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Abstract

Recently, there have been many works related with dynamics of various functions. In this paper, singular
values and fixed points of generating function of Genocchi numbers, gλ(z) = λ 2z

ez+1 , λ(∈ R) > 1, are
investigated. It is shown that the function gλ(z) has infinitely many singular values and its critical values
lie in the left half plane and one point on the real axis in the right half plane. Further, the real fixed
points of gλ(z) and their nature are determined. Finally, we provide numerical evidence of the existence of
chaotic phenomena by illustrating bifurcation diagrams of system and by calculating the Lyapunov exponent.
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1. Introduction

The singular values and fixed points play a crucial role in the dynamics or iteration of functions. The
theory of dynamics or iteration of functions can be seen in [1, 9]. In recent decades, there have been many
works related with dynamics of various functions. Prasad investigated the dynamics of entire functions
λ sinh(z)

z , λ > 0 with infinitely many bounded singular values in [6]. And the dynamics of function λ e
z−1
z ,

λ > 0 is investigated by Kapoor and Prasad [3]. Further, the dynamics of certain transcendental meromor-
phic functions with unbounded singular values was explored by Nayak and Prasad [5]. Especially in [8],
Sajid and Alsuwaiyan studied chaotic behavior in the real dynamics of a one parameter family of non linear
function λ xe

x

x−1 , λ > 0, x ∈ R {1}. Sajid also discussed singular values and fixed points of generating function
of Bernoulli’s numbers [7].

In this paper, we consider one parameter family of function λ 2z
ez+1 and determine its singular values and

fixed points. The motivation of the present work comes from the fact that the function 2z
ez+1 is a generating

Email address: dgrim84@gmail.com (Dongkyu Lim)

Received 2015-10-09



D. Lim, J. Nonlinear Sci. Appl. 9 (2016), 933–939 934

funcion of the Genocchi numbers. These Genocchi numbers G0 = 1, G1 = −1, G2 = 0, G3 = −3, G4 = 0,
G5 = 17, · · · are coefficients in the series expansion

2z

ez + 1
=
∞∑
k=0

Gk
zk

k!
, |z| < π.

Recently, many authors have investigated works related with these numbers [2, 4].
Let

G =

{
gλ(z) = λ

2z

ez + 1

∣∣∣∣ 1 < λ(∈ R), z ∈ C
}

be one parameter family of transcendental functions. The function is a transcendental function. Moreover,
the function is neither even nor odd and not periodic.

Before going into the main topics, we introduce the basic definitions which are needed in the sequel:
A point z∗ is said to be a critical point of f(z) if f ′(z∗) = 0. The value f(z∗) corresponding to a critical
point z∗ is called a critical value of f(z). A point w ∈ Ĉ = C ∪ {∞} is said to be an asymptotic value for
f(z), if there exists a continuous curve γ : [0,∞) → Ĉ satisfying lim

t→∞
γ(t) = ∞ and lim

t→∞
f(γ(t)) = w. A

singular value of f is defined to be either a critical value or an asymptotic value of f . A function f is called
critically bounded or functions of bounded type if the set of all singular values of f is bounded, otherwise
unbounded-type. A point z is said to be a fixed point of function f(z) if f(z) = z. A fixed point z0 is called
an attracting, neutral (indifferent) or repelling if |f ′(z0)| < 1, |f ′(z0)| = 1 or |f ′(z0)| > 1, respectively. In
addition to, the dynamics of the function changes when the parameter value crosses through a certain point.
Each of such a change is called a bifurcation. Lyapunov exponent, for kth iterate xk of the function fλ(x),
is defined as:

L = lim
n→∞

1

n

n−1∑
k=0

ln |f ′λ(xk)|. (1.1)

The main object of this paper is to investigate the dynamic properties of the function gλ ∈ G. In this
context, the paper is organized as follows. In Section 2, we show that the function gλ ∈ G has infinitely
many singular values. Further, it is shown that all the critical values of gλ(z) lie in the left half plane and
one point on the real axis in the right half plane. Moreover, the real fixed points of gλ ∈ G and their nature
are examined in Section 3. Finally, in Section 4, we provide numerical evidence of the existence of chaotic
phenomena by illustrating bifurcation diagrams of system and by calculating the Lyapunov exponent.

2. Singular Values of gλ ∈ G

In this section, it is proved that the function gλ ∈ G has infinitely many singular values and all the
critical values of gλ(z) lie in the left half plane and one point on the real axis in the right half plane. The
following theorem gives the function gλ(z) has infinitely many singular values.

Theorem 2.1. Let gλ ∈ G. Then, the function gλ(z) possesses infinitely many singular values.

Proof. For critical points, g′λ(z) = λ2(1−z)ez+2
(ez+1)2

= 0. This gives the equation (z − 1)ez − 1 = 0. The real and

imaginary parts of this equation are

(1− x) cos y + y sin y + e−x = 0,

x = y cot y − 1.
(2.1)

From these equations, we have

y

sin y
− 2y sin y − 2 cos y − e1−y cot y = 0. (2.2)
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It is seen that Equation (2.2) has infinitely many solutions (Figure 1). Suppose that the solution of
Equation (2.2) are {yn}n=∞n=−∞,n 6=0. Now, from Equation (2.1), xn = yn cot yn − 1 for n = ±1,±2,±3, · · · .
Consequently, It gives that g′λ(zn) = 0 so zn = xn + iyn are critical points for gλ(z). The critical values of
gλ(z) are given by gλ(zn). It is observed that gλ(zn) are distinct for different n. It shows that the function
gλ(z) has infinitely many critical values.

Since gλ(z) tends to 0 as z tends to infinity along positive real axis, it gives that the finite asymptotic
value of gλ(z) is 0.

Thus, it follows that the function gλ ∈ G possesses infinitely many singular values.

Figure 1: Graph of y
sin y

− 2y sin y − 2 cos y − e1−y cot y.

Theorem 2.2. Let gλ ∈ G. Then, the function g′λ(z) has no zeros in the right half plane H+ = {z ∈
Ĉ | Re(z) > 0} except one point on the real axis.

Proof. Suppose Re(z) > 0, and g′λ(z) = λ2(1−z)ez+2
(ez+1)2

= 0 which implies that e−z = z − 1. Then,

cos y − i sin y

ex
= x+ iy − 1. (2.3)

When y 6= 0, then by imaginary part of Equation (2.3) and the fact of | sin y| < |y|, sin y
y = −ex < −1.

This is not true for y > 0 and for y < 0 because sin y
y is an even function.

Meanwhile, when y = 0, then z = x > 0 and, by real part of Equation (2.3), ex = 1
x−1 . However, there

exists unique solution x such that ex = 1
x−1 .

Consequently, the function gλ(z) has no zeros in the right half plane H+ except one point on the real
axis.

In the following theorem, it is shown that the function gλ(z) maps the left half plane.

Theorem 2.3. Let gλ ∈ G. Then, the function gλ(z) maps the left half plane H− = {z ∈ Ĉ | Re(z) > 0}
as follows: 

Inside the open disk centered at origin and having radius λ , |z| < 1.

Between the closed disk centered at origin and having radius λ

and the open disk centered at origin and having radius 2λ , 1 ≤ |z| < 2.

Outside the closed disk centered at origin and having radius 2λ , 2 ≤ |z|.

Proof. Consider the line segment γ is defined by γ(t) = tz, t ∈ [0, 1] and the function h(z) = ez for an
arbitrary fixed z ∈ H−. Then
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γ
h(z)dz =

∫ 1

0
h(γ(t))γ′(t)dt = z

∫ 1

0
etzdz = ez − 1.

Since m ≡ mint∈[0,1]|h(γ(t))| = mint∈[0,1]|etz| > 0 for z ∈ H− and

|ez + 1| =
∣∣∣∣∫
γ
h(z)dz + 2

∣∣∣∣≥ m|z|+ 2 > 2 > |z|,

| 2z
ez+1 | < 2 for |z| < 2. Therefore, it follows that |gλ(z)| = |λ 2z

ez+1 | < |2λ| for |z| < 2. If 0 < |z| < 1, then

2 > 2|z| and |gλ(z)| = |λ 2z
ez+1 | < |λ|. It proves that the function gλ(z) maps the left half plane H− inside

the open disk centered at origin and having radius 2λ for |z| < 1 and between the closed disk centered at
origin and having radius λ and the open disk centered at origin and having radius 2λ for 1 ≤ |z| < 2.

Meanwhile, since M ≡ maxt∈[0,1]|h(γ(t))| = maxt∈[0,1]|etz| < 1 for z ∈ H− and

|ez + 1| =
∣∣∣∣∫
γ
h(z)dz + 2

∣∣∣∣≤M |z|+ 2 < |z|+ 2 < |2z|,

| 2z
ez+1 | > 1 for 2 ≤ |z|. Thus we have |gλ(z)| = |λ 2z

ez+1 | > |λ| for 2 ≤ |z|. This shows that the function gλ(z)
maps the left half plane H− outside the closed disk centered at origin and having radius 2λ for 2 ≤ |z|.

Theorem 2.4. Let gλ ∈ G. Then, all the critical values of gλ(z) lie in the left half plane H− and one point
on the real axis in the right half plane H+.

Proof. By Theorem 2.2 and Theorem 2.3, it proves that all the critical values of gλ(z) lie in the left half
plane H− and one point on the real axis in the right half plane H+.

3. Nature of Real Fixed Points of gλ ∈ G

The existence of real fixed points and periodic points of the functions gλ(x) = λg(x) where g(x) = 2x
ex+1

and their nature are investigated in the present section. The nature of real fixed points of the function gλ(x)
is described here for different value of the parameter λ. Since gλ(0) = 0 for λ > 1, the point is a fixed point
of all functions gλ(x) for λ > 1. The non-zero real fixed points of the function gλ(x) are the solutions of the
equation gλ(x) = x.

The following theorem shows that the function gλ(x) has a unique real fixed point.

Theorem 3.1. Let gλ ∈ G. Then, the function gλ(x) has a unique real fixed point xλ.

Proof. Since gλ(x) > 0 for all x ∈ R, each real fixed point of gλ ∈ G is positive. The function g′λ(x) =

λ2(1−x)ex+2
(ex+1)2

, and hence g′λ(0) = λ > 1 and g′λ(x)→ −∞ as x→∞. By continuity of g′λ(x), there is a unique

x̂ > 0 such that g′λ(x) > 0 for 0 ≤ x < x̂, g′λ(x̂) = 0 and g′λ(x) < 0 for x > x̂. Thus gλ(x) increases in [0, x̂),
attains its maximum at x̂ and decreases thereafter.

Let hλ(x) = gλ(x) − x for x > 0 and h′λ(x) = g′λ(x) − 1, then we can observe that the function hλ
is increasing firstly and then decreasing in according to the value of x on R+. Now, hλ(0) = λ − 1 > 0,
hλ(x)→ −∞ as x→∞ and hλ(x) is continuous on R+. By the intermediate value theorem, there exists a
unique positive xλ such that hλ(xλ) = 0. It proves that gλ(x) has a unique positive fixed point xλ.

In the following theorem, the nature of fixed points of gλ(x) are determined:

Theorem 3.2. Let gλ(z) ∈ G. Then, the fixed points of gλ(x) is

(i) attracting for 0 < λ < λ∗;

(ii) rationally indifferent for λ = λ∗;

(iii) repelling for λ > λ∗.
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Proof. For sake of convenience, we consider the function φ(x) = xg′(x) + g(x) for x ≥ 0. It means that

φ(x) = x
2(1− x)ex + 2

(ex + 1)2
+

2x

ex + 1
=

2x

(ex + 1)2
[(2− x)ex + 2].

If q(x) = (2 − x)ex + 2, then q′(x) = (1 − x)ex and q′′(x) = −xex. It is seen that q′′(x) < 0 for x ∈ R+.
Therefore, the function q′(x) is decreasing on R+. Since q′(0) = 1 and q′(x)→ −∞ as x→∞, by continuity
of q′(x), it follows that there is a unique x̂ > 0 such that q′(x) > 0 for 0 ≤ x < x̂, q′(x̂) = 0 and q′(x) < 0
for x > x̂. Thus q(x) increases in [0, x̂), attains its maximum at x̂ and decreases thereafter. It ensures from
the facts q(0) = 4 and q(x) → −∞ as x → ∞ that there is a unique positive x∗ > x̂. Since 2x

(ex+1)2
for all

x > 0. We have

φ(x) =
2x

(ex + 1)2
q(x)


> 0 for 0 < x < x∗,

= 0 for x = x∗,

< 0 for x > x∗.

(3.1)

Since the derivative of x
g(x) is positive for x > 0, the function x

g(x) is increasing on R+. Using this fact,
we prove the following cases for different cases for different values of parameter λ.

(i) For 0 < λ < λ∗, since the function x
g(x) is increasing on R+ and λ = xλ

g(xλ)
, we have xλ

g(xλ)
< x∗

g(x∗) .

It means that exλ < ex
∗
. Hence xλ < x∗. By (3.1), φ(xλ) > 0. Since g′λ(xλ) = φ(xλ)

gλ
− 1, it follows

that g′λ(xλ) + 1 = φ(xλ)
gλ

> 0. Since g′λ(X) is negative on R+, it shows that −1 < g′λ(xλ) < 0 and
consequently, the fixed point xλ of gλ(x) is an attracting for 0 < λ < λ∗.

(ii) For λ = λ∗, it is easy to prove xλ = x∗. Now, by (3.1), it follows that g′λ(xλ) + 1 = φ(xλ)
gλ

= 0 which

implies g′λ∗(xλ) = −1. Therefore, the fixed point x∗ of gλ(x) is rationally indifferent for λ = λ∗.

(iii) For λ > λ∗, by similar arguments used in (i), it follows that xλ > x∗. By (3.1) and the fact xλ > x∗,

we have φ(xλ) < 0. It gives that g′λ(xλ) + 1 = φ(xλ)
gλ

< 0 and hence g′λ(xλ) < −1. Therefore, xλ is
repelling fixed point of g(xλ) for λ > λ∗.

It is observed from Theorem 3.2 that the nature of the fixed point changes whenever parameter λ crosses
parameter value λ∗. Actually for λ > λ∗, there may exist periodic points of period greater than or equal to 2.

4. Bifurcation Analysis via Numerical simulations

In this section, we will investigate various dynamic behaviors of gλ(x) by using numerical simulations.
As seen in the Chapter 3, the dynamics of gλ(x) changes when the parameter value crosses through a
certain point. In order to research various dynamical behavior, we need to draw a bifurcation diagram with
respective to parameter λ. It is interesting to note that gλ reproduces classical dynamics behaviors like
quadratic maps dynamics including periodic doubling, periodic windows, chaotic region and so on, as we
can see in the bifurcation diagram in Figure 2, which are drawn by using the famous software MATLAB.

In fact, if λ < 5, every initial condition is attracted, under gλ, to a fixed point. If λ = 9.3385 · · · , we
have Feigenbaum point, the beginning of “chaos”. Figure 3(b) illustrates a chaotic motion.

In order to provide a quantitative measure of the degree of chaotic motion, the Lyapunov exponent is
considered, which is the average loss of information during successive iterations of points near x. In fact, a
trajectory with the positive Lyapunov exponent is chaotic provided that it is not asymptotic to an unstable
periodic solution. Or if the Lyapunov exponent of a trajectory is negative, then it is stable. Reviewing
the bifurcation diagrams in Figures 2, the corresponding Lyapunov exponents λ from 7 to 20 for gλ(x) are
calculated in Figure 4 by using the method in Equation (1.1). Doing that yields,

L = lim
n→∞

1

n

n−1∑
k=1

ln

[
λ
|2(1− xk)exk + 2|

(exk + 1)2

]
.
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Figure 2: Bifurcation diagram of gλ.

(a) λ = 7 (b) λ = 13

Figure 3: Evolution of the transition xk of gλ.

Figure 4: Lyapunov exponent of gλ.
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