

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Hybrid algorithms for a family of pseudocontractive mappings

Chongyang Luo^a, Yonghong Yao^a, Zhangsong Yao^{b,*}, Yeong-Cheng Liou^c

^aDepartment of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China.

^bSchool of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China.

^cDepartment of Information Management, Cheng Shiu University, Kaohsiung 833, Taiwan and Center for General Education, Kaohsiung Medical University, Kaohsiung 807, Taiwan.

Communicated by Y. J. Cho

Abstract

In this paper, we present an iterative algorithm with hybrid technique for a family of pseudocontractive mappings. It is shown that the suggested algorithm strongly converges to a common fixed point of a family of pseudocontractive mappings. ©2016 All rights reserved.

Keywords: Pseudocontractive mappings, hybrid algorithms, fixed point, strong convergence 2010 MSC: 47H05, 47H10, 47H17.

1. Introduction

Let \mathbb{H} be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, respectively. Let \mathbb{C} be a nonempty closed convex subset of \mathbb{H} . A mapping $\mathbb{T} : \mathbb{C} \to \mathbb{C}$ is called pseudocontractive (or a pseudocontraction) if

$$\langle \mathbb{T}x^{\dagger} - \mathbb{T}x, x^{\dagger} - x \rangle \le \|x^{\dagger} - x\|^2 \tag{1.1}$$

for all $x^{\dagger}, x \in \mathbb{C}$. It is easily seen that \mathbb{T} is pseudocontractive if and only if \mathbb{T} satisfies the condition:

$$\|\mathbb{T}x^{\dagger} - \mathbb{T}x\|^{2} \le \|x^{\dagger} - x\|^{2} + \|(\mathbb{I} - \mathbb{T})x^{\dagger} - (\mathbb{I} - \mathbb{T})x\|^{2}$$
(1.2)

for all $x^{\dagger}, x \in \mathbb{C}$.

Received 2015-04-11

^{*}Corresponding author

Email addresses: luochongyang@aliyun.com (Chongyang Luo), yaoyonghong@aliyun.com (Yonghong Yao), yaozhsong@163.com (Zhangsong Yao), simplex_liou@hotmail.com (Yeong-Cheng Liou)

Interest in pseudocontractive mappings stems mainly from their firm connection with the class of nonlinear monotone or accretive operators. It is a classical result, see Deimling [9], that if \mathbb{T} is an accretive operator, then the solutions of the equations $\mathbb{T}x = 0$ correspond to the equilibrium points of some evolution systems. It is now well-known that Mann's algorithm [11] fails to converge for Lipschitzian pseudocontractions. This explains the importance, from this point of view, of the improvement brought by the Ishikawa iteration which was introduced by Ishikawa [10] in 1974. The original result of Ishikawa is stated in the following.

Theorem 1.1. Let \mathbb{C} be a convex compact subset of a Hilbert space \mathbb{H} and let $\mathbb{T} : \mathbb{C} \to \mathbb{C}$ be a Lipschitzian pseudocontractive mapping and $x_1 \in \mathbb{C}$. Then the Ishikawa iteration $\{u_n\}$ defined by

$$\begin{cases} v_n = (1 - \eta_n) u_n + \eta_n \mathbb{T} u_n, \\ u_{n+1} = (1 - \xi_n) u_n + \xi_n \mathbb{T} v_n \end{cases}$$
(1.3)

for all $n \in \mathbb{N}$, where $\{\xi_n\}$, $\{\eta_n\}$ are sequences of positive numbers satisfying

(i) $0 \leq \xi_n \leq \eta_n \leq 1;$

(*ii*) $\lim_{n\to\infty} \eta_n = 0$;

(*iii*) $\sum_{n=1}^{\infty} \xi_n \eta_n = \infty$,

converges strongly to a fixed point of \mathbb{T} .

However, strong convergence of (1.3) has not been achieved without compactness assumption on \mathbb{T} or \mathbb{C} . Consequently, considerable research efforts, especially within the past 40 years or so, have been devoted to iterative methods for approximating fixed points of \mathbb{T} when \mathbb{T} is pseudocontractive (see for example [2], [5]-[7], [13], [15], [16], [18]-[24] and the references therein). On the other hand, some convergence results are obtained by using the hybrid method in mathematical programming, see, for example, [1], [3], [4], [12], [14], [17] and [20]. Especially, Cho, Qin and Kang [8] presented a hybrid projection algorithm and proved the following strong convergence theorem.

Theorem 1.2. Let \mathbb{C} be a nonempty closed and convex subset of a real Hilbert space \mathbb{H} . Let Δ be an index set and $\mathbb{T}(t) : \mathbb{C} \to \mathbb{C}$, where $t \in \Delta$, a demicontinuous pseudocontraction. Assume that $\mathfrak{F} := \bigcap_{t \geq 0} Fix(\mathbb{T}(t)) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated in the following iterative process:

$$\begin{cases} x_{0} \in \mathbb{H}, \ chosen \ arbitrarily, \\ \mathbb{C}_{1}(t) = \mathbb{C}, \mathbb{C}_{1} = \bigcap_{t \in \Delta} \mathbb{C}_{1}(t), x_{1} = proj_{\mathbb{C}_{1}}(x_{0}), \\ y_{n}(t) = \alpha_{n}(t)x_{n} + (1 - \alpha_{n}(t))\mathbb{T}(t)y_{n}(t), \\ \mathbb{C}_{n+1}(t) = \{z \in \mathbb{C}_{n}(t) : \|y_{n}(t) - z\|^{2} \leq \|x_{n} - z\|^{2} - (1 - \alpha_{n}(t))^{2}\|x_{n} - \mathbb{T}(t)y_{n}(t)\|^{2}\}, \\ \mathbb{C}_{n+1} = \bigcap_{t \in \Delta} \mathbb{C}_{n+1}(t), \\ x_{n+1} = proj_{\mathbb{C}_{n+1}}(x_{0}), \quad \forall n \geq 1. \end{cases}$$

$$(1.4)$$

Assume that the sequence $\{\alpha_n(t)\} \subset (0,1)$ satisfies the condition $\limsup_{n\to\infty} \alpha_n(t) < 1$ for every $t \in \Delta$. Then the sequence $\{x_n\}$ generated by (1.4) converges strongly to $\operatorname{proj}_{\mathfrak{F}}(x_0)$.

Inspired by the above results, the purpose of this article is to construct a new algorithm which couples Ishikawa algorithms with hybrid techniques for finding the fixed points of a family of Lipschitzian pseudocontractive mappings. Strong convergence of the presented algorithm is given without any compactness assumption imposed on the operators.

2. Preliminaries

Recall that a mapping $\mathbb{T}: \mathbb{C} \to \mathbb{C}$ is called ζ -Lipschitzian if there exists $\zeta > 0$ such that

$$\|\mathbb{T}x^{\dagger} - \mathbb{T}x\| \le \zeta \|x^{\dagger} - x\|$$

for all $x^{\dagger}, x \in \mathbb{C}$.

We will use $Fix(\mathbb{T})$ to denote the set of fixed points of \mathbb{T} , that is, $Fix(\mathbb{T}) = \{v \in \mathbb{C} : v = \mathbb{T}v\}$. Recall that the (nearest point or metric) projection from \mathbb{H} onto \mathbb{C} , denoted $proj_{\mathbb{C}}$, assigns, to each $u \in \mathbb{H}$, the unique point $proj_{\mathbb{C}}(u) \in \mathbb{C}$ with the property

$$||u - proj_{\mathbb{C}}(u)|| = \inf\{||u - x|| : x \in \mathbb{C}\}.$$

It is well known that the metric projection $proj_{\mathbb{C}}$ of \mathbb{H} onto \mathbb{C} is characterized by

$$\langle u - proj_{\mathbb{C}}(u), v - proj_{\mathbb{C}}(u) \rangle \le 0$$
 (2.1)

for all $u \in \mathbb{H}$, $v \in \mathbb{C}$. It is well-known that in a real Hilbert space \mathbb{H} , the following equality holds:

$$\|\alpha u + (1-\alpha)v\|^2 = \alpha \|u\|^2 + (1-\alpha)\|v\|^2 - \alpha(1-\alpha)\|u-v\|^2$$
(2.2)

for all $u, v \in \mathbb{H}$ and $\alpha \in [0, 1]$.

Lemma 2.1. ([24]) Let \mathbb{H} be a real Hilbert space, \mathbb{C} a closed convex subset of \mathbb{H} . Let $\mathbb{T} : \mathbb{C} \to \mathbb{C}$ be a continuous pseudocontractive mapping. Then

- (i) $Fix(\mathbb{T})$ is a closed convex subset of \mathbb{C} .
- (ii) $(\mathbb{I} \mathbb{T})$ is demiclosed at zero.

In the sequel we shall use the following notations:

- $\omega_w(u_n) = \{u : \exists u_{n_i} \to u \text{ weakly}\}$ denote the weak ω -limit set of $\{u_n\}$;
- $u_n \rightharpoonup u$ stands for the weak convergence of $\{u_n\}$ to u;
- $u_n \to u$ stands for the strong convergence of $\{u_n\}$ to u.

Lemma 2.2. ([12]) Let \mathbb{C} be a closed convex subset of \mathbb{H} . Let $\{u_n\}$ be a sequence in \mathbb{H} and $u \in \mathbb{H}$. Let $q = proj_{\mathbb{C}}u$. If $\{u_n\}$ is such that $\omega_w(u_n) \subset \mathbb{C}$ and satisfies the condition

$$||u_n - u|| \le ||u - q|| \quad for \ all \ n \in \mathbb{N}.$$

Then $u_n \to q$.

3. Main results

In this section, we state our main results. Let \mathbb{C} be a nonempty closed convex subset of a real Hilbert space \mathbb{H} . Let Δ be an index set and $\mathbb{T}(t)_{t\in\Delta}:\mathbb{C}\to\mathbb{C}$ be an η -Lipschitzian pseudocontractive mapping. Assume that $\mathcal{F} = \bigcap_{t\in\Delta} Fix(\mathbb{T}(t)) \neq \emptyset$. Firstly, we present our new algorithm which couples Ishikawa'a algorithm (1.3) with the hybrid projection algorithm.

Algorithm 3.1. Let $x_0 \in \mathbb{H}$. For $\mathbb{C}_1(t) = \mathbb{C}$, $\mathbb{C}_1 = \bigcap_{t \in \Delta} \mathbb{C}_1(t)$ and $x_1 = proj_{\mathbb{C}_1}(x_0)$, define a sequence $\{x_n\}$ of \mathbb{C} as follows:

$$\begin{cases} y_n(t) = (1 - \varsigma_n(t))x_n + \varsigma_n(t)\mathbb{T}(t)x_n, \\ z_n(t) = \varrho_n(t)x_n + (1 - \varrho_n(t))\mathbb{T}(t)y_n(t), \\ \mathbb{C}_{n+1}(t) = \{x^* \in \mathbb{C}_n(t), \|z_n(t) - x^*\| \le \|x_n - x^*\|\}, \\ \mathbb{C}_{n+1} = \bigcap_{t \in \Delta} \mathbb{C}_{n+1}(t), \\ x_{n+1} = proj_{\mathbb{C}_{n+1}}(x_0), \end{cases}$$
(3.1)

for all $n \ge 1$, where $\{\varsigma_n(t)\}$ and $\{\varrho_n(t)\}$ are two sequences in [0, 1].

In the sequel, we assume the sequences $\{\varsigma_n(t)\}\$ and $\{\varrho_n(t)\}\$ satisfy the following conditions

$$0 < k \le 1 - \varrho_n(t) \le \varsigma_n(t) < \frac{1}{\sqrt{1 + \eta^2} + 1}$$

for all $n \in \mathbb{N}$.

Remark 3.2. Without loss of generality, we can assume that the Lipschitz constant $\eta > 1$. If not, then $\mathbb{T}(t)$ is nonexpansive for all $t \in \Delta$. In this case, Algorithm 3.1 is trivial. So, in this article, we assume $\eta > 1$. It is obvious that $\frac{1}{\sqrt{1+\eta^2}+1} < \frac{1}{\eta}$ for all $n \ge 1$.

We prove the following several lemmas which will support our main theorem below.

Lemma 3.3. $\bigcap_{t \in \Delta} Fix(\mathbb{T}(t)) \subset \mathbb{C}_n$ for $n \geq 1$ and $\{x_n\}$ is well defined.

Proof. We use mathematical induction to prove $\bigcap_{t \in \Delta} Fix(\mathbb{T}(t)) \subset \mathbb{C}_n(t)$ for all $n \in \mathbb{N}$.

(i) $\bigcap_{t \in \Delta} Fix(\mathbb{T}(t)) \subset \mathbb{C}_1(t) = \mathbb{C}$ is obvious.

(ii) Suppose that $\bigcap_{t \in \Delta} Fix(\mathbb{T}(t)) \subset \mathbb{C}_k(t)$ for some $k \in \mathbb{N}$. Take $u \in \bigcap_{t \in \Delta} Fix(\mathbb{T}(t)) \subset \mathbb{C}_k(t)$. From (3.1), we have by using (2.2) that,

$$||z_{n}(t) - u||^{2} = ||\varrho_{n}(t)(x_{n} - u) + (1 - \varrho_{n}(t))(\mathbb{T}(t)((1 - \varsigma_{n}(t))x_{n} + \varsigma_{n}(t)\mathbb{T}(t)x_{n}) - u)||^{2}$$

$$= \varrho_{n}(t)||x_{n} - u||^{2} + (1 - \varrho_{n}(t))||\mathbb{T}(t)((1 - \varsigma_{n}(t))x_{n} + \varsigma_{n}(t)\mathbb{T}(t)x_{n}) - u||^{2}$$

$$- \varrho_{n}(t)(1 - \varrho_{n}(t))||x_{n} - \mathbb{T}(t)((1 - \varsigma_{n}(t))x_{n} + \varsigma_{n}(t)\mathbb{T}(t)x_{n})||^{2}.$$

(3.2)

Since $u \in \bigcap_{t \in \Delta} Fix(\mathbb{T}(t))$, we have from (1.2) that

$$\|\mathbb{T}(t)x - u\|^2 \le \|x - u\|^2 + \|x - \mathbb{T}(t)x\|^2$$
(3.3)

for all $x \in \mathbb{C}_k(t)$.

From (2.2) and (3.3), we obtain

$$\begin{split} \|\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})-u\|^{2} \\ &\leq \|(1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &+\|(1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n}-u\|^{2} \\ &= \|(1-\varsigma_{n}(t))(x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})) \\ &+\varsigma_{n}(t)(\mathbb{T}(t)x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n}))\|^{2} \\ &+\|(1-\varsigma_{n}(t))(x_{n}-u)+\varsigma_{n}(t)(\mathbb{T}(t)x_{n}-u)\|^{2} \\ &= (1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &+\varsigma_{n}(t)\|\mathbb{T}(t)x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &-\varsigma_{n}(t)(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)x_{n}\|^{2} + (1-\varsigma_{n}(t))\|x_{n}-u\|^{2}+\varsigma_{n}(t)\|\mathbb{T}(t)x_{n}-u\|^{2} \\ &\leq (1-\varsigma_{n}(t))\|x_{n}-u\|^{2}+\varsigma_{n}(t)(\|x_{n}-u\|^{2}+\|x_{n}-\mathbb{T}(t)x_{n}\|^{2}) \\ &-\varsigma_{n}(t)(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)x_{n}\|^{2} \\ &+(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &+\varsigma_{n}(t)\|\mathbb{T}(t)x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &-\varsigma_{n}(t)(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)(1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &-\varsigma_{n}(t)(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)(1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &+\varsigma_{n}(t)\|\mathbb{T}(t)x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &-\varsigma_{n}(t)(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)x_{n}\|^{2}. \end{split}$$

Note that $\mathbb{T}(t)$ is η -Lipschitzian for all $t \in \Delta$. It follows that

$$\begin{aligned} \|\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})-u\|^{2} \\ &\leq (1-\varsigma_{n}(t))\|x_{n}-u\|^{2}+\varsigma_{n}(t)(\|x_{n}-u\|^{2}+\|x_{n}-\mathbb{T}(t)x_{n}\|^{2}) \\ &-\varsigma_{n}(t)(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)x_{n}\|^{2} \\ &+(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &+\varsigma_{n}^{3}(t)\eta^{2}\|x_{n}-\mathbb{T}(t)x_{n}\|^{2} \\ &-\varsigma_{n}(t)(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)x_{n}\|^{2} \\ &=\|x_{n}-u\|^{2}+(1-\varsigma_{n}(t))\|x_{n}-\mathbb{T}(t)((1-\varsigma_{n}(t))x_{n}+\varsigma_{n}(t)\mathbb{T}(t)x_{n})\|^{2} \\ &-\varsigma_{n}(t)(1-2\varsigma_{n}(t)-\varsigma_{n}^{2}(t)\eta^{2})\|x_{n}-\mathbb{T}(t)x_{n}\|^{2}. \end{aligned}$$
(3.4)

By condition $\varsigma_n(t) < \frac{1}{\sqrt{1+\eta^2+1}}$, we have $1 - 2\varsigma_n(t) - \varsigma_n^2(t)\eta^2 > 0$. Substituting (3.4) to (3.2), we have

$$\begin{aligned} |z_n(t) - u||^2 &= \varrho_n(t) ||x_n - u||^2 + (1 - \varrho_n(t)) ||\mathbb{T}(t)((1 - \varsigma_n(t))x_n + \varsigma_n(t)\mathbb{T}(t)x_n) - u||^2 \\ &- \varrho_n(t)(1 - \varrho_n(t)) ||x_n - \mathbb{T}(t)((1 - \varsigma_n(t))x_n + \varsigma_n(t)\mathbb{T}(t)x_n)||^2 \\ &\leq \varrho_n(t) ||x_n - u||^2 + (1 - \varrho_n(t))[||x_n - u||^2 \\ &+ (1 - \varsigma_n(t)) ||x_n - \mathbb{T}(t)((1 - \varsigma_n(t))x_n + \varsigma_n(t)\mathbb{T}(t)x_n)||^2] \\ &- \varrho_n(t)(1 - \varrho_n(t)) ||x_n - \mathbb{T}(t)((1 - \varsigma_n(t))x_n + \varsigma_n(t)\mathbb{T}(t)x_n)||^2 \\ &= ||x_n - u||^2 + (1 - \varrho_n(t))(1 - \varsigma_n(t) - \varrho_n(t))||x_n - \mathbb{T}(t)((1 - \varsigma_n(t))x_n + \varsigma_n(t)\mathbb{T}(t)x_n)||^2. \end{aligned}$$

Since $\varsigma_n(t) + \varrho_n(t) \ge 1$, we deduce

$$||z_n(t) - u|| \le ||x_n - u||. \tag{3.5}$$

Hence $u \in \mathbb{C}_{k+1}(t)$. This implies that

$$\bigcap_{t\in\Delta} Fix(\mathbb{T}(t)) \subset \mathbb{C}_n(t)$$

for all $n \in \mathbb{N}$. Therefore,

$$\bigcap_{t\in\Delta} Fix(\mathbb{T}(t)) \subset \bigcap_{t\in\Delta} \mathbb{C}_n(t) = \mathbb{C}_n$$

Next, we show that \mathbb{C}_n is closed and convex for all $n \in \mathbb{N}$. It suffices to show that, for each fixed but arbitrary $t \in \Delta$, $\mathbb{C}_n(t)$ is closed and convex for each $n \geq 1$. It is obvious that $\mathbb{C}_1(t) = \mathbb{C}$ is closed and convex. Suppose that $\mathbb{C}_k(t)$ is closed and convex for some $k \in \mathbb{N}$. For $u \in \mathbb{C}_k(t)$, it is obvious that $\|z_k(t) - u\| \leq \|x_k - u\|$ is equivalent to $\|z_k(t) - x_k\|^2 + 2\langle z_k(t) - x_k, x_k - u \rangle \leq 0$. So, $\mathbb{C}_{k+1}(t)$ is closed and convex. Then, for any $n \in \mathbb{N}$, $\mathbb{C}_n(t)$ is closed and convex. This implies that $\{x_n\}$ is well-defined. \Box

Lemma 3.4. $\{x_n\}$ is bounded.

Proof. Using the characterized inequality (2.1) of metric projection, from $x_n = proj_{\mathbb{C}_n}(x_0)$, we have

$$\langle x_0 - x_n, x_n - y \rangle \ge 0$$
 for all $y \in \mathbb{C}_n$.

Since $\bigcap_{t \in \Delta} Fix(\mathbb{T}(t)) \subset \mathbb{C}_n$, we also have

$$\langle x_0 - x_n, x_n - u \rangle \ge 0$$
 for all $u \in \bigcap_{t \in \Delta} Fix(\mathbb{T}(t)).$

So, for $u \in \bigcap_{t \in \Delta} Fix(\mathbb{T}(t))$, we have

$$0 \le \langle x_0 - x_n, x_n - u \rangle$$

$$= \langle x_0 - x_n, x_n - x_0 + x_0 - u \rangle$$

= $- ||x_0 - x_n||^2 + \langle x_0 - x_n, x_0 - u \rangle$
 $\leq - ||x_0 - x_n||^2 + ||x_0 - x_n|| ||x_0 - u||$

Hence,

$$\|x_0 - x_n\| \le \|x_0 - u\| \text{ for all } u \in \bigcap_{t \in \Delta} Fix(\mathbb{T}(t)).$$

$$(3.6)$$

This implies that $\{x_n\}$ is bounded.

Lemma 3.5. $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0.$

Proof. From $x_n = proj_{\mathbb{C}_n}(x_0)$ and $x_{n+1} = proj_{\mathbb{C}_{n+1}}(x_0) \in \mathbb{C}_{n+1} \subset \mathbb{C}_n$, we have

$$\langle x_0 - x_n, x_n - x_{n+1} \rangle \ge 0$$

Hence,

$$0 \le \langle x_0 - x_n, x_n - x_{n+1} \rangle$$

= $\langle x_0 - x_n, x_n - x_0 + x_0 - x_{n+1} \rangle$
= $-\|x_0 - x_n\|^2 + \langle x_0 - x_n, x_0 - x_{n+1} \rangle$
 $\le -\|x_0 - x_n\|^2 + \|x_0 - x_n\|\|x_0 - x_{n+1}\|,$

and therefore

 $||x_0 - x_n|| \le ||x_0 - x_{n+1}||,$

which implies that $\lim_{n\to\infty} ||x_n - x_0||$ exists. Thus,

$$||x_{n+1} - x_n||^2 = ||(x_{n+1} - x_0) - (x_n - x_0)||^2$$

= $||x_{n+1} - x_0||^2 - ||x_n - x_0||^2 - 2\langle x_{n+1} - x_n, x_n - x_0 \rangle$
 $\leq ||x_{n+1} - x_0||^2 - ||x_n - x_0||^2$
 $\rightarrow 0.$

Theorem 3.6. The sequence $\{x_n\}$ defined by (3.1) converges strongly to $\operatorname{proj}_{\bigcap_{t\in\Delta}Fix(\mathbb{T}(t))}(x_0)$.

Remark 3.7. Note that $\bigcap_{t \in \Delta} Fix(\mathbb{T}(t))$ is closed and convex. Thus the projection $proj_{\bigcap_{t \in \Delta} Fix(\mathbb{T}(t))}$ is well defined.

Proof. Since $x_{n+1} \in \mathbb{C}_{n+1} \subset \mathbb{C}_n$, we have

$$||z_n(t) - x_{n+1}|| \le ||x_n - x_{n+1}|| \to 0.$$

Further, we have

$$||z_n(t) - x_n|| \le ||z_n(t) - x_{n+1}|| + ||x_{n+1} - x_n|| \to 0.$$

From (3.1), we have

$$\begin{aligned} \|x_n - \mathbb{T}(t)x_n\| &\leq \|x_n - z_n(t)\| + \|z_n(t) - \mathbb{T}(t)x_n\| \\ &\leq \|x_n - z_n(t)\| + \varrho_n(t)\|x_n - \mathbb{T}(t)x_n\| + (1 - \varrho_n(t))\|\mathbb{T}(t)y_n(t) - \mathbb{T}(t)x_n\| \\ &\leq \|x_n - z_n(t)\| + \varrho_n(t)\|x_n - \mathbb{T}(t)x_n\| + (1 - \varrho_n(t))\eta\varsigma_n(t)\|x_n - \mathbb{T}(t)x_n\| \\ &= \|x_n - z_n(t)\| + [\varrho_n(t) + (1 - \varrho_n(t))\eta\varsigma_n(t)]\|x_n - \mathbb{T}(t)x_n\|. \end{aligned}$$

Since $0 < k \leq 1 - \varrho_n(t) \leq \varsigma_n(t) < \frac{1}{\sqrt{1+\eta^2}+1}$, $1 - [\varrho_n(t) + (1 - \varrho_n(t))\eta\varsigma_n(t)] > k(1 - \frac{L}{\sqrt{1+\eta^2}+1}) > 0$. It follows that

$$\|x_n - \mathbb{T}(t)x_n\| \le \frac{1}{1 - [\varrho_n(t) + (1 - \varrho_n(t))\eta\varsigma_n(t)]} \|x_n - z_n(t)\| \le \frac{1}{k(1 - \frac{\eta}{\sqrt{1 + \eta^2} + 1})} \|x_n - z_n(t)\| \to 0.$$
(3.7)

Now (3.7) and Lemma 2.1 guarantee that every weak limit point of $\{x_n\}$ is a fixed point of $\mathbb{T}(t)$. That is, $\omega_w(x_n) \subset \bigcap_{t \in \Delta} Fix(\mathbb{T}(t))$. This fact, the inequality (3.6) and Lemma 2.2 ensure the strong convergence of $\{x_n\}$ to $\operatorname{proj}_{\bigcap_{t \in \Delta} Fix(\mathbb{T}(t))}(x_0)$. This completes the proof. \Box

Corollary 3.8. Let \mathbb{C} be a nonempty closed and convex subset of a real Hilbert space \mathbb{H} . Let $\mathbb{T} : \mathbb{C} \to \mathbb{C}$ be an η -Lipschitzian pseudocontraction. Assume that $Fix(\mathbb{T}) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated in the following iterative process:

$$\begin{cases}
x_{0} \in \mathbb{H}, \ chosen \ arbitrarily, \\
\mathbb{C}_{1} = \mathbb{C}, x_{1} = proj_{\mathbb{C}_{1}}(x_{0}), \\
y_{n} = (1 - \varsigma_{n})x_{n} + \varsigma_{n}\mathbb{T}x_{n}, \\
z_{n} = \varrho_{n}x_{n} + (1 - \varrho_{n})\mathbb{T}y_{n}, \\
\mathbb{C}_{n+1} = \{x^{*} \in \mathbb{C}_{n}, \|z_{n} - x^{*}\| \leq \|x_{n} - x^{*}\|\}, \\
x_{n+1} = proj_{\mathbb{C}_{n+1}}(x_{0}),
\end{cases}$$
(3.8)

for all $n \ge 1$, where $\{\varsigma_n\}$ and $\{\varrho_n\}$ are two sequences in [0,1]. Then $\{x_n\}$ generated by (3.8) converges strongly to $\operatorname{proj}_{Fix(\mathbb{T})}(x_0)$ provided ς_n and ϱ_n satisfy the conditions

$$0 < k \le 1 - \varrho_n \le \varsigma_n < \frac{1}{\sqrt{1 + \eta^2} + 1}$$

for all $n \in \mathbb{N}$.

Remark 3.9. It is easily seen that all of the above results hold for a family of nonexpansive mappings.

Acknowledgment

Yeong-Cheng Liou was supported in part by the Grants NSC 101-2628-E-230-001-MY3 and NSC 103-2923-E-037-001-MY3.

References

- A. E. Al-Mazrooei, A. S. M. Alofi, A. Latif, J. C. Yao, Generalized mixed equilibria, variational inclusions and fixed point problems, Abstr. Appl. Anal., 2014 (2014), 16 pages.1
- [2] V. Berinde, Iterative approximation of fixed points, Lecture Notes in Mathematics, Springer, Berlin, (2007).1
- [3] L. C. Ceng, C. W. Liao, C. T. Pang, C. F. Wen, Convex minimization with constraints of systems of variational inequalities, mixed equilibrium, variational inequality, and fixed point problems, J. Appl. Math., 2014 (2014), 28 pages. 1
- [4] L. C. Ceng, C. W. Liao, C. T. Pang, C. F. Wen, Multistep hybrid iterations for systems of generalized equilibria with constraints of Several problems, Abst. Appl. Anal., 2014 (2014), 27 pages.1
- [5] L. C. Ceng, A. Petrusel, J. C. Yao, Strong Convergence of modified implicit iterative algorithms with perturbed mappings for continuous pseudocontractive mappings, Appl. Math. Comput., 209 (2009), 162–176.1
- [6] C. E. Chidume, S. A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudo-contractions, Proc. Amer. Math. Soc., 129 (2001), 2359–2363.
- [7] C. E. Chidume, H. Zegeye, Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc., 132 (2003), 831–840.1

- [8] S. Y. Cho, X. Qin, S. M. Kang, Hybrid projection algorithms for treating common fixed points of a family of demicontinuous pseudocontractions, Appl. Math. Lett., 25 (2012), 854–857.1
- [9] K. Deimling, Zeros of accretive operators, Manuscripta Math., 13 (1974), 365–374.1
- [10] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150.1
- [11] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510.1
- [12] C. Matinez-Yanes, H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64 (2006), 2400–2411.1, 2.2
- [13] C. H. Morales, J. S. Jung, Convergence of paths for pseudo-contractive mappings in Banach spaces, Proc. Amer. Math. Soc., 128 (2000), 3411–3419.1
- [14] N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., 16 (2006), 1230–1241.1
- [15] E. U. Ofoedu, H. Zegeye, Iterative algorithm for multi-valued pseudocontractive mappings in Banach spaces, J. Math. Anal. Appl., 372 (2010), 68–76.1
- [16] E. U. Ofoedu, H. Zegeye, Further investigation on iteration processes for pseudocontractive mappings with application, Nonlinear Anal., 75 (2012), 153–162.1
- [17] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341 (2008), 276–286.1
- [18] A. Udomene, Path convergence, approximation of fixed points and variational solutions of Lipschitz pseudocontractions in Banach spaces, Nonlinear Anal., 67 (2007), 2403–2414.1
- [19] Y. Yao, Y. C. Liou, R. Chen, Strong convergence of an iterative algorithm for pseudo-contractive mapping in Banach spaces, Nonlinear Anal., 67 (2007), 3311–3317.
- [20] Y. Yao, Y. C. Liou, G. Marino, A hybrid algorithm for pseudo-contractive mappings, Nonlinear Anal., 71 (2009), 4997–5002. 1
- [21] H. Zegeye, N. Shahzad, M. A. Alghamdi, Minimum-norm fixed point of pseudocontractive mappings, Abst. Appl. Anal., 2012 (2012), 15 pages.
- [22] H. Zegeye, N. Shahzad, T. Mekonen, Viscosity approximation methods for pseudocontractive mappings in Banach spaces, Appl. Math. Comput., 185 (2007), 538–546.
- [23] Q. B. Zhang, C. Z. Cheng, Strong convergence theorem for a family of Lipschitz pseudocontractive mappings in a Hilbert space, Math. Comput. Modelling, 48 (2008), 480–485.
- [24] H. Zhou, Strong convergence of an explicit iterative algorithm for continuous pseudo-contractions in Banach spaces, Nonlinear Anal., 70 (2009), 4039–4046.1, 2.1