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1. Introduction and preliminaries

The study of fixed points of mappings satisfying certain contractive conditions has been at the center of
rigorous research activity. One of the main tools in fixed point theory is the Banach contraction theorem
proved by Banach in 1922. This theorem is a very popular and effective tool in solving existence problems in
many branches of mathematical analysis and engineering. There are a lot of generalizations of this theorem
in the literature. Fixed point theory has many applications in various branches of mathematics and branches
of science.

The concept of b-metric space was introduced by Bakhtin [3] and Czerwik [5]. In [5], Czerwik proved the
contraction mapping principle in b-metric spaces that generalized the famous Banach contraction principle
in metric spaces. Since then several papers have dealt with fixed point theory for single-valued and multi-
valued operators in b-metric spaces (see [1], [4], [9], [10], [11] and references therein). A b-metric space was
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also called a metric-type space in [7]. The fixed point theory in metric-type spaces was investigated in [7]
and [8].

In [6], Bhaskar and Lakshmikantham introduced the concept of coupled fixed points for a given partially
ordered set X. The study of common coupled fixed points of mappings satisfying certain contractive condi-
tions has been at the center of vigorous research activity, being the applications of fixed point very important
in several areas of mathematics. The purpose of the present paper is to study the notion of common coupled
fixed points for a pair of mappings in b-metric spaces and prove the existence and uniqueness of the common
coupled fixed point in a complete b-metric space in view of diverse contractive conditions. In addition, as a
bi-product we obtain several new common coupled fixed point theorems.

Definition 1.1. [2] Let X be a (nonempty) set and s ≥ 1 a given real number. A function d : X ×X →
<+(nonnegative real numbers) is called a b-metric provided that, for all x, y, z ∈ X, the following conditions
are satisfied:

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space with parameter s.

We now give some examples of b-metric spaces.

Example 1.2. [4] The space lp(0 < p < 1), lp = {(xn) ∈ < :
∑
|xn|p <∞} ,

together with the function d : lp × lp → <

d(x, y) = (
∑
|xn − yn|p)

1
p ,

where x = (xn); y = (yn) ∈ lp is a b-metric space with s = 2
1
p .

Example 1.3. [4] The space Lp(0 < p < 1) of all real functions x(t), t ∈ [0, 1] such that
∫ 1
0 |x(t)|p dt < ∞,

is a b-metric space if we take

d(x, y) = (
∫ 1
0 |x(t)− y(t)|p dt)

1
p , for each x, y ∈ Lp.

Remark 1.4. We note that a metric space is evidently a b-metric space for s = 1. However, in general, a
b-metric on X need not be a metric on X as shown in the following example:

Example 1.5. [2] Let X = {0, 1, 2} and d(2, 0) = d(0, 2) = m ≥ 2, d(0, 1) = d(1, 2) = d(1, 0) = d(2, 1) = 1
and d(0, 0) = d(1, 1) = d(2, 2) = 0. Then d(x, y) ≤ m

2 [d(x, z) + d(z, y)] for all x, y, z ∈ X. If m > 2, the
ordinary triangle inequality does not hold.

Definition 1.6. [4] Let (X, d) be a b-metric space. Then a sequence {xn} in X is called a Cauchy sequence
if for every ε > 0, there exists K(ε) ∈ N, such that d(xn, xm) < ε for all n,m ≥ K(ε).

Definition 1.7. [4] Let (X, d) be a b-metric space. Then a sequence {xn} in X is said to converge to x ∈ X
if for every ε > 0, there exists K(ε) ∈ N, such that d(xn, x) < ε for all n ≥ K(ε). In this case, we write
lim
n→∞

xn = x.

Definition 1.8. [4] The b-metric space (X, d) is complete if every Cauchy sequence in X converges in X.

Remark 1.9. In a b-metric space (X, d) the following assertions hold:

(1) A convergent sequence has a unique limit;

(2) Every convergent sequence is Cauchy.
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Definition 1.10. [6] An element (x, y) ∈ X ×X is called a coupled fixed point of T : X ×X → X if

x = T (x, y) and y = T (y, x).

Definition 1.11. An element (x, y) ∈ X ×X is called a coupled coincidence point of S, T : X ×X → X if

S(x, y) = T (x, y) and S(y, x) = T (y, x).

Example 1.12. Let X = < and S, T : X ×X → X defined as

S(x, y) = x2y2 and T (x, y) = (9/4)(x+ y),

for all x, y ∈ X. Then (0, 0), (1, 3) and (3, 1) are coupled coincidence points of S and T.

Example 1.13. Let X = < and S, T : X ×X → X defined as

S(x, y) = x+ y − xy + sin(x+ y) and T (x, y) = x+ y + cos(x+ y),

for all x, y ∈ X. Then (0, π/4), and (π/4, 0) are coupled coincidence points of S and T.

Definition 1.14. An element (x, y) ∈ X ×X is called a common fixed point of S, T : X ×X → X if

x = S(x, y) = T (x, y) and y = S(y, x) = T (y, x).

Example 1.15. Let X = < and S, T : X ×X → X defined as

S(x, y) = xy and T (x, y) = x+ (y − x)2,

for all x, y ∈ X. Then (0, 0) and (1, 1) are common coupled fixed points of S and T.

2. Main results

Theorem 2.1. Let (X, d) be a complete b-metric space with parameter s ≥ 1 and let the mapping S, T :
X ×X → X satisfy

d(S(x, y), T (u, v)) ≤ αd(x, u) + d(y, v)

2
+ β

d(x, S(x, y))d(u, T (u, v))

(1 + d(x, u) + d(y, v))
+ γ

d(u, S(x, y))d(x, T (u, v))

(1 + d(x, u) + d(y, v))
,

for all x, y, u, v ∈ X and α, β, γ ≥ 0 with sα + β < 1 and α + γ < 1.Then S and T have a unique common
coupled fixed point in X.

Proof. Let x0 and y0 ∈ X be arbitrary points.

Define x2k+1 = S(x2k, y2k), y2k+1 = S(y2k, x2k) and x2k+2 = T (x2k+1, y2k+1), y2k+2 = T (y2k+1, x2k+1) for
k = 0, 1, 2....

Then

d(x2k+1, x2k+2) = d(S(x2k, y2k), T (x2k+1, y2k+1))

≤ αd(x2k, x2k+1) + d(y2k, y2k+1)

2
+ β

d(x2k, S(x2k, y2k))d(x2k+1, T (x2k+1, y2k+1))

1 + d(x2k, x2k+1) + d(y2k, y2k+1)
+

γ
d(x2k+1, S(x2k, y2k))d(x2k, T (x2k+1, y2k+1))

1 + d(x2k, x2k+1) + d(y2k, y2k+1)

= α
d(x2k, x2k+1) + d(y2k, y2k+1)

2
+ β

d(x2k, x2k+1)d(x2k+1, x2k+2)

1 + d(x2k, x2k+1) + d(y2k, y2k+1)
+ γ

d(x2k+1, x2k+1)d(x2k, x2k+2)

1 + d(x2k, x2k+1) + d(y2k, y2k+1)

= α
d(x2k, x2k+1) + d(y2k, y2k+1)

2
+ β

d(x2k, x2k+1)d(x2k+1, x2k+2)

1 + d(x2k, x2k+1) + d(y2k, y2k+1)

≤ αd(x2k, x2k+1)

2
+ α

d(y2k, y2k+1)

2
+ βd(x2k+1, x2k+2).

⇒ d(x2k+1, x2k+2) ≤
α

2(1− β)
d(x2k, x2k+1) +

α

2(1− β)
d(y2k, y2k+1).
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Similarly

d(y2k+1, y2k+2) ≤
α

2(1− β)
d(y2k, y2k+1) +

α

2(1− β)
d(x2k, x2k+1).

Adding we get,

[d(x2k+1, x2k+2) + d(y2k+1, y2k+2)] ≤
α

1− β
[d(x2k, x2k+1) + d(y2k, y2k+1)] = h[d(x2k, x2k+1) + d(y2k, y2k+1],

where 0 < h = α
1−β < 1.

Also,

d(x2k+2, x2k+3) ≤
α

2(1− β)
d(x2k+1, x2k+2) +

α

2(1− β)
d(y2k+1, y2k+2)

and

d(y2k+2, y2k+3) ≤
α

2(1− β)
d(y2k+1, y2k+2) +

α

2(1− β)
d(x2k+1, x2k+2).

Adding, we get

[d(x2k+2, x2k+3) + d(y2k+2, y2k+3)] ≤
α

1− β
[d(x2k+1, x2k+2) + d(y2k+1, y2k+2)]

= h[d(x2k+1, x2k+2) + d(y2k+1, y2k+2)].

Therefore,

(d(xn, xn+1) + d(yn, yn+1)) ≤ h(d(xn−1, xn) + d(yn−1, yn)) ≤ ... ≤ hn(d(x0, x1) + d(y0, y1)).

Now, if

d(xn, xn+1) + d(yn, yn+1) = δn, then δn ≤ hδn−1 ≤ ... ≤ hnδ0.

For m > n, we have

(d(xn, xm) + d(yn, ym)) ≤ s(d(xn, xn+1) + d(yn, yn+1)) + ...+ sm−n(d(xm−1, xm) + d(ym−1, ym))

≤ shnδ0 + s2hn+1δ0 + ...+ sm−nhm−1δ0

< shn[1 + (sh) + (sh)2 + ...]δ0

=
shn

1− sh
δ0 → 0 as n→∞.

This shows that {xn} and {yn} are Cauchy sequence in X. Since X is a complete b-metric space, there
exists x, y ∈ X such that xn → x and yn → y as n→∞.

Now, we show that x = S(x, y) and y = S(y, x).

We suppose on the contrary that x 6= S(x, y) and y 6= S(y, x) so that
d(x, S(x, y)) = l1 > 0 and d(y, S(y, x)) = l2 > 0.

Consider

l1 = d(x, S(x, y)) ≤ s[d(x, x2k+2) + d(x2k+2, S(x, y))]

≤ sd(x, x2k+2) + sd(T (x2k+1, y2k+1), S(x, y))

≤ sd(x, x2k+2) + sα
d(x2k+1, x) + d(y2k+1, y)

2
+ sβ

d(x, S(x, y))d(x2k+1, T (x2k+1, y2k+1))

1 + d(x2k+1, x) + d(y2k+1, y)

+ sγ
d(x2k+1, S(x, y))d(x, T (x2k+1, y2k+1))

1 + d(x2k+1, x) + d(y2k+1, y)

≤ sd(x, x2k+2) + sα
d(x2k+1, x) + d(y2k+1, y)

2
+ sβ

d(x, S(x, y))d(x2k+1, x2k+2)

1 + d(x2k+1, x) + d(y2k+1, y)

+ sγ
d(x2k+1, S(x, y))d(x, x2k+2)

1 + d(x2k+1, x) + d(y2k+1, y)
.
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By taking k →∞, we get
l1 ≤ 0, which is a contradiction.

Therefore, d(x, S(x, y)) = 0.

That is, x = S(x, y).

Similarly, one can prove that y = S(y, x).

It follows similarly that x = T (x, y) and y = T (y, x).

So we have proved that (x, y) is a common coupled fixed point of S and T .

We now show that S and T have a unique common coupled fixed point.

Uniqueness: Let (x∗, y∗) ∈ X ×X be another common coupled fixed point of S and T .

Then,

d(x, x∗) = d(S(x, y), T (x∗, y∗))

≤ αd(x, x∗) + d(y, y∗)

2
+ β

d(x, S(x, y))d(x∗, T (x∗, y∗))

(1 + d(x, x∗) + d(y, y∗))
+ γ

d(x∗, S(x, y))d(x, T (x∗, y∗))

(1 + d(x, x∗) + d(y, y∗))

= α
d(x, x∗) + d(y, y∗)

2
+ β

d(x, x)d(x∗, x∗)

(1 + d(x, x∗) + d(y, y∗))
+ γ

d(x∗, x)d(x, x∗)

(1 + d(x, x∗) + d(y, y∗))
.

⇒ d(x∗, x∗) ≤ α

2
d(x, x∗) +

α

2
d(y, y∗) + γd(x, x∗).

⇒ d(x, x∗) ≤ α

2− α− 2γ
d(y, y∗).

Similarly, one can easily prove that

d(y, y∗) ≤ α

2− α− 2γ
d(x, x∗).

Adding, we get

d(x, x∗) + d(y, y∗) ≤ α

2− α− 2γ
[d(x, x∗) + d(y, y∗)].

⇒ (2− 2α− 2γ)(d(x, x∗) + d(y, y∗)) ≤ 0.

⇒ d(x, x∗) + d(y, y∗) = 0.

⇒ x = x∗ and y = y∗.

Corollary 2.2. Let (X, d) be a complete b-metric space with parameter s ≥ 1 and let the mapping T :
X ×X → X satisfy

d(T (x, y), T (u, v)) ≤ αd(x, u) + d(y, v)

2
+ β

d(x, T (x, y))d(u, T (u, v))

(1 + d(x, u) + d(y, v))
+ γ

d(u, T (x, y))d(x, T (u, v))

(1 + d(x, u) + d(y, v))
,

for all x, y, u, v ∈ X and α, β, γ ≥ 0 with sα+β < 1 and α+γ < 1. Then T has a unique coupled fixed point
in X.

Proof. Take T = S in above Theorem.

Theorem 2.3. Let (X, d) be a complete b-metric space with parameter s ≥ 1 and let the mappings S, T :
X ×X → X satisfy

d(S(x, y), T (u, v)) ≤

{
αd(x,u)+d(y,v)2 + β d(x,S(x,y))d(u,T (u,v))

s[d(x,T (u,v))+d(u,S(x,y))+d(x,u)+d(y,v)] , if D 6=0

0, if D=0

for all x, y, u, v ∈ X, where D = D(x, y, u, v) = s[d(x, T (u, v)) + d(u, S(x, y)) + d(x, u) + d(y, v)] and α, β
are nonnegative reals with s(α+ β) < 1.Then S and T have a unique common coupled fixed point.
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Proof. Let x0 and y0 ∈ X be arbitrary points.

Define x2k+1 = S(x2k, y2k), y2k+1 = S(y2k, x2k) and x2k+2 = T (x2k+1, y2k+1), y2k+2 = T (y2k+1, x2k+1) for
k = 0, 1, 2....

Now, we assume that

D1 = D(x2k, y2k, x2k+1, y2k+1) 6= 0 and D2 = D(y2k, x2k, y2k+1, x2k+1) 6= 0.

Then,

d(x2k+1, x2k+2) = d(S(x2k, y2k, T (x2k+1, y2k+1))

≤ αd(x2k, x2k+1) + d(y2k, y2k+1)

2
+ β

d(x2k, S(x2k, y2k))d(x2k+1, T (x2k+1, y2k+1))

D1

= α
d(x2k, x2k+1) + d(y2k, y2k+1)

2
+ β

d(x2k, x2k+1)d(x2k+1, x2k+2)

s[d(x2k, x2k+2) + d(x2k, x2k+1) + d(y2k, y2k+1)]

≤ αd(x2k, x2k+1) + d(y2k, y2k+1)

2
+ βd(x2k, x2k+1).

⇒ d(x2k+1, x2k+2) ≤
α+ 2β

2
d(x2k, x2k+1) +

α

2
d(y2k, y2k+1).

Similarly, one can easily prove that

d(y2k+1, y2k+2) ≤
α+ 2β

2
d(y2k, y2k+1) +

α

2
d(x2k, x2k+1).

Adding, we get

[d(x2k+1, x2k+2) + d(y2k+1, y2k+2)] ≤ (α+ β)[d(x2k, x2k+1) + d(y2k, y2k+1)].

Now, if
D3 = D(x2k+2, y2k+2, x2k+1, y2k+1) 6= 0,

we get

d(x2k+2, x2k+3) = d(T (x2k+1, y2k+1), S(x2k+2, y2k+2))

≤ αd(x2k+2, x2k+1) + d(y2k+2, y2k+1)

2
+ β

d(x2k+2, S(x2k+2, y2k+2))d(x2k+1, T (x2k+1, y2k+1))

D3

= α
d(x2k+2, x2k+1) + d(y2k+2, y2k+1)

2
+ β

d(x2k+2, x2k+3)d(x2k+1, x2k+2)

s[d(x2k+1, x2k+3) + d(x2k+2, x2k+1) + d(y2k+2, y2k+1)]

≤ αd(x2k+2, x2k+1) + d(y2k+2, y2k+1)

2
+ βd(x2k+1, x2k+2).

⇒ d(x2k+2, x2k+3) ≤
α+ 2β

2
d(x2k+1, x2k+2) +

α

2
d(y2k+1, y2k+2).

Similarly, if D4 = D(y2k+2, x2k+2, y2k+1, x2k+1) 6= 0, one can easily prove that

d(y2k+2, y2k+3) ≤
α+ 2β

2
d(y2k+1, y2k+2) +

α

2
d(x2k+1, x2k+2).

Again adding, we get

[d(x2k+2, x2k+3) + d(y2k+2, y2k+3)] ≤ (α+ β)[d(x2k+1, x2k+2) + d(y2k+1, y2k+2)].

Therefore,

[d(xn, xn+1) + d(yn, yn+1)] ≤ (α+ β)[d(xn−1, xn) + d(yn−1, yn)] = h[d(xn−1, xn) + d(yn−1, yn)],
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where h = (α+ β) < 1 .

Now, if d(xn, xn+1) + d(yn, yn+1) = δn, then

δn ≤ hδn−1 ≤ ... ≤ hnδ0.

For m > n, we have

(d(xn, xm) + d(yn, ym)) ≤ s(d(xn, xn+1) + d(yn, yn+1)) + ...+ sm−n(d(xm−1, xm) + d(ym−1, ym))

≤ shnδ0 + s2hn+1δ0 + ...+ sm−nhm−1δ0

< shn[1 + (sh) + (sh)2 + ...]δ0

=
shn

1− sh
δ0 → 0 as n→∞.

This shows that {xn} and {yn} are Cauchy sequence in X. Since X is a complete b-metric space, there
exists x, y ∈ X such that xn → x and yn → y as n→∞.

Now we show that x = S(x, y) and y = S(y, x).

We suppose on the contrary that x 6= S(x, y) and y 6= S(y, x) so that
d(x, S(x, y)) = l1 > 0 and d(y, S(y, x)) = l2 > 0.

Consider

l1 = d(x, S(x, y)) ≤ s[d(x, x2k+2) + d(x2k+2, S(x, y))]

≤ sd(x, x2k+2) + sd(T (x2k+1, y2k+1), S(x, y))

≤ sd(x, x2k+2) + sα
d(x2k+1, x) + d(y2k+1, y)

2
+

β
d(x, S(x, y))d(x2k+1, T (x2k+1, y2k+1))

d(x2k+1, S(x, y)) + d(x, T (x2k+1, y2k+1)) + d(x2k+1, x) + d(y2k+1, y)

= sd(x, x2k+2) + sα
d(x2k+1, x) + d(y2k+1, y)

2
+ β

d(x, S(x, y))d(x2k+1, x2k+2)

d(x2k+1, S(x, y)) + d(x, x2k+2) + d(x2k+1, x) + d(y2k+1, y)
.

By taking k →∞, we get
l1 ≤ 0, which is a contradiction.

Therefore, d(x, S(x, y)) = 0.

That is, x = S(x, y).

Similarly, one can prove that y = S(y, x).

It follows similarly that x = T (x, y) and y = T (y, x).

So we have proved that (x, y) is a common coupled fixed point of S and T .

We now show that S and T have a unique common coupled fixed point.

Uniqueness: Let (x∗, y∗) ∈ X ×X be another common coupled fixed point of S and T .

Then,

d(x, x∗) = d(S(x, y), T (x∗, y∗))

≤ αd(x, x∗) + d(y, y∗)

2
+ β

d(x, S(x, y))d(x∗, T (x∗, y∗))

s[(d(x, T (x∗, y∗)) + d(x∗, S(x, y)) + d(x, x∗) + d(y, y∗))]

= α
d(x, x∗) + d(y, y∗)

2
+ β

d(x, x)d(x∗, x∗)

s[3d(x, x∗) + d(y, y∗)]

⇒ d(x∗, x∗) ≤ α

2
d(x, x∗) +

α

2
d(y, y∗).

⇒ d(x, x∗) ≤ α

2− α
d(y, y∗).
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Similarly, one can easily prove that

d(y, y∗) ≤ α

2− α
d(x, x∗).

Adding, we get

d(x, x∗) + d(y, y∗) ≤ α

2− α
[d(x, x∗) + d(y, y∗)].

⇒ (2− 2α)(d(x, x∗) + d(y, y∗)) ≤ 0.

⇒ d(x, x∗) + d(y, y∗) = 0.

⇒ x = x∗ and y = y∗.

We have obtained the existence and uniqueness of a common coupled fixed point if
D1, D2, D3, D4 6= 0 for all k ∈ N.

Now, assume that D1 = 0 for some k ∈ N.

That is,

s[d(x2k, x2k+2) + d(x2k, x2k+1) + d(y2k, y2k+1)] = 0.

⇒ x2k = x2k+1 = x2k+2 and y2k = y2k+1.

If D2 6= 0, we get

d(y2k+1, y2k+2) = d(S(y2k, x2k), T (y2k+1, x2k+1) = 0.

That is, y2k+1 = y2k+2(this equality holds if D2 = 0).

The equalities
x2k = x2k+1 = x2k+2 and y2k = y2k+1 = y2k+2 ensures that (x2k+1, y2k+1) is a unique common coupled

fixed point of S and T . The same holds if either D2 = 0, D3 = 0, or D4 = 0.

From above theorem, we obtain following corollary by taking S = T.

Corollary 2.4. Let (X, d) be a complete b-metric space with parameter s ≥ 1 and let the mappings T :
X ×X → X satisfy

d(T (x, y), T (u, v)) ≤

{
αd(x,u)+d(y,v)2 + β d(x,T (x,y))d(u,T (u,v))

s[d(x,T (u,v))+d(u,T (x,y))+d(x,u)+d(y,v)] , if D 6=0

0, if D=0

for all x, y, u, v ∈ X, where D = D(x, y, u, v) = s[d(x, T (u, v)) + d(u, T (x, y)) + d(x, u) + d(y, v)] and α, β
are nonnegative reals with s(α+ β) < 1. Then T has a unique common coupled fixed point.

Now, we furnish a nontrivial example to support the result of Theorem 2.1.

Example 2.5. Let X = {0, 1}. Consider a b-metric d : X ×X → < defined as d(x, y) = 2
3(x − y)2 for all

x, y ∈ X. Then (X, d) is a b−metric space with parameter s = 2. Define S, T : X ×X → X as follows:

S(x, y) =
xy

4
and T (x, y) =

xy

3
,

for all x, y ∈ X. It can be easily verified that the maps S and T satisfy the contractive condition of Theorem
2.1 with α = 3

8 , β = 1
5 and γ = 2

5 . Observe that the point (0, 0) is a unique common coupled fixed point of
S and T.
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