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Abstract

In this paper, we prove a common fixed point theorem for a family of non-self mappings satisfying generalized
contraction condition of Ciric type in cone metric spaces (over the cone which is not necessarily normal).
Our result generalizes and extends all the recent results related to non-self mappings in the setting of cone
metric space. c©2015 All rights reserved.
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1. Introduction and Preliminaries

The existing literature of fixed point theory contains many results enunciating fixed point theorems for
self-mappings in metric and Banach spaces. Recently, Huang and Zhang [9] generalized the concept of a
metric space, replacing the set of real numbers by ordered Banach space and obtained some fixed point
theorems for mappings satisfying different contractive conditions. Subsequently, the study of fixed point
theorems in such spaces is followed by some other mathematicians, see [1, 2, 11, 14, 15, 17, 20, 25, 26].
The study of fixed point theorems for non-self mappings in metrically convex metric spaces was initiated by
Assad and Kirk [4]. Utilizing the induction method of Assad and Kirk [4], many authors like Assad [3], Ciric
[5], Hadzic [7], Hadzic and Gajic [8], Imdad and Kumar [12], Rhoades [21, 22, 23] have obtained common
fixed point in metrically convex spaces. Recently, Ciric and Ume [6] defined a wide class of multi-valued
non-self mappings which satisfy a generalized contraction condition and proved a fixed point theorem which
generalize the results of Itoh [13] and Khan [16].
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Very recently, Radenovic and Rhoades [17] extended the fixed point theorem of Imdad and Kumar [12]
for a pair of non-self mappings to non-normal cone metric spaces. Jankovic et al. [15] proved new common
fixed point results for a pair of non-self mappings defined on a closed subset of metrically convex cone metric
space which is not necessarily normal by adapting Assad-Kirks method. Huang et al.[10] proved a fixed point
theorem for a family of non-self mappings in cone metric spaces which generalizes the result of Jankovic et
al. [15]. Sumitra et al. [24] generalized the fixed point theorems of Ciric and Ume [6] for a pair of non-self
mappings to non-normal cone metric spaces. In the same time, Sumitra et al.’s [24] results extended the
results of Jankovic et al. [15] and Radenovic and Rhoades [17]. Motivated by Sumitra et al. [24], we prove
a common fixed point theorem for a family of non-self mappings on cone metric spaces in which the cone
need not be normal and the condition is weaker. This result generalizes the result of Sumitra et al. [24] and
Huang et al.[10].

Consistent with Huang and Zhang [9], the following definitions and results will be needed in the sequel.
Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed, nonempty and P 6= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P ;

(c) P ∩ (−P ) = {θ}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y− x ∈ P .
A cone P is called normal if there is a number K > 0 such that for all x, y ∈ E,

θ ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖.

The least positive number satisfying the above inequality is called the normal constant of P , while x � y
stands for y − x ∈ intP (interior of P ).

Definition 1.1 ([6]). Let X be a nonempty set. Suppose that the mapping d : X ×X → E satisfies:

(d1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.

Definition 1.2 ([9]). Let (X, d) be a cone metric space. We say that {xn} is:

(e) a Cauchy sequence if for every c ∈ E with θ � c, there is an N such that for all n,m > N, d(xn, xm)�
c;

(f) a Convergent sequence if for every c ∈ E with θ � c, there is an N such that for all n > N, d(xn, x)� c
for some fixed x ∈ X.

A cone metric space X is said to be complete if for every Cauchy sequence in X is convergent in X. It
is known that {xn} converges to x ∈ X if and only if d(xn, x) → θ as n → ∞. It is a Cauchy sequence if
and only if d(xn, xm)→ θ(n,m→∞).

Remark 1.3 ([27]). Let E be an ordered Banach (normed) space. Then c is an interior point of P , if and
only if [−c, c] is a neighborhood of θ.

Corollary 1.4 ([19]). (1) If a ≤ b and b� c, then a� c. Indeed, c−a = (c− b) + (b−a) ≥ c− b implies
[−(c− a), c− a] ⊇ [−(c− b), c− b].

(2) If a � b and b � c, then a � c. Indeed, c− a = (c− b) + (b− a) ≥ c− b implies [−(c− a), c− a] ⊇
[−(c− b), c− b].

(3) If θ ≤ u� c for each c ∈ intP then u = θ.
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Remark 1.5 ([14, 17]). If c ∈ intP, θ ≤ an and an → θ, then there exists an n0 such that for all n > n0 we
have an � c.

Remark 1.6 ([19, 20]). If E is a real Banach space with cone P and if a ≤ ka where a ∈ P and 0 < k < 1,
then a = θ.

Definition 1.7 ([1]). Let f and g be self maps on a set X (i.e., f, g : X → X). If w = fx = gx for some x
in X, then x is called a coincidence point of f and g, and w is called a point of coincidence of f and g. Self
maps f and g are said to be weakly compatible if they commute at their coincidence point; i.e., if fx = gx
for some x ∈ X, then fgx = gfx.

2. Main result

The following theorem is Sumitra et,al [24] generalization of Ciric and Ume’s [6] result in cone metric
spaces.

Theorem 2.1. Let (X, d) be a complete cone metric space, C a nonempty closed subset of X such that for
each x ∈ C and y 6∈ C there exists a point z ∈ ∂C (the boundary of C) such that

d(x, z) + d(z, y) = d(x, y).

Suppose that f, g : C → X are two non-self mappings satisfying for all x, y ∈ C with x 6= y,

d(gx, gy) ≤ αd(fx, fy) + βu+ γv (2.1)

where u ∈ {d(fx, gx), d(fy, gy)}, v ∈ {d(fx, gx) + d(fy, gy), d(fx, gy) + d(fy, gx)}, and α, β, γ are nonneg-
ative real numbers such that

α+ 2β + 3γ + αγ < 1. (2.2)

Also assume that

(i) ∂C ⊆ fC, gC ∩ C ⊆ fC,

(ii) fx ∈ ∂C implies that gx ∈ C,

(iii) fC is closed in X.

Then the pair (f, g) has a coincidence point in C. Moreover, if pair (f, g) is weakly compatible, then f and
g have a unique common fixed point in C.

Remark 2.2. From the proof of this theorem, it is easy to see that condition (2.2) can be weakened to
α+ β + 2γ < 1.

The purpose of this paper is to extend above theorem for a family of non-self mappings in cone metric
spaces with weaker condition.

We state and prove our main result as follows.

Theorem 2.3. Let (X, d) be a complete cone metric space, C a nonempty closed subset of X such that for
each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that {Fn}∞n=1, S, T : C → X are a family of non-self mappings satisfying for all i = 2n − 1, j =
2n(n ∈ N) and x, y ∈ C with x 6= y,

d(Fix, Fjy) ≤ αd(Tx, Sy) + βu+ γv (2.3)

where u ∈ {d(Tx, Fix), d(Sy, Fjy)}, v ∈ {d(Tx, Fix) + d(Sy, Fjy), d(Tx, Fjy) + d(Sy, Fix)} and α, β, γ are
nonnegative real numbers such that

α+ β + 2γ < 1. (2.4)

Also assume that
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(I) ∂C ⊆ SC ∩ TC, FiC ∩ C ⊆ SC,FjC ∩ C ⊆ TC,

(II) Tx ∈ ∂C implies that Fix ∈ C, Sx ∈ ∂C implies that Fjx ∈ C,

(III) SC and TC (or FiC and FjC) are closed in X.

Then

(IV) (Fi, T ) has a point of coincidence,

(V) (Fj , S) has a point of coincidence.

Moreover, if (Fi, T ) and (Fj , S) are weakly compatible pairs for all i = 2n − 1, j = 2n(n ∈ N), then
{Fn}∞n=1, S and T have a unique common fixed point.

Proof. Let x ∈ ∂C be arbitrary. Then (due to ∂C ⊆ TC) there exists a point x0 ∈ C such that x = Tx0.
From the implication if Tx0 ∈ ∂C, then F1x0 ∈ F1C ∩ C ⊆ SC. Thus, there exist x1 ∈ C such that
y1 = Sx1 = F1x0 ∈ C. Since y1 = F1x0 there exists a point y2 = F2x1 such that

d(y1, y2) = d(F1x0, F2x1).

Suppose y2 ∈ C. Then y2 ∈ F2C ∩ C ⊆ TC which implies that there exists a point x2 ∈ C such that
y2 = Tx2. Otherwise, if y2 6∈ C, then there exists a point p ∈ ∂C such that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ ∂C ⊆ TC there exists a point x2 ∈ C with p = Tx2 so that

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2).

Let y3 = F3x2 be such that d(y2, y3) = d(F2x1, F3x2). Thus, repeating the foregoing arguments, one
obtains two sequences {xn} and {yn} such that

(a) y2n = F2nx2n−1, y2n+1 = F2n+1x2n,

(b) y2n ∈ C implies that y2n = Tx2n or y2n 6∈ C implies that Tx2n ∈ ∂C and

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n).

(c) y2n+1 ∈ C implies that y2n+1 = Sx2n+1 or y2n+1 6∈ C implies that Sx2n+1 ∈ ∂C and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1).

We denote
P0 = {Tx2i ∈ {Tx2n} : Tx2i = y2i},

P1 = {Tx2i ∈ {Tx2n} : Tx2i 6= y2i},

Q0 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1},

Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 6= y2i+1}.

Note that (Tx2n, Sx2n+1) 6∈ P1 ×Q1, as if Tx2n ∈ P1, then y2n 6= Tx2n and one infers that Tx2n ∈ ∂C
which implies that y2n+1 = F2n+1x2n ∈ C. Hence y2n+1 = Sx2n+1 ∈ Q0. Similarly, one can argue that
(Sx2n−1, Tx2n) 6∈ Q1 × P1.

Now, we distinguish the following three cases.
Case 1. If (Tx2n, Sx2n+1) ∈ P0 ×Q0, then from (2.3)

d(Tx2n, Sx2n+1) = d(F2n+1x2n, F2nx2n−1) ≤ αd(Tx2n, Sx2n−1) + βu2n + γv2n,

where

u2n ∈ {d(Tx2n, F2n+1x2n), d(Sx2n−1, F2nx2n−1)} = {d(Tx2n, y2n+1), d(Sx2n−1, y2n)},
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v2n ∈ {d(Tx2n, F2n+1x2n) + d(Sx2n−1, F2nx2n−1), d(Tx2n, F2nx2n−1) + d(Sx2n−1, F2n+1x2n)

= {d(Tx2n, y2n+1) + d(Sx2n−1, y2n), d(Sx2n−1, y2n+1)}.

Clearly, there are infinitely many n such that at least one of the following four cases holds:
(1) If u2n = d(Tx2n, y2n+1) and v2n = d(Tx2n, y2n+1) + d(Sx2n−1, y2n), then

d(Tx2n, Sx2n+1) ≤ αd(Tx2n, Sx2n−1) + βd(Tx2n, y2n+1) + γ(d(Tx2n, y2n+1) + d(Sx2n−1, y2n))

= αd(Tx2n, Sx2n−1) + βd(Tx2n, Sx2n+1) + γd(Tx2n, Sx2n+1) + γd(Sx2n−1, Tx2n).

This implies that d(Tx2n, Sx2n+1) ≤ α+γ
1−β−γd(Sx2n−1, Tx2n).

(2) If u2n = d(Tx2n, y2n+1) and v2n = d(Sx2n−1, y2n+1), then

d(Tx2n, Sx2n+1) ≤ αd(Tx2n, Sx2n−1) + βd(Tx2n, y2n+1) + γd(Sx2n−1, y2n+1)

≤ αd(Tx2n, Sx2n−1) + βd(Tx2n, y2n+1) + γ(d(Sx2n−1, y2n) + d(y2n, y2n+1))

= αd(Tx2n, Sx2n−1) + βd(Tx2n, Sx2n+1) + γd(Sx2n−1, Tx2n) + γd(Tx2n, Sx2n+1).

This implies that d(Tx2n, Sx2n+1) ≤ α+γ
1−β−γd(Sx2n−1, Tx2n).

(3) If u2n = d(Sx2n−1, y2n) and v2n = d(Tx2n, y2n+1) + d(Sx2n−1, y2n), then

d(Tx2n, Sx2n+1) ≤ αd(Tx2n, Sx2n−1) + βd(Sx2n−1, y2n) + γ(d(Tx2n, y2n+1) + d(Sx2n−1, y2n))

= αd(Tx2n, Sx2n−1) + βd(Sx2n−1, Tx2n) + γd(Tx2n, Sx2n+1) + γd(Sx2n−1, Tx2n).

This implies that d(Tx2n, Sx2n+1) ≤ α+β+γ
1−γ d(Sx2n−1, Tx2n).

(4) If u2n = d(Sx2n−1, y2n) and v2n = d(Sx2n−1, y2n+1), then

d(Tx2n, Sx2n+1) ≤ αd(Tx2n, Sx2n−1) + βd(Sx2n−1, y2n) + γd(Sx2n−1, y2n+1)

≤ αd(Tx2n, Sx2n−1) + βd(Sx2n−1, y2n) + γ(d(Sx2n−1, y2n) + d(y2n, y2n+1))

= αd(Tx2n, Sx2n−1) + βd(Sx2n−1, Tx2n) + γd(Sx2n−1, Tx2n) + γd(Tx2n, Sx2n+1).

This implies that d(Tx2n, Sx2n+1) ≤ α+β+γ
1−γ d(Sx2n−1, Tx2n).

From (1), (2), (3), (4) it follows that

d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n), (2.5)

where λ = max{ α+γ
1−β−γ ,

α+β+γ
1−γ } < 1 by (2.4).

Similarly, if (Sx2n+1, Tx2n+2) ∈ Q0 × P0, we have

d(Sx2n+1, Tx2n+2) = d(F2n+1x2n, F2n+2x2n+1) ≤ λd(Tx2n, Sx2n+1). (2.6)

If (Sx2n−1, Tx2n) ∈ Q0 × P0, we have

d(Sx2n−1, Tx2n) = d(F2n−1x2n−2, F2nx2n−1) ≤ λd(Tx2n−2, Sx2n−1). (2.7)

Case 2. If (Tx2n, Sx2n+1) ∈ P0 ×Q1, then Sx2n+1 ∈ Q1 and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1) (2.8)

which in turns yields

d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1) (2.9)

and hence
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d(Tx2n, Sx2n+1) ≤ d(y2n, y2n+1) = d(F2n+1x2n, F2nx2n−1). (2.10)

Now, proceeding as in Case 1, we have (2.5) holds.
If (Sx2n+1, Tx2n+2) ∈ Q1 × P0, then Tx2n ∈ P0. We show that

d(Sx2n+1, Tx2n+2) ≤ λd(Tx2n, Sx2n−1). (2.11)

Using (2.8), we get

d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+1) + d(y2n+1, Tx2n+2)

= d(Tx2n, y2n+1)− d(Tx2n, Sx2n+1) + d(y2n+1, Tx2n+2). (2.12)

By noting that Tx2n+2, Tx2n ∈ P0, one can conclude that

d(y2n+1, Tx2n+2) = d(y2n+1, y2n+2) = d(F2n+1x2n, F2n+2x2n+1) ≤ λd(Tx2n, Sx2n+1), (2.13)

and

d(Tx2n, y2n+1) = d(y2n, y2n+1) = d(F2n+1x2n, F2nx2n−1) ≤ λd(Sx2n−1, Tx2n), (2.14)

in view of Case 1.
Thus,

d(Sx2n+1, Tx2n+2) ≤ λd(Sx2n−1, Tx2n)− (1− λ)d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n),

and we proved (2.11).
Case 3. If (Tx2n, Sx2n+1) ∈ P1 ×Q0, then Sx2n−1 ∈ Q0. We show that

d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2). (2.15)

Since Tx2n ∈ P1, then

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n). (2.16)

From this, we get

d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n) + d(y2n, Sx2n+1)

= d(Sx2n−1, y2n)− d(Sx2n−1, Tx2n) + d(y2n, Sx2n+1). (2.17)

By noting that Sx2n+1, Sx2n−1 ∈ Q0, one can conclude that

d(y2n, Sx2n+1) = d(y2n, y2n+1) = d(F2n+1x2n, F2nx2n−1) ≤ λd(Sx2n−1, Tx2n), (2.18)

and

d(Sx2n−1, y2n) = d(y2n−1, y2n) = d(F2n−1x2n−2, F2nx2n−1) ≤ λd(Sx2n−1, Tx2n−2), (2.19)

in view of Case 1.
Thus,

d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2)− (1− λ)d(Sx2n−1, Tx2n) ≤ λd(Sx2n−1, Tx2n−2),

and we proved (2.15).
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Similarly, If (Sx2n+1, Tx2n+2) ∈ Q0 × P1, then Tx2n+2 ∈ P1, and

d(Sx2n+1, Tx2n+2) + d(Tx2n+2, y2n+2) = d(Sx2n+1, y2n+2).

From this, we have

d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2) + d(y2n+2, Tx2n+2)

≤ d(Sx2n+1, y2n+2) + d(Sx2n+1, y2n+2)− d(Sx2n+1, Tx2n+2)

= 2d(Sx2n+1, y2n+2)− d(Sx2n+1, Tx2n+2)

⇒ d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2).

By noting that Sx2n+1 ∈ Q0, one can conclude that

d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2) = d(F2n+1x2n, F2n+2x2n+1) ≤ λd(Tx2n, Sx2n+1), (2.20)

in view of Case 1.
Thus, in all case 1-3, there exists w2n ∈ {d(Sx2n−1, Tx2n), d(Tx2n−2, Sx2n−1)} such that

d(Tx2n, Sx2n+1) ≤ λw2n

and exists w2n+1 ∈ {d(Sx2n−1, Tx2n), d(Tx2n, Sx2n+1)} such that

d(Sx2n+1, Tx2n+2) ≤ λw2n+1.

Following the procedure of Assad and Kirk [4], it can easily be shown by induction that, for n ≥ 1, there
exists w2 ∈ {d(Tx0, Sx1), d(Sx1, Tx2)} such that

d(Tx2n, Sx2n+1) ≤ λn−
1
2w2 and d(Sx2n+1, Tx2n+2) ≤ λnw2. (2.21)

From (2.21) and by the triangle inequality, for n > m we have

d(Tx2n, Sx2m+1) ≤ d(Tx2n, Sx2n−1) + d(Sx2n−1, Tx2n−2) + · · ·+ d(Tx2m+2, Sx2m+1)

≤ (λm + λm+ 1
2 + · · ·+ λn−1)w2 ≤

λm

1−
√
λ
w2 → θ, as m→∞.

From Remark 1.5 and Corollary 1.4 (1) d(Tx2n, Sx2m+1)� c.
Thus, the sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n−1, · · · } is a Cauchy sequence. Then,

as note in [8], there exists at least one subsequence {Tx2nk
} or {Sx2nk+1} which is contained in P0 or Q0

respectively and finds its limit z ∈ C. Furthermore, subsequences {Tx2nk
} and {Sx2nk+1} both converge

to z ∈ C as C is a closed subset of complete cone metric space (X, d). We assume that there exists a
subsequence {Tx2nk

} ⊆ P0 for each k ∈ N , and TC as well as SC are closed in X. Since {Tx2nk
} is Cauchy

sequence in TC, it converges to a point z ∈ TC. Let w ∈ T−1z, then Tw = z. Similarly, {Sx2nk+1} being
a subsequence of Cauchy sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n−1, · · · } also converges to z
as SC is closed. Using (2.3), one can write

d(Fiw, z) ≤ d(Fiw,Fjx2nk−1) + d(Fjx2nk−1, z) ≤ αd(Tw, Sx2nk−1) + βuw + γvw + d(Fjx2nk−1, z)

= αd(z, Sx2nk−1) + βuw + γvw + d(Fjx2nk−1, z),

where
uw ∈ {d(Tw,Fiw), d(Sx2nk−1, Fjx2nk−1)} = {d(z, Fiw), d(Sx2nk−1, Fjx2nk−1)},

vw ∈ {d(Tw,Fiw) + d(Sx2nk−1, Fjx2nk−1), d(Tw,Fjx2nk−1) + d(Fiw, Sx2nk−1)}
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= {d(z, Fiw) + d(Sx2nk−1, Fjx2nk−1), d(z, Fjx2nk−1) + d(Fiw, Sx2nk−1)}.

Let θ � c. Clearly at least one of the following four cases holds for infinitely many n.
(1) If uw = d(z, Fiw) and vw = d(z, Fiw) + d(Sx2nk−1, Fjx2nk−1), then

d(Fiw, z) ≤ αd(z, Sx2nk−1) + βd(z, Fiw) + γ(d(z, Fiw) + d(Sx2nk−1, Fjx2nk−1)) + d(Fjx2nk−1, z)

≤ αd(z, Sx2nk−1) + βd(z, Fiw) + γd(z, Fiw) + γ(d(Sx2nk−1, z) + d(z, Fjx2nk−1)) + d(Fjx2nk−1, z)

= (α+ γ)d(z, Sx2nk−1) + (β + γ)d(z, Fiw) + (γ + 1)d(Fjx2nk−1, z)

⇒ d(Fiw, z) ≤
α+ γ

1− β − γ
d(z, Sx2nk−1) +

γ + 1

1− β − γ
d(Fjx2nk−1, z)

� α+ γ

1− β − γ
c

2 α+γ
1−β−γ

+
γ + 1

1− β − γ
c

2 γ+1
1−β−γ

= c;

(2) If uw = d(z, Fiw) and vw = d(z, Fjx2nk−1) + d(Fiw, Sx2nk−1), then

d(Fiw, z) ≤ αd(z, Sx2nk−1) + βd(z, Fiw) + γ(d(z, Fjx2nk−1) + d(Fiw, Sx2nk−1)) + d(Fjx2nk−1, z)

≤ αd(z, Sx2nk−1) + βd(z, Fiw) + γd(z, Fjx2nk−1) + γ(d(Fiw, z) + d(z, Sx2nk−1)) + d(Fjx2nk−1, z)

= (α+ γ)d(z, Sx2nk−1) + (β + γ)d(z, Fiw) + (γ + 1)d(Fjx2nk−1, z)

⇒ d(Fw, z) ≤ α+ γ

1− β − γ
d(z, Sx2nk−1) +

γ + 1

1− β − γ
d(Fjx2nk−1, z)

� α+ γ

1− β − γ
c

2 α+γ
1−β−γ

+
γ + 1

1− β − γ
c

2 γ+1
1−β−γ

= c;

(3) If uw = d(Sx2nk−1, Fjx2nk−1) and vw = d(z, Fiw) + d(Sx2nk−1, Fjx2nk−1), then

d(Fiw, z) ≤ αd(z, Sx2nk−1)+βd(Sx2nk−1, Fjx2nk−1)+γ(d(z, Fiw)+d(Sx2nk−1, Fjx2nk−1))+d(Fjx2nk−1, z)

≤ αd(z, Sx2nk−1) + β(d(Sx2nk−1, z) + d(z, Fjx2nk−1)) + γd(z, Fiw)

+γ(d(Sx2nk−1, z) + d(z, Fjx2nk−1)) + d(Fjx2nk−1, z)

= (α+ β + γ)d(z, Sx2nk−1) + γd(z, Fiw) + (β + γ + 1)d(Fjx2nk−1, z)

⇒ d(Fiw, z) ≤
α+ β + γ

1− γ
d(z, Sx2nk−1) +

β + γ + 1

1− γ
d(Fjx2nk−1, z)

� α+ β + γ

1− γ
c

2α+β+γ1−γ
+
β + γ + 1

1− γ
c

2β+γ+1
1−γ

= c;

(4) If uw = d(Sx2nk−1, Fjx2nk−1) and vw = d(z, Fjx2nk−1) + d(Fiw, Sx2nk−1), then

d(Fiw, z) ≤ αd(z, Sx2nk−1)+βd(Sx2nk−1, Fjx2nk−1)+γ(d(z, Fjx2nk−1)+d(Fiw, Sx2nk−1))+d(Fjx2nk−1, z)

≤ αd(z, Sx2nk−1)+β(d(Sx2nk−1, z)+d(z, Fjx2nk−1))+γd(z, Fjx2nk−1)

+γ(d(Fiw, z) + d(z, Sx2nk−1)) + d(Fjx2nk−1, z)

= (α+ β + γ)d(z, Sx2nk−1) + γd(z, Fiw) + (β + γ + 1)d(Fjx2nk−1, z)

⇒ d(Fiw, z) ≤
α+ β + γ

1− γ
d(z, Sx2nk−1) +

β + γ + 1

1− γ
d(Fjx2nk−1, z)

� α+ β + γ

1− γ
c

2α+β+γ1−γ
+
β + γ + 1

1− γ
c

2β+γ+1
1−γ

= c.
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In all the cases we obtain d(Fiw, z) � c for each c ∈ intP , Using Corollary Corollary 1.4 (3) it follows
that d(Fiw, z) = θ or Fiw = z. Thus, Fiw = z = Tw, that is z is a coincidence point of Fi, T .

Further, since Cauchy sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n−1, · · · } converges to z ∈ C
and z = Fiw, z ∈ FiC ∩ C ⊆ SC, there exists b ∈ C such that Sb = z. Again using (2.3), we get

d(Sb, Fjb) = d(z, Fjb) = d(Fiw,Fjb) ≤ αd(Tw, Sb) + βuw + γvw = βuw + γvw,

where
uw ∈ {d(Tw,Fiw), d(Sb, Fjb)} = {θ, d(Sb, Fjb)},

vw ∈ {d(Tw,Fiw) + d(Sb, Fjb), d(Tw,Fjb) + d(Sb, Fiw)} = {d(Sb, Fjb), d(z, Fjb)} = {d(Sb, Fjb)}.
Hence, we get the following cases:

d(Sb, Fjb) ≤ βθ + γd(Sb, Fjb) = γd(Sb, Fjb) and d(Sb, Fjb) ≤ (β + γ)d(Sb, Fjb)

Since 0 ≤ γ ≤ β + γ < 1− α− γ ≤ 1, using Remark 1.6 and Corollary 1.4 (3), it follows that Sb = Fjb,
therefore, Sb = z = Fjb, that is z is a coincidence point of (Fj , S).

In case FiC and FjC are closed in X, then z ∈ FiC ∩ C ⊆ SC or z ∈ FjC ∩ C ⊆ TC. The analogous
arguments establish (IV) and (V). If we assume that there exists a subsequence {Sx2nk+1} ⊆ Q0 with TC
as well SC are closed in X, then noting that {Sx2nk+1} is a Cauchy sequence in SC, foregoing arguments
establish (IV) and (V).

Suppose now that (Fi, T ) and (Fj , S) are coincidentally commuting pairs, then

z = Fiw = Tw ⇒ Fiz = FiTw = TFiw = Tz and z = Fjb = Sb⇒ Fjz = FjSb = SFjb = Sz

Then, from (2.3),

d(Fiz, z) = d(Fiz, Fjb) ≤ αd(Tz, Sb) + βu+ γv = αd(Fiz, z) + βu+ γv,

where
u ∈ {d(Tz, Fiz), d(Sb, Fjb)} = {d(Fiz, Fiz), d(z, z)} = {θ},

v ∈ {d(Tz, Fiz) + d(Sb, Fjb), d(Tz, Fjb) + d(Sb, Fiz)} = {θ, d(Fiz, z) + d(z, Fiz)} = {θ, 2d(Fiz, z)}.
Hence, we get the following cases:

d(Fiz, z) ≤ αd(Fiz, z) and d(Fiz, z) ≤ αd(Fiz, z) + 2γd(Fiz, z) = (α+ 2γ)d(z, Fiz)

Since 0 ≤ α ≤ α + 2γ < 1 − β ≤ 1, using Remark 1.6 and Corollary 1.4 (3), it follows that Fiz = z.
Thus, Fiz = z = Tz

Similarly, we can prove Fjz = z = Sz. Therefore z = Fiz = Fjz = Sz = Tz, that is, z is a common
fixed point of Fn, S and T .

Uniqueness of the common fixed point follows easily from (2.3).

Remark 2.4. Setting Fi = F and Fj = G in Theorem 2.3, we obtain the following result:

Corollary 2.5. Let (X, d) be a complete cone metric space, C a nonempty closed subset of X such that for
each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that F,G, S, T : C → X are two pairs of non-self mappings satisfying for all x, y ∈ C with x 6= y,

d(Fx,Gy) ≤ αd(Tx, Sy) + βu+ γv (2.22)

where u ∈ {d(Tx, Fx), d(Sy,Gy)}, v ∈ {d(Tx, Fx) + d(Sy,Gy), d(Tx,Gy) + d(Sy, Fx)}, and α, β, γ are
nonnegative real numbers such that

α+ β + 2γ < 1. (2.23)

Also assume that
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(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,

(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,

(III) SC and TC (or FC and GC) are closed in X.

Then

(IV) (F, T ) has a point of coincidence,

(V) (G,S) has a point of coincidence.

Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a unique common fixed
point.

Remark 2.6. 1. Setting Fi = Fj = f and T = S = g in Theorem 2.3, one deduces Theorem 2.1 due to Ciric
and Ume’s [6] with α+ β + 2γ < 1.

2. Setting Fi = Fj = f and T = S = IX in Theorem 2.3, we obtain the following result:

Corollary 2.7. Let (X, d) be a complete cone metric space, and C a nonempty closed subset of X such that
for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that g : C → X satisfying for all x, y ∈ C with x 6= y,

d(fx, fy) ≤ αd(x, y) + βu+ γ,

where
u ∈ {d(x, gx), d(y, gy)}, v ∈ {d(x, gx) + d(y, gy), d(x, gy) + d(y, gx)},

and α, β, γ are nonnegative real numbers such that α + β + 2γ < 1 and g has the additional property that
for each x ∈ ∂C, gx ∈ C, then g has a unique fixed point in C.

We now list some corollaries of Theorems 2.3.

Corollary 2.8. Let (X, d) be a complete cone metric space, C a nonempty closed subset of X such that for
each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let {Fn}∞n=1, S, T : C → X be such that for all i = 2n− 1, j = 2n(n ∈ N) and x, y ∈ C with x 6= y,

d(Fix, Fjy) ≤ αd(Tx, Sy), (2.24)

where α ∈ (0, 1).
Suppose, further, that {Fn}∞n=1, S, T and C satisfy the following conditions:

(I) ∂C ⊆ SC ∩ TC,FiC ∩ C ⊆ SC,FjC ∩ C ⊆ TC,

(II) Tx ∈ ∂C implies that Fix ∈ C, Sx ∈ ∂C implies that Fjx ∈ C,

(III) SC and TC (or FiC and FjC) are closed in X.

Then

(IV) (Fi, T ) has a point of coincidence,

(V) (Fj , S) has a point of coincidence.

Moreover, if (Fi, T ) and (Fj , S) are weakly compatible pairs for all i = 2n − 1, j = 2n(n ∈ N), then
{Fn}∞n=1, S and T have a unique common fixed point.
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Corollary 2.9. Let (X, d) be a complete cone metric space, C a nonempty closed subset of X such that for
each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let {Fn}∞n=1, S, T : C → X be such that for all i = 2n− 1, j = 2n(n ∈ N) and x, y ∈ C with x 6= y,

d(Fix, Fjy) ≤ γ(d(Tx, Fix) + d(Sy, Fjy)), (2.25)

where γ ∈ (0, 12).
Suppose, further, that {Fn}∞n=1, S, T and C satisfy the following conditions:

(I) ∂C ⊆ SC ∩ TC, FiC ∩ C ⊆ SC,FjC ∩ C ⊆ TC,

(II) Tx ∈ ∂C implies that Fix ∈ C, Sx ∈ ∂C implies that Fjx ∈ C,

(III) SC and TC (or FiC and FjC) are closed in X.

Then

(IV) (Fi, T ) has a point of coincidence,

(V) (Fj , S) has a point of coincidence.

Moreover, if (Fi, T ) and (Fj , S) are weakly compatible pairs for all i = 2n − 1, j = 2n(n ∈ N), then
{Fn}∞n=1, S and T have a unique common fixed point.

Corollary 2.10. Let (X, d) be a complete cone metric space, C a nonempty closed subset of X such that
for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let {Fn}∞n=1, S, T : C → X be such that for all i = 2n− 1, j = 2n(n ∈ N) and x, y ∈ C with x 6= y,

d(Fix, Fjy) ≤ γ(d(Tx, Fjy) + d(Fix, Sy)), (2.26)

where γ ∈ (0, 12).
Suppose, further, that {Fn}∞n=1, S, T and C satisfy the following conditions:

(I) ∂C ⊆ SC ∩ TC, FiC ∩ C ⊆ SC,FjC ∩ C ⊆ TC,

(II) Tx ∈ ∂C implies that Fix ∈ C, Sx ∈ ∂C implies that Fjx ∈ C,

(III) SC and TC (or FiC and FjC) are closed in X.

Then

(IV) (Fi, T ) has a point of coincidence,

(V) (Fj , S) has a point of coincidence.

Moreover, if (Fi, T ) and (Fj , S) are weakly compatible pairs for all i = 2n − 1, j = 2n(n ∈ N), then
{Fn}∞n=1, S and T have a unique common fixed point.

Remark 2.11. Setting Fi = Fj = f and T = S = g in Corollary 2.8–2.10, we obtain the following results:

Corollary 2.12. Let (X, d) be a complete cone metric space, C a nonempty closed subset of X such that
for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let f, g : C → X be such that
d(fx, fy) ≤ αd(gx, gy), (2.27)

for some α ∈ (0, 1) and for all x, y ∈ C. Suppose, further, that f, g and C satisfy the following conditions:
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(I) ∂C ⊆ gC, fC ∩ C ⊆ gC,

(II) gx ∈ ∂C implies that fx ∈ C,

(III) gC is closed in X.

Then the pair (f, g) has a coincidence point in C. Moreover, if pair (f, g) is weakly compatible, then f and
g have a unique common fixed point in C.

Corollary 2.13. Let (X, d) be a complete cone metric space, C a nonempty closed subset of X such that
for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let f, g : C → X be such that
d(fx, fy) ≤ γ(d(fx, gx) + d(fy, gy)), (2.28)

for some γ ∈ (0, 12) and for all x, y ∈ C. Suppose, further, that f, g and C satisfy the following conditions:

(I) ∂C ⊆ gC, fC ∩ C ⊆ gC,

(II) gx ∈ ∂C implies that fx ∈ C,

(III) gC is closed in X.

Then the pair (f, g) has a coincidence point in C. Moreover, if pair (f, g) is weakly compatible, then f and
g have a unique common fixed point in C.

Corollary 2.14. Let (X, d) be a complete cone metric space, C a nonempty closed subset of X such that
for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let f, g : C → X be such that
d(fx, fy) ≤ γ(d(fx, gy) + d(fy, gx)), (2.29)

for some γ ∈ (0, 12) and for all x, y ∈ C. Suppose, further, that f, g and C satisfy the following conditions:

(I) ∂C ⊆ gC, fC ∩ C ⊆ gC,

(II) gx ∈ ∂C implies that fx ∈ C,

(III) gC is closed in X.

Then the pair (f, g) has a coincidence point in C. Moreover, if pair (f, g) is weakly compatible, then f and
g have a unique common fixed point in C.

Remark 2.15. Corollaries 2.12–2.14 are the corresponding theorems of Abbas and Jungck from [1] in the
case that f, g are non-self mappings.

3. Illustrative examples

The following example shows that in general Fn, S and T satisfying the hypotheses of Theorem 2.3 need
not have a common coincidence justifying two separate conclusions (IV) and (V).

Example 3.1. Let E = C1([0, 1], R), P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]}, X = [0,+∞), C = [0, 2] and
d : X ×X → E defined by d(x, y) = |x− y|ϕ, where ϕ ∈ P is a fixed function, e.g., ϕ(t) = et. Then (X, d)
is a complete cone metric space with a non-normal cone having the nonempty interior. Define Fi, Fj , S and
T : C → X as

Fix = x+
4

5
, i = 2n− 1, Fjx = x2 +

4

5
, j = 2n, Tx = 5x and Sx = 5x2, x ∈ C.
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Since ∂C = {0, 2}. Clearly, for each x ∈ C and y 6∈ C there exists a point z = 2 ∈ ∂C such that
d(x, z) + d(z, y) = d(x, y). Further, SC ∩ TC = [0, 20] ∩ [0, 10] = [0, 10] ⊃ {0, 2} = ∂C, FiC ∩ C =
[45 ,

14
5 ] ∩ [0, 2] = [45 , 2] ⊂ SC, FjC ∩ C = [45 ,

24
5 ] ∩ [0, 2] = [45 , 2] ⊂ TC, and, SC, TC, FiC and FjC are closed

in X.
Also,

T0 = 0 ∈ ∂C ⇒ Fi0 =
4

5
∈ C, S0 = 0 ∈ ∂C ⇒ Fj0 =

4

5
∈ C.

T (
2

5
) = 2 ∈ ∂C ⇒ Fi(

2

5
) =

6

5
∈ C, S(

√
2

5
) = 2 ∈ ∂C ⇒ Fj(

√
2

5
) =

6

5
∈ C.

Moreover, for each x, y ∈ C,

d(Fix, Fjy) = |x− y2|ϕ =
1

5
d(Tx, Sy)

that is (2.3) is satisfied with α = 1
5 , β = γ = 0.

Evidentally, 1 = T (15) = Fi(
1
5) 6= 1

5 and 1 = S( 1√
5
) = Fj(

1√
5
) 6= 1√

5
. Notice that two separate coincidence

points are not common fixed points as FiT (15) 6= TFi(
1
5) and SFj(

1√
5
) 6= FjS( 1√

5
) which shows the necessity

of weakly compatible property in Theorem 2.3.

Next, we furnish an illustrate example in support of our result. In doing so, we are essentially inspired
by Imdad and Kumar[12].

Example 3.2. Let E = C1([0, 1], R), P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]}, X = [1,+∞), C = [1, 3] and
d : X ×X → E defined by d(x, y) = |x− y|ϕ, where ϕ ∈ P is a fixed function, e.g., ϕ(t) = et. Then (X, d)
is a complete cone metric space with a non-normal cone having the nonempty interior. Define Fi, Fj , S and
T : C → X as

Fix =

{
x2−1+n

n if 1 ≤ x ≤ 2
n+1
n if 2 < x ≤ 3

i = 2n− 1(n ≥ 1), Tx =

{
x4 if 1 ≤ x ≤ 2
4 if 2 < x ≤ 3

,

Fjx =

{
x3−1+n

n if 1 ≤ x ≤ 2
n+1
n if 2 < x ≤ 3

j = 2n(n ≥ 1), and Sx =

{
x6 if 1 ≤ x ≤ 2
4 if 2 < x ≤ 3

.

Since ∂C = {1, 3}. Clearly, for each x ∈ C and y 6∈ C there exists a point z = 3 ∈ ∂C such that
d(x, z) + d(z, y) = d(x, y). Further, SC ∩ TC = [1, 64] ∩ [1, 16] = [1, 16] ⊃ {1, 3} = ∂C, FiC ∩ C =
[1, n+3

n ] ∩ [1, 3] ⊂ SC and FjC ∩ C = [1, n+7
n ] ∩ [1, 3] ⊂ TC.

Also,
T1 = 1 ∈ ∂C ⇒ Fi1 = 1 ∈ C, S1 = 1 ∈ ∂C ⇒ Fj1 = 1 ∈ C.

T (
4
√

3) = 3 ∈ ∂C ⇒ Fi(
4
√

3) =

√
3− 1

n
+ 1 ∈ C, S(

6
√

3) = 3 ∈ ∂C ⇒ Fj(
6
√

3) =

√
3− 1

n
+ 1 ∈ C.

Moreover, if x ∈ [1, 2] and y ∈ [2, 3], then

d(Fix, Fjy) =
1

n
|x2 − 2|ϕ =

|x4 − 4|
n|x2 + 2|

ϕ =
|x4 − 4|
n|x2 + 2|

ϕ =
1

n(x2 + 2)
d(Tx, Sy).

Next, if x, y ∈ (2, 3], then
d(Fix, Fjy) = 0 = α · d(Tx, Sy).

Finally, if x, y ∈ [1, 2], then

d(Fix, Fjy) =
1

n
|x2 − y3|ϕ =

|x4 − y6|
n|x2 + y3|

ϕ =
|x4 − y6|
n|x2 + y3|

ϕ =
1

n(x2 + y3)
d(Tx, Sy).
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Therefore, condition (2.3) is satisfied if we choose α = max{ 1
n(x2+2)

, 1
n(x2+y3)

} ∈ (0, 12), β = γ = 0.

Moreover 1 is a point of coincidence as T1 = Fi1 as well as S1 = Fj1 whereas both the pairs (Fi, T ) and
(Fj , S) are weakly compatible as TFi1 = 1 = FiT1 and SFj1 = 1 = FjS1. Also, SC, TC, FiC and FjC are
closed in X. Thus, all the conditions of the Theorem 2.3 are satisfied and 1 is the unique common fixed
point of Fi, Fj , S and T . One may note that 1 is also a point of coincidence for both the pairs (Fi, T ) and
(Fj , S).
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