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Abstract

In this paper, we define H(·, ·)-η-cocoercive operators in q-uniformly smooth Banach spaces and its resolvent
operator. We prove the Lipschitz continuity of the resolvent operator associated with H(·, ·)-η-cocoercive
operator and estimate its Lipschitz constant. By using the techniques of resolvent operator, an iterative
algorithm for solving a variational-like inclusion problem is constructed. The existence of solution for the
variational-like inclusions and the convergence of iterative sequences generated by the algorithm is proved.
Some examples are given. c©2012 NGA. All rights reserved.
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1. Introduction

It is well known that variational inequality theory has become very effective and powerful tool for
studying a wide range of problems arising in differential equations, mechanics, contact problems in elasticity,
optimization and control problems, operation research, etc.. A useful and important generalization of
variational inequalities is a generalized mixed type variational inequality containing nonlinear term. Due to
the appearance of this nonlinear term, the projection method can not be used to study the existence and
algorithm of solutions for the generalized mixed type variational inequalities. These facts motivated Hassouni
and Moudafi [8] to suggest the resolvent operator technique which does not depend on the projection. He
studied mixed type of variational inequalities, called variational inclusions.
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The concept of H-monotone, H-accretive, (H, η)-accretive, (H, η)-monotone, (A, η)-accretive, H(·, ·)-
accretive, (H(·, ·) − η)-monotone and H(·, ·)-cocoercive operators are introduced and applied by Fang and
Huang [4], Fang and Huang [5], Fang, Cho and Kim [6], Fang, Huang and Thompson [7], Lan, Cho and
verma [9], Zou and Huang [13], Xu and Wong [11], Ahmad et al.[1]. The concept of η-cocoercivity, η-strong
monotonicity and η-strong convexity of a mapping was introduced and studied by Ansari and Yao [2].

Impressed by the noble work mentioned above, in this paper, we introduce H(·, ·)-η-cocoercive operators
in q-uniformly smooth Banach spaces. The resolvent operator associated with H(·, ·)-η-cocoercive operator
is defined and its Lipschitz continuity is shown. With the help of resolvent operator an iterative algorithm
is constructed for solving a variational-like inclusion problem in q-uniformly smooth Banach spaces. Some
examples are constructed in support of definition of H(·, ·)-η-cocoercive operators.

2. Preliminaries

Let X is a real Banach space with dual space X?, 〈·, ·〉 be the duality coupling between X and X?, and
2X denotes the family of all the non-empty subsets of X. The generalized duality mapping Jq : X → 2X

?
is

defined by
Jq(x) =

{
f? ∈ X? : 〈x, f?〉 = ‖x‖q, ‖f?‖ = ‖x‖q−1

}
, ∀ x ∈ X,

where q > 1 is a constant. The modulus of smoothness of X is the function ρX : [0,∞)→ [0,∞) defined by

ρX(t) = sup
{ 1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)

t
= 0.

X is called q-uniformly smooth if there exists a constant C > 0 such that ρX(t) ≤ Ctq, q > 1.

Note that Jq is single-valued if X is uniformly smooth. In connection with the characteristic inequalities
in q-uniformly smooth Banach spaces, Xu [12] proved the following nice result.

Lemma 2.1. Let X be a real uniformly smooth Banach space. Then X is q-uniformly smooth if and only
if there exists a constant Cq > 0 such that, for all x, y ∈ X,

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ Cq‖y‖q.

We need the following definitions for proving our main result.

Definition 2.2. Let A,B : X → X, η : X × X → X be the mappings and let Jq : X → 2X
?

be the
generalized duality mapping. Then A is called

(i) η-cocoercive, if there exists a constant µ1 > 0 such that

〈Ax−Ay, Jq(η(x, y))〉 ≥ µ1‖Ax−Ay‖q, ∀ x, y ∈ X;

(ii) η-accretive, if
〈Ax−Ay, Jq(η(x, y))〉 ≥ 0, ∀ x, y ∈ X;

(iii) η-strongly accretive, if there exists a constant β1 > 0 such that

〈Ax−Ay, Jq(η(x, y))〉 ≥ β1‖x− y‖q, ∀ x, y ∈ X;

if η(x, y) = x− y, then it is called strongly accretive.
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(iv) η-relaxed cocoercive, if there exists a constant γ1 > 0 such that

〈Ax−Ay, Jq(η(x, y))〉 ≥ (−γ1)‖Ax−Ay‖q, ∀ x, y ∈ X;

(v) α-expansive, if there exists a constant α > 0 such that

‖Ax−Ay‖ ≥ α‖x− y‖, ∀ x, y ∈ X;

(vi) B is said to be β-Lipschitz continuous, if there exists a constant β > 0 such that

‖Bx−By‖ ≤ β‖x− y‖, ∀ x, y ∈ X;

(vii) η is said to Lipschitz continuous, if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀ x, y ∈ X.

Definition 2.3. Let A,B : X → X, H : X ×X → X, η : X ×X → X be three single-valued mappings and
Jq : X → 2X

?
be the generalized duality mapping. Then

(i) H(A, ·) is said to be η-cocoercive with respect to A, if there exists a constant µ > 0 such that

〈H(Ax, u)−H(Ay, u), Jq(η(x, y))〉 ≥ µ‖Ax−Ay‖q, ∀ x, y ∈ X;

(ii) H(·, B) is said to η-relaxed cocoercive with respect to B, if there exists a constant γ > 0 such that

〈H(u,Bx)−H(u,By), Jq(η(x, y))〉 ≥ (−γ)‖Bx−By‖q, ∀ x, y ∈ X;

(iii) H(A, ·) is said to be r1-Lipschitz continuous with respect to A, if there exists a constant r1 > 0 such
that

‖H(Ax, u)−H(Ay, u)‖ ≤ r1‖x− y‖, ∀ x, y ∈ X;

(iv) H(·, B) is said to be r2-Lipschitz continuous with respect to B, if there exists a constant r2 > 0 such
that

‖H(u,Bx)−H(u,By)‖ ≤ r2‖x− y‖, ∀ x, y ∈ X.

Definition 2.4. A multi-valued mapping M : X → 2X is said to be η-cocoercive, if there exists a constant
µ2 > 0 such that

〈u− v, Jq(η(x, y))〉 ≥ µ2‖u− v‖q, ∀ x, y ∈ X, u ∈Mx, v ∈My.

Definition 2.5. A multi-valued mapping T : X → CB(X) is said to be D-Lipschitz continuous, if there
exists a constant λT > 0 such that

D(Tx, Ty) ≤ λT ‖x− y‖, ∀ x, y ∈ X,

where D(·, ·) is the Hausdörff metric on CB(X).

Definition 2.6. Let η : X × X → X be a mapping and let T,Q : X → CB(X) be two multi-valued
mappings. A mapping N : X ×X → X is said to be η-strongly accretive with respect to T and Q, if there
exists a constant t > 0 such that

〈N(x1, y1)−N(x2, y2), Jq(η(u1, u2))〉 ≥ t‖u1−u2‖q, ∀u1, u2 ∈ X,x1 ∈ T (u1), y1 ∈ Q(u1), x2 ∈ T (u2), y2 ∈ Q(u2).

Definition 2.7. Let T,Q : X → CB(X) be the multi-valued mappings. A mapping N : X × X → X is
said to be
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(i) Lipschitz continuous for the first argument with respect to T , if there exists a constant λN1 > 0 such
that

‖N(x1, ·)−N(x2, ·)‖ ≤ λN1‖x1 − x2‖, ∀ u1, u2 ∈ X,x1 ∈ T (u1), x2 ∈ T (u2);

(ii) Lipschitz continuous for the second argument with respect to Q, if there exists a constant λN2 > 0
such that

‖N(·, y1)−N(·, y2)‖ ≤ λN2‖y1 − y2‖, ∀ u1, u2 ∈ X, y1 ∈ Q(u1), y2 ∈ Q(u2).

Example 2.8. Let us consider the 2-uniformly smooth Banach space X = R2. Let A,B : R2 → R2 are
defined by

A(x1, x2) = (x1, 3x2), B(y1, y2) = (−y1,−y1 − y2), ∀ (x1, x2), (y1, y2) ∈ R2.

Suppose H(A,B), η : R2 × R2 → R2 are defined as

H(Ax,By) = Ax+By, η(x, y) = x− y, ∀ x, y ∈ R2.

Then

〈H(Ax, u)−H(Ay, u), η(x, y)〉 = 〈Ax+ u−Ay − u, x− y〉
= 〈Ax−Ay, x− y〉
= 〈((x1, 3x2)− (y1, 3y2)), (x1 − y1, x2 − y2)〉
= 〈(x1 − y1, 3(x2 − y2)), (x1 − y1, x2 − y2)〉
= (x1 − y1)2 + 3(x2 − y2)2

and

‖Ax−Ay‖2 = ‖(x1 − y1, 3(x2 − y2))‖2 = (x1 − y1)2 + 9(x2 − y2)2

≤ 3(x1 − y1)2 + 9(x2 − y2)2

= 3{(x1 − y1)2 + 3(x2 − y2)2}
= 3{〈H(Ax, u)−H(Ay, u), η(x, y)〉}

i.e. 〈H(Ax, u)−H(Ay, u), η(x, y)〉 ≥ 1
3‖Ax−Ay‖

2, which implies that H is 1
3 -η-cocoercive with respect to

A. Also

〈H(u,Bx)−H(u,By), η(x, y)〉 = 〈Bx−By, x− y〉
= 〈((−x1,−x1 − x2)− (−y1,−y1 − y2)), (x1 − y1, x2 − y2)〉
= 〈(−(x1 − y1),−(x1 − y1)− (x2 − y2)), (x1 − y1, x2 − y2)〉
= −(x1 − y1)2 − (x1 − y1)(x2 − y2)− (x2 − y2)2

= −{(x1 − y1)2 + (x1 − y1)(x2 − y2) + (x2 − y2)2}

and

‖Bx−By‖2 = ‖(−(x1 − y1),−(x1 − y1)− (x2 − y2))‖2

= (x1 − y1)2 + ((x1 − y1) + (x2 − y2))2

= (x1 − y1)2 + (x1 − y1)2 + (x2 − y2)2 + 2(x1 − y1)(x2 − y2)
≤ 2(x1 − y1)2 + 2(x2 − y2)2 + 2(x1 − y1)(x2 − y2)
= 2{(x1 − y1)2 + (x2 − y2)2 + (x1 − y1)(x2 − y2)}
= 2{−〈H(u,Bx)−H(u,By), η(x, y)〉}

i.e. 〈H(u,Bx)−H(u,By), η(x, y)〉 ≥ −1
2‖Bx−By‖

2, which implies that H is 1
2 -η-relaxed cocoercive with

respect to B.
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3. H(·, ·)-η-cocoercive operator

In this section, we introduce H(·, ·)-η-cocoercive operator and discuss some of its properties.

Definition 3.1. Let A,B : X → X, H : X ×X → X, η : X ×X → X be the single-valued mappings. Let
M : X → 2X be a set-valued mapping. M is said to be H(·, ·)-η-cocoercive with respect to the mapping A
and B, if M is η-cocoercive and (H(A,B) + λM)(X) = X, for every λ > 0.

Example 3.2. Let X = R2 and A, B, H(A,B) and η are defined as in Example 2.8. Suppose that
M : X → 2X is defined by

M(x1, x2) = (x1, 0), ∀ (x1, x2) ∈ R2.

Then it can be easily verify that M is η-cocoercive and

(H(A,B) + λM)(R2) = R2, ∀ λ > 0,

which shows that M is H(·, ·)-η-cocoercive with respect to A and B.

Theorem 3.3. Let H(A,B) be η-cocoercive with respect to A with constant µ > o and η-relaxed cocoercive
with respect to B with constant γ > 0, A is α-expansive and B is β-Lipschitz continuous and µ > γ, α > β.
Let M : X → 2X be H(·, ·)-η-cocoercive operator with respect to A and B. If the following inequality

〈x− y, Jq(η(u, v))〉 ≥ 0, holds for all (v, y) ∈ Graph(M),

then x ∈Mu, where Graph(M) = {(u, x) ∈ X ×X : x ∈Mu}.

Proof. Suppose that there exists some (u0, x0) such that

〈x0 − y, Jq(η(u0, v))〉 ≥ 0, ∀ (v, y) ∈ Graph(M). (3.1)

Since M is H(·, ·)-η-cocoercive operator with respect to A and B, we know that (H(A,B) + λM)(X) = X,
holds for every λ > 0 and so there exists (u1, x1) ∈ Graph(M) such that

H(Au1, Bu1) + λx1 = H(Au0, Bu0) + λu0 ∈ X. (3.2)

It follows from (3.1) and (3.2) that

0 ≤ λ〈x0 − x1, Jq(η(u0, u1))〉 = −〈H(Au0, Bu0)−H(Au1, Bu1), Jq(η(u0, u1))〉
= −〈H(Au0, Bu0)−H(Au1, Bu0), Jq(η(u0, u1))〉
− 〈H(Au1, Bu0)−H(Au1, Bu1), Jq(η(u0, u1))〉

≤ −µ‖Au0 −Au1‖q + γ‖Bu0 −Bu1‖q

≤ −µαq‖u0 − u1‖q + γβq‖u0 − u1‖q

= −(µαq − γβq)‖u0 − u1‖q ≤ 0,

which gives u1 = u0, since µ > γ and α > β. By (3.2), we have x1 = x0. Hence (u0, x0) = (u1, x1) ∈
Graph(M) and so x0 ∈Mu0.

Theorem 3.4. Let H(A,B) be η-cocoercive with respect to A with constant µ > 0 and η-relaxed cocoercive
with respect to B with constant γ > 0, A is α-expansive and B is β-Lipschitz continuous, µ > γ and α > β.
Let M be H(·, ·)-η-cocoercive operator with respect to A and B. Then the operator (H(A,B) + λM)−1 is
single-valued.
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Proof. For any u ∈ X, let x, y ∈ (H(A,B) + λM)−1(u). It follows that

−H(Ax,Bx) + u ∈ λMx

and
−H(Ay,By) + u ∈ λMy

as M is η-cocoercive (thus η-accretive), we have

0 ≤ 〈−H(Ax,Bx) + u− (−H(Ay,By) + u), Jq(η(x, y))〉
= −〈H(Ax,Bx)−H(Ay,By), Jq(η(x, y))〉
= −〈H(Ax,Bx)−H(Ay,Bx) +H(Ay,Bx)−H(Ay,By), Jq(η(x, y))〉
= −〈H(Ax,Bx)−H(Ay,Bx), Jq(η(x, y))〉
− 〈H(Ay,Bx)−H(Ay,By), Jq(η(x, y))〉. (3.3)

Since H is η-cocoercive with respect to A with constant µ and η-relaxed cocoercive with respect to B
with constant γ, A is α-expansive and B is β-Lipschitz continuous, thus (3.3) becomes

0 ≤ −µαq‖x− y‖q + γβq‖x− y‖q = −(µαq − γβq)‖x− y‖q ≤ 0, (3.4)

since µ > γ and α > β. Thus, we have x = y and so (H(A,B) + λM)−1 is single-valued.

Definition 3.5. Let H(A,B) be η-cocoercive with respect to A with constant µ > 0 and η-relaxed cocoercive
with respect to B with constant γ > 0, A is α-expansive and B is β-Lipschitz continuous, µ > γ and α > β.

Let M be H(·, ·)-η-cocoercive operator with respect to A and B. The resolvent operator R
H(·,·)−η
λ,M : X → X

is defined by

R
H(·,·)−η
λ,M (u) = (H(A,B) + λM)−1(u), ∀ u ∈ X. (3.5)

The following theorem shows that the resolvent operator is Lipschitz continuous.

Theorem 3.6. Let H(A,B) be η-cocoercive with respect to A with constant µ > 0 and η-relaxed cocoercive
with respect to B with constant γ > 0, A is α-expansive, B is β-Lipschitz continuous and η is τ -Lipschitz
continuous and µ > γ, α > β. Let M be an H(·, ·)-η-cocoercive operator with respect to A and B. Then the

resolvent operator R
H(·,·)−η
λ,M : X → X is

τ q−1

µαq − γβq
-Lipschitz continuous, that is

‖RH(·,·)−η
λ,M (u)−RH(·,·)−η

λ,M (v)‖ ≤ τ q−1

µαq − γβq
‖u− v‖, ∀ u, v ∈ X.

Proof. Let u and v be any given points in X. It follows from (3.5) that

R
H(·,·)−η
λ,M (u) = (H(A,B) + λM)−1(u),

and
R
H(·,·)−η
λ,M (v) = (H(A,B) + λM)−1(v).

This implies that
1

λ
(u−H(A(R

H(·,·)−η
λ,M (u)), B(R

H(·,·)−η
λ,M (u)))) ∈M(R

H(·,·)−η
λ,M (u)),

and
1

λ
(v −H(A(R

H(·,·)−η
λ,M (v)), B(R

H(·,·)−η
λ,M (v)))) ∈M(R

H(·,·)−η
λ,M (v)).

For the sake of clarity, we take

Pu = R
H(·,·)−η
λ,M (u) and Pv = R

H(·,·)−η
λ,M (v).
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Since M is η-cocoercive (thus η-accretive), we have

1

λ
〈u−H(A(Pu), B(Pu))− (v −H(A(Pv), B(Pv))), Jq(η(Pu, Pv))〉

=
1

λ
〈u− v − (H(A(Pu), B(Pu))−H(A(Pv), B(Pv))), Jq(η(Pu, Pv))〉 ≥ 0.

Therefore we have

〈u− v, Jq(η(Pu, Pv))〉 ≥ 〈H(A(Pu), B(Pu))−H(A(Pv), B(Pv)), Jq(η(Pu, Pv))〉.

It follows that

‖u− v‖‖η(Pu, Pv)‖q−1 ≥ 〈u− v, Jq(η(Pu, Pv))〉
≥ 〈H(A(Pu), B(Pu))−H(A(Pv), B(Pu)), Jq(η(Pu, Pv))〉

+ 〈H(A(Pv), B(Pu))−H(A(Pv), B(Pv)), Jq(η(Pu, Pv))〉
≥ µ‖A(Pu)−A(Pv)‖q − γ‖B(Pu)−B(Pv)‖q

≥ µαq‖Pu− Pv‖q − γβq‖Pu− Pv‖q

and so
‖u− v‖‖η(Pu, Pv)‖q−1 ≥ (µαq − γβq)‖Pu− Pv‖q

or

(µαq − γβq)‖Pu− Pv‖q ≤ ‖u− v‖‖η(Pu, Pv)‖q−1

≤ ‖u− v‖τ q−1‖Pu− Pv‖q−1

‖Pu− Pv‖ ≤ τ q−1

µαq − γβq
‖u− v‖, ∀ u, v ∈ X,

or

‖RH(·,·)−η
λ,M (u)−RH(·,·)−η

λ,M (v)‖ ≤ τ q−1

µαq − γβq
‖u− v‖, ∀ u, v ∈ X.

This completes the proof.

4. An application for solving variational-like inclusions

In this section, we shall show that under suitable assumption, H(·, ·)-η-cocoercive operator plays an
important role for solving a variational-like inclusion problem.

Let η,N,W : X ×X → X, g : X → X, H : X ×X → X, A,B : X → X be the single-valued mappings
and T,Q,R, S : X → CB(X), M : X → 2X be the set-valued mappings such that M is H(·, ·)-η-cocoercive
with respect to A and B. Then we consider the following problem.

Find u ∈ X, x ∈ T (u), y ∈ Q(u), z ∈ R(u), v ∈ S(u) such that

0 ∈ N(x, y)−W (z, v) +M(g(u)). (4.1)

Problem (4.1) is called variational-like inclusion problem.
Below are some special cases of problem (4.1).

(i) If W,R, S = 0, then problem (4.1) reduces to the problem of finding u ∈ X, x ∈ T (u), y ∈ Q(u) such
that

0 ∈ N(x, y) +M(g(u)). (4.2)

Problem (4.2) is introduced and studied by Peng [10].
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(ii) If N(x, y) = N(x), T is single-valued and g = I, the identity mapping, then problem (4.2) reduces to
the problem considered by Bi et al.[3]. That is to find u ∈ X such that

0 ∈ N(u) +M(u). (4.3)

Lemma 4.1. (u, x, y, z, v), where u ∈ X, x ∈ T (u), y ∈ Q(u), z ∈ R(u), v ∈ S(u) is a solution of problem
(4.1) if and only if (u, x, y, z, v) is the solution of the following equation.

g(u) = R
H(·,·)−η
λ,M [H(A(gu), B(gu))− λ{N(x, y)−W (z, v)}], (4.4)

where λ > 0 is a constant.

Proof. Proof is direct consequence of definition of resolvent operator.

Based on (4.4), we have the following iterative algorithm.

Algorithm 4.2. For any given u0 ∈ X, x0 ∈ T (u0), y0 ∈ Q(u0), z0 ∈ R(u0), v0 ∈ S(u0), compute the
sequences {un}, {xn}, {yn}, {zn} and {vn} by the following iterative procedure.

g(un+1) = R
H(·,·)−η
λ,M [H(A(gun), B(g(un))− λ{N(xn, yn)−W (zn, un)}], (4.5)

‖xn+1 − xn‖ ≤ D(T (un+1), T (un)); (4.6)

‖yn+1 − yn‖ ≤ D(Q(un+1), Q(un)); (4.7)

‖zn+1 − zn‖ ≤ D(R(un+1), R(un)); (4.8)

‖vn+1 − vn‖ ≤ D(S(un+1), S(un)); (4.9)

where n is the iteration number, λ > 0 is a constant and D is the Hausdörff metric on CB(X).

Theorem 4.3. Let X be a q-uniformly smooth Banach space. Let A,B, g : X → X, H,N, η,W : X×X → X
be the single-valued mappings. Let T,Q,R, S : X → CB(X) and M : X → 2X be the multi-valued mappings
such that M is H(·, ·)-η-cocoercive mapping with respect to A and B. Suppose that

(i) g is δ-strongly accretive and λg-Lipschitz continuous,

(ii) N is Lipschitz continuous for the first argument with constant λN1 and λN2 for the second argument,
η-strongly accretive with respect to T and Q with constant t,

(iii) W is Lipschitz continuous for the first argument with constant λW1 and λW2 for the second argument,

(iv) η is τ -Lipschitz continuous, A is α-expansive and B is β-Lipschitz continuous,

(v) H(A,B) is η-cocoercive with respect to A with constant µ and η-relaxed-cocoercive with respect to B
with constant γ, r1-Lipschitz continuous with respect to A and r2-Lipschitz continuous with respect to
B,

(vi) T,Q,R, S are D-Lipschitz continuous mappings with constants λT , λQ, λR and λS, respectively.

Suppose that the following condition is satisfied:[
q

√
(r1 + r2)qλ

q
g − qλt+ qλ(λN1λT + λN2λQ)[(r1 + r2)q−1λ

q−1
g + τ q−1]

]
+ λqCq(λN1λT + λN2λQ)q

<
[ δ
τ q

(µαq − γβq)− λ(λW1λR + λW2λS)
]
,

δ

τ q
(µαq − γβq) > λ(λW1λR + λW2λS), µ > γ, α > β.

(4.10)

Then there exist u ∈ X, x ∈ T (u), y ∈ Q(u), z ∈ R(u) and v ∈ S(u) satisfying the variational-like inclusion
problem (4.1) and the iterative sequences {un}, {xn}, {yn}, {zn} and {vn} generated by Algorithm 4.1
converge strongly to u, x, y, z, and v, respectively.
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Proof. Since g is δ-strongly accretive, we have

‖g(un+1)− g(un)‖‖un+1 − un‖q−1 = ‖g(un+1)− g(un)‖‖Jq(un+1 − un)‖
≥ 〈g(un+1)− g(un), Jq(un+1 − un)〉
≥ δ‖un+1 − un‖q. (4.11)

From (4.11), we get

‖un+1 − un‖ ≤
1

δ
‖g(un+1)− g(un)‖. (4.12)

By Algorithm 4.2 and Theorem 3.6, we have

‖g(un+1)− g(un)‖ = ‖RH(·,·)−η
λ,M [H(A(gun), B(gun))− λ{N(xn, yn)−W (zn, vn)}]

−RH(·,·)−η
λ,M [H(A(gun−1), B(gun−1))

− λ{N(xn−1, yn−1)−W (zn−1, vn−1)}]‖

≤ τ q−1

µαq − γβq
‖H(A(gun), B(gun))−H(A(gun−1), B(gun−1))

− λ{N(xn, yn)−N(xn−1, yn−1)}
− λ{W (zn, vn)−W (zn−1, vn−1)}‖

≤ τ q−1

µαq − γβq
‖H(A(gun), B(gun))−H(A(gun−1), B(gun−1))

− λ{N(xn, yn)−N(xn−1, yn−1)}‖

+
τ q−1λ

µαq − γβq
‖W (zn, vn)−W (zn−1, vn−1)‖. (4.13)

Using Lipschitz continuity of N with constant λN1 for the first argument and λN2 for the second argument
and D-Lipschitz continuity of T and Q with constants λT and λQ, respectively, we have

‖N(xn, yn)−N(xn−1, yn−1)‖ = ‖N(xn, yn)−N(xn−1, yn)

+N(xn−1, yn)−N(xn−1, yn−1)‖
≤ ‖N(xn, yn)−N(xn−1, yn)‖

+ ‖N(xn−1, yn)−N(xn−1, yn−1)‖
≤ λN1‖xn − xn−1‖+ λN2‖yn − yn−1‖
≤ λN1D(T (un), T (un−1)) + λN2D(Q(un), Q(un−1))

≤ λN1λT ‖un − un−1‖+ λN2λQ‖un − un−1‖
= (λN1λT + λN2λQ)‖un − un−1‖. (4.14)

Also as H(A,B) is r1-Lipschitz continuous with respect to A and r2-Lipschitz continuous with respect to B
and g is λg-Lipschitz continuous, we have

‖H(A(gun), B(gun))−H(A(gun−1), B(gun−1))‖ ≤ (r1 + r2)λg‖un − un−1‖. (4.15)

By using Lemma 2.1, (4.14), (4.15) and η-strongly accretiveness of N with respect to T and Q with constant
t and τ -Lipschitz continuity of η, we have
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‖H(A(gun), B(gun))−H(A(gun−1), B(gun−1))− λ{N(xn, yn)−N(xn−1, yn−1)}‖q

≤ ‖H(A(gun), B(gun))−H(A(gun−1), B(g(un−1))‖q

− qλ〈N(xn, yn)−N(xn−1, yn−1), Jq(η(un, un−1))〉
− qλ〈N(xn, yn)−N(xn−1, yn−1), Jq[H(A(gun), B(gun))−H(A(gun−1), B(gun−1))]

− Jq(η(un, un−1))〉+ λqCq‖N(xn, yn)−N(xn−1, yn−1)‖q

≤ (r1 + r2)
qλqg‖un − un−1‖q − qλt‖un − un−1‖q + qλ‖N(xn, yn)−N(xn−1, yn−1)‖×[

‖H(A(gun)−, B(gun))−H(A(gun−1), B(gun−1))‖q−1 + ‖η(un, un−1)‖q−1
]

+ λqCq(λN1λT + λN2)q‖un − un−1‖q

≤ (r1 + r2)
qλqg‖un − un−1‖q − qλt‖un − un−1‖q + qλ(λN1λT + λN2λQ)‖un − un−1‖×[

(r1 + r2)
q−1λq−1g ‖un − un−1‖q−1 + τ q−1‖un − un−1‖q−1

]
+ λqCq(λN1λT + λN2λQ)q‖un − un−1‖q

=
[
(r1 + r2)

qλqg − qλt+ qλ(λN1λT + λN2λQ)[(r1 + r2)
q−1λq−1g + τ q−1]

+ λqCq(λN1λT + λN2λQ)q
]
‖un − un−1‖q. (4.16)

Using Lipschitz continuity of W with constant λW1 for the first argument and λW2 for the second argument
and D-Lipschitz continuity of R and S with constants λR and λS , respectively, we obtain

‖W (zn, vn)−W (zn−1, vn−1)‖ ≤ (λW1λR + λW2λS)‖un − un−1‖. (4.17)

In view of (4.16) and (4.17), (4.13) becomes

‖g(un)− g(un−1)‖ ≤
[ τ q−1

µαq − γβq
(

q

√
(r1 + r2)qλ

q
g − qλt+ qλ(λN1λT + λN2λQ)

[(r1 + r2)q−1λ
q−1
g + τ q−1] + λqCq(λN1λT + λN2λQ)q

)
+

τ q−1λ

µαq − γβq
(λW1λR + λW2λS)

]
‖un − un−1‖. (4.18)

Using (4.18), (4.12) becomes
‖un+1 − un‖ ≤ θ‖un − un−1‖. (4.19)

where

θ =
1

δ

[ τ q−1

µαq − γβq
(

q

√
(r1 + r2)qλ

q
g − qλt+ qλ(λN1λT + λN2λQ)

[(r1 + r2)q−1λ
q−1
g + τ q−1] + λqCq(λN1λT + λN2λQ)q

)
+

τ q−1λ

µαq − γβq
(λW1λR + λW2λS)

]
‖un − un−1‖.

By condition (4.10), 0 < θ < 1 and hence {un} is Cauchy sequence in X, so there exists u ∈ X such that
un → u as n→∞. By the D-Lipschitz continuity of T,Q,R and S, we have

‖xn+1 − xn‖ ≤ λT ‖un+1 − un‖;

‖yn+1 − yn‖ ≤ λQ‖un+1 − un‖;

‖zn+1 − zn‖ ≤ λR‖un+1 − un‖;

‖vn+1 − nn‖ ≤ λS‖un+1 − un‖;



R. Ahamd, M. Dilshad, J. Nonlinear Sci. Appl. 5 (2012), 334–344 344

which shows that the sequences {xn}, {yn}, {zn} and {vn} are all Cauchy sequences in X, so there exist x,
y, z, and v ∈ X such that xn → x, yn → y, zn → z and vn → v, as n→∞. By the Lipschitz continuity of

the operations H, A, B, N , W , R
H(·,·)−η
λ,M and Algorithm 4.2, it follows that

g(u) = R
H(·,·)−η
λ,M [H(A(gu), B(gu))− λ{N(x, y)−W (z, v)}].

It remain to show that x ∈ T (u). In fact, since xn ∈ T (un). we have

d(x, T (u)) ≤ ‖x− xn‖+ d(xn, T (u))

≤ ‖x− xn‖+D(T (un), T (u))

≤ ‖x− xn‖+ λT ‖un − u‖ → 0, as n→∞,

which implies that d(x, T (u)) = 0, since T (u) ∈ CB(X), it follows that x ∈ T (u). Similarly, we can show
that y ∈ Q(u), z ∈ R(u) and v ∈ S(u). This completes the proof.
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