∫ P
(i)
k

P0

ω = ρ(i),

with P
(1)
k = µ̂k(x, tr) and P

(2)
k = ν̂k(x, tr), whose components are

N∑
k=1

∫ P
(i)
k

P0

ωj = ρ
(i)
j , 1 ≤ j ≤ N, i = 1, 2.

The Riemann theta function is defined as [10, 13, 23]

θ(P,D) = θ(Λ−A(P ) +A(D), (4.36)

where P ∈ KN , D ∈ Div(Γ), and Λ = (Λ1, . . . ,ΛN ) is defined by

Λj =
1

2
(1 + τjj)−

N∑
i=1,i 6=j

∫
ai

ωi

∫ P

Q0

ωj , j = 1, . . . , N.

Then according to (4.35) and the definition of Riemann theta function in (4.36), we have

θ(P,Dµ̂(x,tr)) = θ(Λ−A(P ) + ρ(1)), (4.37)

θ(P,Dν̂(x,tr)) = θ(Λ−A(P ) + ρ(2)). (4.38)

Lemma 4.4. Suppose that p(x, tr), q(x, tr) ∈ C∞(R2) satisfy the hierarchy of nonlinear Eq. (2.8). Let
λj ∈ C\{0}, (0 ≤ j ≤ 2N + 1), and P = (λ, y) ∈ KN\(P∞+, P∞−). Then

φ =
ζ→0

{
− iq

2 ζ +O(ζ2) as P → P∞+,
2i
p ζ
−1 + px

p2
+ 2iγq +O(ζ) as P → P∞−,

ζ = λ−1. (4.39)

Proof. Introducing the local coordinate ζ = λ−1 near P∞±, from Theorem 3.1 we have

y = ∓
2N+1∏
j=0

(λ− λj)
1
2 = ∓ζ−N−1

2N+1∏
j=0

(1− ζλj)
1
2 ,

=
ζ→0

∓ζ−N−1(1 + α1ζ + α2ζ
2 + α3ζ

3 +O(ζ4)) as P → P∞±.
(4.40)
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From (3.5) and (3.6), we can derive

f−1 = (f0λ
N + f1λ

N−1 + · · ·+ fN )−1

=
ζ→0

f−10 ζN [1− f−10 f1ζ +O(ζ2)]

=
ζ→0

− i
pζ
N (1 + ( ipx2p − γpq − α1)ζ +O(ζ2)) as P → P∞±,

(4.41)

g = g−1λ
N+1 + g0λ

N + g1λ
N−1 + g2λ

N−2 +O(λN−3)
=
ζ→0

ζ−N−1(g−1 + g0ζ + g1ζ
2 + g2ζ

3 +O(ζ4)) as P → P∞±. (4.42)

Then according to the definition of φ in (4.6), we finally obtain that

φ(P, x, tr) = y−g
f

=
ζ→0

i
pζ
−1[∓(1 + α1ζ + α2ζ

2 + α3ζ
3 +O(ζ4))

+(g−1 + g0ζ + g1ζ
2 + g2ζ

3 +O(ζ4))]

·(1 + ( ipx2p − γpq − α1)ζ +O(ζ2))

=
ζ→0

{
− iq

2 ζ +O(ζ2) as P → P∞+,
2i
p ζ
−1 + px

p2
+ 2iγq +O(ζ) as P → P∞−.

(4.43)

Thus proves the lemma.

Lemma 4.5. Under the same supposition in Lemma 4.4, in the special case of (3.9) when α0 = 1,
αk = 0, 1 ≤ k ≤ N, we have that

ψ1(P, x, x0, tr, t0,r) =
ζ→0

{
exp[iζ−1(x− x0) + iζ−r−1(tr − t0,r) +O(1)] as P → P∞+,
exp[−iζ−1(x− x0)− iζ−r−1(tr − t0,r) +O(1)] as P → P∞−.

Proof. In the special case of (3.9) when α0 = 1, αk = 0, 1 ≤ k ≤ N, we derive that fj = bj , hj = cj ,−1 ≤ j.
Introducing the local coordinate ζ = λ−1 near P∞±, we obtain from (4.39) that

exp(
∫ x
x0

(iλ− iγp(P, x′, tr)q(P, x′, tr) + p(x′, tr)φ(P, x′, tr))dx
′

=
ζ→0


exp[

∫ x
x0

(iζ−1 − iγp(P, x′, tr)q(P, x′, tr)
+p(P, x′, tr)(− iq

2 ζ +O(ζ2))dx′] as P → P∞+

exp[
∫ x
x0

(iζ−1 − iγp(P, x′, tr)q(P, x′, tr)
+p(P, x′, tr)(− 2i

p(P,x′,tr)
ζ−1 + px

p2
+ 2iγq +O(ζ)))dx′] asP → P∞−

=
ζ→0

{
exp(iζ−1(x− x0) +O(1)) as P → P∞+,
p(x,tr)
p(x0,tr)

exp(−iζ−1(x− x0) +O(1)) as P → P∞−.

(4.44)

Then in the special case of (3.9), combining (2.8), (3.4), (3.29), (4.6), (4.40) and (4.41) yields∫ tr
t0,r

(V
(r)
11 (λ, x0, s) + V

(r)
12 (λ, x0, s)φ(P, x0, s))ds)

= exp
[∫ tr
t0,r

(
y

f(λ,x0,s)
V

(r)
12 (λ, x0, s) + 1

2
ftr (λ,x0,s)
f(λ,x0,s)

)
ds
]

=
ζ→0

exp

∫ tr
t0,r

±i
r∑

j=0
bj(ζ

−1,x0,s)ζj−r

∞∑
l=0

f̂l(ζ−1,x0,s)ζl+1
+ ftr (ζ

−1,x0,s)
2f(ζ−1,x0,s)

+O(ζ)

 ds


=
ζ→0

exp

∫ tr
t0,r

±iζ−r−1 +
r∑

j=0
bj(ζ

−1,x0,s)ζj

∞∑
j=0

f̂l(ζ−1,x0,s)ζl
+ ptr (x0,s)

2p(x0,s)
+O(ζ)

 ds


=
ζ→0

exp
[∫ tr
t0,r

(
±iζ−r−1(1− ζr+1 br+1(ζ−1,x0,s)

f̂0(ζ−1,x0,s)
) + ptr (x0,s)

2p(x0,s)
+O(ζ)

)
ds
]

=
ζ→0

exp
[∫ tr
t0,r

(
±iζ−r−1 ∓ i br+1(ζ−1,x0,s)

f̂0(ζ−1,x0,s)
) + ptr (x0,s)

2p(x0,s)
+O(ζ)

)
ds
]

=
ζ→0

{
exp(iζ−r−1(tr − t0,r) +O(1)) as P → P∞+,
exp(−iζ−r−1(tr − t0,r) +O(1)) as P → P∞−.

(4.45)
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Hence, combining with the definition of ψ1 in (4.11), we can arrive at (4.38). Next, we shall derive the

representation of φ, ψ, p and q in terms of the Riemann theta function. Let ω
(3)
P∞+,P∞−

be the normal
differential of the third kind holomorphic on KN\{P∞+, P∞−} with simple poles at P∞+ and P∞− and
residues 1 and -1, respectively, which can be expressed as

ω
(3)
P∞+,P∞−

=
1

y

N∏
j=1

(λ− βj)dλ, (4.46)

where βj ∈ C, j = 1, . . . , N are constants that are determined by∫
aj

ω
(3)
P∞+,P∞−

= 0, j = 1, . . . , N.

If the local coordinate near P∞± is given by ζ = λ−1, then we have the asymptotic expansions of ω
(3)
P∞+,P∞−

near P∞±:

ω
(3)
P∞+,P∞−

=
ζ→0

∓ζN+1
2N+1∏
j=0

(1− ζλj)−
1
2 · (−ζ−N−2)

N∏
j=1

(1− ζβj)dζ

=
ζ→0

±ζ−1
2N+1∏
j=0

(1− ζλj)−
1
2 ·

N∏
j=1

(1− ζβj)dζ

=
ζ→0

±(ζ−1 +O(1)) as P → P∞±.

(4.47)

Therefore, ∫ P

P0

ω
(3)
P∞+,P∞−

=
ζ→0
±(lnζ − lnω0 +O(ζ)) as P → P∞± (4.48)

for some constant ω0 ∈ C. Next, let ω
(2)
P∞±,r

, r ∈ N0, be normalized differentials of the second kind with a

unique pole at P∞± and principal part near P∞± is −ζ−2−rdζ, and satisfying∫
ω
(2)
P∞±,r

= 0, j = 1, . . . , N. (4.49)

Then we can define Ω
(2)
0 and Ω

(2)
r−1 by

Ω
(2)
0 = ω

(2)
P∞+,0

− ω(2)
P∞−,0

, (4.50)

Ω
(2)
r−1 =

r−1∑
s=0

αr−1−s(s+ 1)(ω
(2)
P∞+,s

− ω(2)
P∞−,s

), (4.51)

where αr−1−s are the integral constants in (3.9). Therefore,∫
aj

Ω
(2)
0 = 0,

∫
aj

Ω
(2)
r−1 = 0, j = 1, . . . , N. (4.52)

∫ P

P0

Ω
(2)
0 =

ζ→0
±(ζ−1 + e0,0 + e0,1ζ +O(ζ2)) as P → P∞±, (4.53)

∫ P

P0

Ω
(2)
r−1 =

ζ→0
±

(
r−1∑
s=0

αr−1−sζ
−1−s + er−1,0 +O(ζ)

)
as P → P∞± (4.54)

for some constants e0,0, e0,1, er−1,0 ∈ C. If Dµ̂(x,tr) and Dν̂(x,tr) in (4.7) are assumed to be nonspecial [13],

then according to the Riemanns vanishing theorem [10, 13], the definition and asymptotic properties of the
meromorphic function φ(P, x, tr), φ has the expressions of the following type:

φ(P, x, tr) = C(x, tr)
θ(P,Dµ̂(x,tr))

θ(P,Dν̂(x,tr))
exp

(∫ P

P0

ω
(3)
P∞+,P∞−

)
, (4.55)

where C(x, tr) is independent of P ∈ KN .
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Theorem 4.6. Let P = (λ, y) ∈ KN\(P∞+, P∞−), (x, tr), (x0, t0,r) ∈ M where M ⊆ R2 is open and
connected. Suppose p, q ∈ C∞(M) satisfy the hierarchy of nonlinear equations (2.8), and assume that
λj , 0 ≤ j ≤ 2N + 1 in (3.15) satisfy λj ∈ C\{0} and λj 6= λk as j 6= k. Moreover, suppose that Dµ̂(x,tr), or

equivalently, Dν̂(x,tr) is nonspecial for (x, tr). Then φ, ψ1, ψ2 admit the following representation:

φ(P, x, tr) = C0

θ(P∞+, Dµ̂(x,tr))θ(P,Dν̂(x,tr))

θ(P∞−, Dν̂(x,tr))θ(P,Dµ̂(x,tr))
· exp

(∫ P

P0

ω
(3)
P∞+,P∞−

+ 2ie0,0x+ 2ier−1,0tr

)
, (4.56)

ψ1(P, x, tr, x0, tr,0) =
θ(P∞+, Dµ̂(x0,t0,r))θ(P,Dµ̂(x,tr))

θ(P∞+, Dµ̂(x,tr))θ(P,Dµ̂(x0,t0,r))
· exp

(
i

(∫ P

P0

Ω
(2)
0 − e0,0)(x− x0

))
(4.57)

· exp
(
i

(∫ P

P0

iΩ
(2)
r−1 − er−1,0)(tr − t0,r

))
,

ψ2(P, x, tr, x0, t0,r) = C0

θ(P∞+, Dµ̂(x0,t0,r))θ(P,Dν̂(x,tr))

θ(P∞−, Dν̂(x,tr))θ(P,Dµ̂(x0,t0,r))
(4.58)

· exp
(
i

(∫ P

P0

Ω
(2)
0 + e0,0

)
(x− x0) + i

(∫ P

P0

Ω
(2)
r−1 + er−1,0

)
(tr − t0,r)

)
· exp

(∫ P

P0

ω
(3)
P∞+,P∞−

+ 2ie0,0x0 + 2ier−1,0t0,r

)
,

where

C0 =
−2i

q(x0, t0,r)ω0

θ(P∞−, Dµ̂(x0,t0,r))

θ(P∞+, Dµ̂(x0,t0,r)))
exp(−2ie0,0x0 − 2ier−1,0t0,r), (4.59)

p(x, tr) = p(x0, t0,r)
θ(P∞+, Dµ̂(x0, t0,r))θ(P∞−, Dµ̂(x,tr))

θ(P∞−, Dµ̂(x0,t0,r))θ(P∞+, Dµ̂(x,tr))
exp(−2ie0,0x0 − 2ier−1,0t0,r), (4.60)

q(x, tr) = q(x0, t0,r)
θ(P∞−, Dν̂(x0, t0,r))θ(P∞+, Dν̂(x,tr))

θ(P∞+, Dν̂(x0,t0,r))θ(P∞−, Dν̂(x,tr))
exp(2ie0,0x0 + 2ier−1,0t0,r), (4.61)

p(x0, t0,r)q(x0, t0,r) =
4

ω2
0

·
θ(P∞+, Dν̂(x0, t0,r))θ(P∞−, Dµ̂(x0,t0,r))

θ(P∞−, Dν̂(x0,t0,r))θ(P∞+, Dµ̂(x0,t0,r))
. (4.62)

Proof. First, we shall consider the theta function representation (4.57) for ψ1. Without loss of generality, in
the following, we only consider the special case of (3.9) for α0 = 1, αk = 0, 1 ≤ k ≤ N + 1. We temporarily

assume that µj(x, tr) 6= µj′(x, tr) as j 6= j′ and (x, tr) ∈ M̃ for appropriate M̃ ⊆M and define the right-hand

side of (4.57) to be ψ̃1. In order to prove ψ1 = ψ̃1, we investigate the local zeros and poles of ψ1 defined by
(4.11). From (3.33), (3.34), (4.2), and (4.6), we have

v(x′, tr)φ(P, x′, tr) =
P→µ̂j(x′,tr)

−∂x′ ln(λ− µj(x′, tr)) +O(1), (4.63)

V
(r)
12 (λ, x0, s)φ(P, x0, s) =

P→µ̂j(x0,s)
−∂sln(λ− µj(x0, s)) +O(1), (4.64)

ψ1(P, x, tr, x0, tr,0) =


(λ− µj(x, tr))O(1), P → µ̂j(x, tr) 6= µ̂j(x0, tr,0),
O(1), P → µ̂j(x, tr) = µ̂j(x0, tr,0),
(λ− µj(x0, tr,0))−1O(1), P → µ̂j(x0, tr,0) 6= µ̂j(x, tr),

(4.65)
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with P = (λ, y) ∈ KN , (x, tr), (x0, t0,r) ∈ M̃ , and O(1) 6= 0. Hence ψ1 and ψ̃1 share the same singularities
and zeros on KN\(P∞+, P∞−), which are all simple by hypothesis (4.63). Next, we study the behavior of
ψ1 and ψ̃1 near P∞±, taking into account (4.38), (4.53), (4.54) and (4.57), then shows that ψ1 and ψ̃1 have
identical exponential behavior up to order O(1) near P∞±. Thus, ψ1 and ψ̃1 share the same singularities
and zeros. Then the Riemann-Roch-type uniqueness proves that ψ1 = ψ̃1. Hence (4.57) holds subject to
(4.63). Inserting (4.48) into (4.55) and comparing with (4.39) one finds

q = C(x, tr)
2i

ω0

θ(P∞+, Dν̂(x,tr))

θ(P∞+, Dµ̂(x,tr))
, p = − 2i

C(x, tr)ω0

θ(P∞−, Dµ̂(x,tr))

θ(P∞−, Dν̂(x,tr))
. (4.66)

Re-examining the asymptotic behavior of ψ1 near P∞− yields

ψ1(P, x, tr, x0, t0,r) = p(x,tr)
p(x0,tr)

exp(−iζ−1(x− x0) +O(1)) · p(x0,tr)p(x0,t0,r)
exp(−iζ−1−r(tr − t0,r) +O(1))

= p(x,tr)
p(x0,t0,r)

exp[−iζ−1(x− x0)− iζ−r−1(tr − t0,r) +O(1)].

(4.67)
A comparison of (4.57) and (4.68) then proves (4.60). Inserting (4.60) into the second equation of (4.67),
we have

C(x, tr) =
−2i

q(x0, t0,r)ω0

θ(P∞+, Dµ̂(x,tr))θ(P∞−, Dµ̂(x0,t0,r))

θ(P∞−, Dν̂(x,tr))θ(P∞+, Dν̂(x0,t0,r))
· exp(2ie0,0(x− x0) + 2ier−1,0(tr − t0,r)), (4.68)

together with the first equation of (4.67) yields (4.61), (4.62). Given C(x, tr), we can determine φ in (4.5)

from (4.55) and ψ2 in (4.58) from ψ2 = φψ1. So we complete the prove of the theorem on M̃ . Finally the

extension of all these results from M̃ to M then follows by continuity of the Abel map A(P ) and nonspecialty
of Dµ̂(x,tr) on M. Hence, we obtain the algebro-geometric solutions of the whole GNLS hierarchy.
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