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Abstract

In this paper, we present an iterative algorithm with hybrid technique for a family of pseudocontractive
mappings. It is shown that the suggested algorithm strongly converges to a common fixed point of a family
of pseudocontractive mappings. c©2016 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a nonempty
closed convex subset of H. A mapping T : C→ C is called pseudocontractive (or a pseudocontraction) if

〈Tx† − Tx, x† − x〉 ≤ ‖x† − x‖2 (1.1)

for all x†, x ∈ C. It is easily seen that T is pseudocontractive if and only if T satisfies the condition:

‖Tx† − Tx‖2 ≤ ‖x† − x‖2 + ‖(I− T)x† − (I− T)x‖2 (1.2)

for all x†, x ∈ C.
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Interest in pseudocontractive mappings stems mainly from their firm connection with the class of non-
linear monotone or accretive operators. It is a classical result, see Deimling [9], that if T is an accretive
operator, then the solutions of the equations Tx = 0 correspond to the equilibrium points of some evolution
systems. It is now well-known that Mann’s algorithm [11] fails to converge for Lipschitzian pseudocontrac-
tions. This explains the importance, from this point of view, of the improvement brought by the Ishikawa
iteration which was introduced by Ishikawa [10] in 1974. The original result of Ishikawa is stated in the
following.

Theorem 1.1. Let C be a convex compact subset of a Hilbert space H and let T : C→ C be a Lipschitzian
pseudocontractive mapping and x1 ∈ C. Then the Ishikawa iteration {un} defined by{

vn = (1− ηn)un + ηnTun,
un+1 = (1− ξn)un + ξnTvn

(1.3)

for all n ∈ N, where {ξn}, {ηn} are sequences of positive numbers satisfying

(i) 0 ≤ ξn ≤ ηn ≤ 1;

(ii) limn→∞ ηn = 0;

(iii)
∑∞

n=1 ξnηn =∞,

converges strongly to a fixed point of T.

However, strong convergence of (1.3) has not been achieved without compactness assumption on T or
C. Consequently, considerable research efforts, especially within the past 40 years or so, have been devoted
to iterative methods for approximating fixed points of T when T is pseudocontractive (see for example [2],
[5]-[7], [13], [15], [16], [18]-[24] and the references therein). On the other hand, some convergence results are
obtained by using the hybrid method in mathematical programming, see, for example, [1], [3], [4], [12] ,[14],
[17] and [20]. Especially, Cho, Qin and Kang [8] presented a hybrid projection algorithm and proved the
following strong convergence theorem.

Theorem 1.2. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let ∆ be an index set
and T(t) : C→ C, where t ∈ ∆, a demicontinuous pseudocontraction. Assume that F :=

⋂
t≥0 Fix(T(t)) 6= ∅.

Let {xn} be a sequence generated in the following iterative process:

x0 ∈ H, chosen arbitrarily,

C1(t) = C,C1 =
⋂
t∈∆ C1(t), x1 = projC1(x0),

yn(t) = αn(t)xn + (1− αn(t))T(t)yn(t),

Cn+1(t) = {z ∈ Cn(t) : ‖yn(t)− z‖2 ≤ ‖xn − z‖2 − (1− αn(t))2‖xn − T(t)yn(t)‖2},
Cn+1 =

⋂
t∈∆ Cn+1(t),

xn+1 = projCn+1(x0), ∀n ≥ 1.

(1.4)

Assume that the sequence {αn(t)} ⊂ (0, 1) satisfies the condition limsupn→∞αn(t) < 1 for every t ∈ ∆.
Then the sequence {xn} generated by (1.4) converges strongly to projF(x0).

Inspired by the above results, the purpose of this article is to construct a new algorithm which couples
Ishikawa algorithms with hybrid techniques for finding the fixed points of a family of Lipschitzian pseu-
docontractive mappings. Strong convergence of the presented algorithm is given without any compactness
assumption imposed on the operators.

2. Preliminaries

Recall that a mapping T : C→ C is called ζ−Lipschitzian if there exists ζ > 0 such that

‖Tx† − Tx‖ ≤ ζ‖x† − x‖
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for all x†, x ∈ C.
We will use Fix(T) to denote the set of fixed points of T, that is, Fix(T) = {v ∈ C : v = Tv}. Recall

that the (nearest point or metric) projection from H onto C, denoted projC, assigns, to each u ∈ H, the
unique point projC(u) ∈ C with the property

‖u− projC(u)‖ = inf{‖u− x‖ : x ∈ C}.

It is well known that the metric projection projC of H onto C is characterized by

〈u− projC(u), v − projC(u)〉 ≤ 0 (2.1)

for all u ∈ H, v ∈ C. It is well-known that in a real Hilbert space H, the following equality holds:

‖αu+ (1− α)v‖2 = α‖u‖2 + (1− α)‖v‖2 − α(1− α)‖u− v‖2 (2.2)

for all u, v ∈ H and α ∈ [0, 1].

Lemma 2.1. ([24]) Let H be a real Hilbert space, C a closed convex subset of H. Let T : C → C be a
continuous pseudocontractive mapping. Then

(i) Fix(T) is a closed convex subset of C.

(ii) (I− T) is demiclosed at zero.

In the sequel we shall use the following notations:

• ωw(un) = {u : ∃unj → u weakly} denote the weak ω-limit set of {un};

• un ⇀ u stands for the weak convergence of {un} to u;

• un → u stands for the strong convergence of {un} to u.

Lemma 2.2. ([12]) Let C be a closed convex subset of H. Let {un} be a sequence in H and u ∈ H. Let
q = projCu. If {un} is such that ωw(un) ⊂ C and satisfies the condition

‖un − u‖ ≤ ‖u− q‖ for all n ∈ N.

Then un → q.

3. Main results

In this section, we state our main results. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let ∆ be an index set and T(t)t∈∆ : C → C be an η-Lipschitzian pseudocontractive mapping.
Assume that z =

⋂
t∈∆ Fix(T(t)) 6= ∅. Firstly, we present our new algorithm which couples Ishikawa’a

algorithm (1.3) with the hybrid projection algorithm.

Algorithm 3.1. Let x0 ∈ H. For C1(t) = C, C1 =
⋂
t∈∆ C1(t) and x1 = projC1(x0), define a sequence

{xn} of C as follows:

yn(t) = (1− ςn(t))xn + ςn(t)T(t)xn,

zn(t) = %n(t)xn + (1− %n(t))T(t)yn(t),

Cn+1(t) = {x∗ ∈ Cn(t), ‖zn(t)− x∗‖ ≤ ‖xn − x∗‖},
Cn+1 =

⋂
t∈∆ Cn+1(t),

xn+1 = projCn+1(x0),

(3.1)

for all n ≥ 1, where {ςn(t)} and {%n(t)} are two sequences in [0, 1].
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In the sequel, we assume the sequences {ςn(t)} and {%n(t)} satisfy the following conditions

0 < k ≤ 1− %n(t) ≤ ςn(t) <
1√

1 + η2 + 1

for all n ∈ N.

Remark 3.2. Without loss of generality, we can assume that the Lipschitz constant η > 1. If not, then T(t)
is nonexpansive for all t ∈ ∆. In this case, Algorithm 3.1 is trivial. So, in this article, we assume η > 1. It
is obvious that 1√

1+η2+1
< 1

η for all n ≥ 1.

We prove the following several lemmas which will support our main theorem below.

Lemma 3.3.
⋂
t∈∆ Fix(T(t)) ⊂ Cn for n ≥ 1 and {xn} is well defined.

Proof. We use mathematical induction to prove
⋂
t∈∆ Fix(T(t)) ⊂ Cn(t) for all n ∈ N.

(i)
⋂
t∈∆ Fix(T(t)) ⊂ C1(t) = C is obvious.

(ii) Suppose that
⋂
t∈∆ Fix(T(t)) ⊂ Ck(t) for some k ∈ N. Take u ∈

⋂
t∈∆ Fix(T(t)) ⊂ Ck(t).

From (3.1), we have by using (2.2) that,

‖zn(t)− u‖2 = ‖%n(t)(xn − u) + (1− %n(t))(T(t)((1− ςn(t))xn + ςn(t)T(t)xn)− u)‖2

= %n(t)‖xn − u‖2 + (1− %n(t))‖T(t)((1− ςn(t))xn + ςn(t)T(t)xn)− u‖2

− %n(t)(1− %n(t))‖xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2.
(3.2)

Since u ∈
⋂
t∈∆ Fix(T(t)), we have from (1.2) that

‖T(t)x− u‖2 ≤ ‖x− u‖2 + ‖x− T(t)x‖2 (3.3)

for all x ∈ Ck(t).

From (2.2) and (3.3), we obtain

‖T(t)((1− ςn(t))xn + ςn(t)T(t)xn)− u‖2

≤ ‖(1− ςn(t))xn + ςn(t)T(t)xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2

+ ‖(1− ςn(t))xn + ςn(t)T(t)xn − u‖2

= ‖(1− ςn(t))(xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn))

+ ςn(t)(T(t)xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn))‖2

+ ‖(1− ςn(t))(xn − u) + ςn(t)(T(t)xn − u)‖2

= (1− ςn(t))‖xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2

+ ςn(t)‖T(t)xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2

− ςn(t)(1− ςn(t))‖xn − T(t)xn‖2 + (1− ςn(t))‖xn − u‖2 + ςn(t)‖T(t)xn − u‖2

− ςn(t)(1− ςn(t))‖xn − T(t)xn‖2

≤ (1− ςn(t))‖xn − u‖2 + ςn(t)(‖xn − u‖2 + ‖xn − T(t)xn‖2)

− ςn(t)(1− ςn(t))‖xn − T(t)xn‖2

+ (1− ςn(t))‖xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2

+ ςn(t)‖T(t)xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2

− ςn(t)(1− ςn(t))‖xn − T(t)xn‖2.
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Note that T(t) is η-Lipschitzian for all t ∈ ∆. It follows that

‖T(t)((1− ςn(t))xn + ςn(t)T(t)xn)− u‖2

≤ (1− ςn(t))‖xn − u‖2 + ςn(t)(‖xn − u‖2 + ‖xn − T(t)xn‖2)

− ςn(t)(1− ςn(t))‖xn − T(t)xn‖2

+ (1− ςn(t))‖xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2

+ ς3
n(t)η2‖xn − T(t)xn‖2

− ςn(t)(1− ςn(t))‖xn − T(t)xn‖2

= ‖xn − u‖2 + (1− ςn(t))‖xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2

− ςn(t)(1− 2ςn(t)− ς2
n(t)η2)‖xn − T(t)xn‖2.

(3.4)

By condition ςn(t) < 1√
1+η2+1

, we have 1− 2ςn(t)− ς2
n(t)η2 > 0. Substituting (3.4) to (3.2), we have

‖zn(t)− u‖2 = %n(t)‖xn − u‖2 + (1− %n(t))‖T(t)((1− ςn(t))xn + ςn(t)T(t)xn)− u‖2

− %n(t)(1− %n(t))‖xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2

≤ %n(t)‖xn − u‖2 + (1− %n(t))[‖xn − u‖2

+ (1− ςn(t))‖xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2]

− %n(t)(1− %n(t))‖xn − T(t)((1− ςn(t))xn + ςn(t)T(t)xn)‖2

= ‖xn − u‖2 + (1− %n(t))(1− ςn(t)− %n(t))‖xn − T(t)((1− ςn(t))xn

+ ςn(t)T(t)xn)‖2.

Since ςn(t) + %n(t) ≥ 1, we deduce
‖zn(t)− u‖ ≤ ‖xn − u‖. (3.5)

Hence u ∈ Ck+1(t). This implies that ⋂
t∈∆

Fix(T(t)) ⊂ Cn(t)

for all n ∈ N. Therefore, ⋂
t∈∆

Fix(T(t)) ⊂
⋂
t∈∆

Cn(t) = Cn.

Next, we show that Cn is closed and convex for all n ∈ N. It suffices to show that, for each fixed
but arbitrary t ∈ ∆, Cn(t) is closed and convex for each n ≥ 1. It is obvious that C1(t) = C is closed
and convex. Suppose that Ck(t) is closed and convex for some k ∈ N. For u ∈ Ck(t), it is obvious that
‖zk(t)− u‖ ≤ ‖xk − u‖ is equivalent to ‖zk(t)− xk‖2 + 2〈zk(t)− xk, xk − u〉 ≤ 0. So, Ck+1(t) is closed and
convex. Then, for any n ∈ N, Cn(t) is closed and convex. This implies that {xn} is well-defined.

Lemma 3.4. {xn} is bounded.

Proof. Using the characterized inequality (2.1) of metric projection, from xn = projCn(x0), we have

〈x0 − xn, xn − y〉 ≥ 0 for all y ∈ Cn.

Since
⋂
t∈∆ Fix(T(t)) ⊂ Cn, we also have

〈x0 − xn, xn − u〉 ≥ 0 for all u ∈
⋂
t∈∆

Fix(T(t)).

So, for u ∈
⋂
t∈∆ Fix(T(t)), we have

0 ≤ 〈x0 − xn, xn − u〉
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= 〈x0 − xn, xn − x0 + x0 − u〉
= −‖x0 − xn‖2 + 〈x0 − xn, x0 − u〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − u‖.

Hence,

‖x0 − xn‖ ≤ ‖x0 − u‖ for all u ∈
⋂
t∈∆

Fix(T(t)). (3.6)

This implies that {xn} is bounded.

Lemma 3.5. limn→∞ ‖xn+1 − xn‖ = 0.

Proof. From xn = projCn(x0) and xn+1 = projCn+1(x0) ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0.

Hence,
0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −‖x0 − xn‖2 + 〈x0 − xn, x0 − xn+1〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

and therefore
‖x0 − xn‖ ≤ ‖x0 − xn+1‖,

which implies that limn→∞ ‖xn − x0‖ exists. Thus,

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2

→ 0.

Theorem 3.6. The sequence {xn} defined by (3.1) converges strongly to proj⋂
t∈∆ Fix(T(t))(x0).

Remark 3.7. Note that
⋂
t∈∆ Fix(T(t)) is closed and convex. Thus the projection proj⋂

t∈∆ Fix(T(t)) is well
defined.

Proof. Since xn+1 ∈ Cn+1 ⊂ Cn, we have

‖zn(t)− xn+1‖ ≤ ‖xn − xn+1‖ → 0.

Further, we have

‖zn(t)− xn‖ ≤ ‖zn(t)− xn+1‖+ ‖xn+1 − xn‖ → 0.

From (3.1), we have

‖xn − T(t)xn‖ ≤ ‖xn − zn(t)‖+ ‖zn(t)− T(t)xn‖
≤ ‖xn − zn(t)‖+ %n(t)‖xn − T(t)xn‖+ (1− %n(t))‖T(t)yn(t)− T(t)xn‖
≤ ‖xn − zn(t)‖+ %n(t)‖xn − T(t)xn‖+ (1− %n(t))ηςn(t)‖xn − T(t)xn‖
= ‖xn − zn(t)‖+ [%n(t) + (1− %n(t))ηςn(t)]‖xn − T(t)xn‖.
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Since 0 < k ≤ 1− %n(t) ≤ ςn(t) < 1√
1+η2+1

, 1− [%n(t) + (1− %n(t))ηςn(t)] > k(1− L√
1+η2+1

) > 0. It follows

that

‖xn − T(t)xn‖ ≤
1

1− [%n(t) + (1− %n(t))ηςn(t)]
‖xn − zn(t)‖

≤ 1

k(1− η√
1+η2+1

)
‖xn − zn(t)‖ → 0. (3.7)

Now (3.7) and Lemma 2.1 guarantee that every weak limit point of {xn} is a fixed point of T(t). That is,
ωw(xn) ⊂

⋂
t∈∆ Fix(T(t)). This fact, the inequality (3.6) and Lemma 2.2 ensure the strong convergence of

{xn} to proj⋂
t∈∆ Fix(T(t))(x0). This completes the proof.

Corollary 3.8. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let T : C → C
be an η-Lipschitzian pseudocontraction. Assume that Fix(T) 6= ∅. Let {xn} be a sequence generated in the
following iterative process:

x0 ∈ H, chosen arbitrarily,

C1 = C, x1 = projC1(x0),

yn = (1− ςn)xn + ςnTxn,
zn = %nxn + (1− %n)Tyn,
Cn+1 = {x∗ ∈ Cn, ‖zn − x∗‖ ≤ ‖xn − x∗‖},
xn+1 = projCn+1(x0),

(3.8)

for all n ≥ 1, where {ςn} and {%n} are two sequences in [0, 1]. Then {xn} generated by (3.8) converges
strongly to projFix(T)(x0) provided ςn and %n satisfy the conditions

0 < k ≤ 1− %n ≤ ςn <
1√

1 + η2 + 1

for all n ∈ N.

Remark 3.9. It is easily seen that all of the above results hold for a family of nonexpansive mappings.
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