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Abstract

In this paper, the existence of solutions of fractional differential equations with integral boundary conditions
is investigated. The upper and lower solutions combined with monotone iterative technique is applied.
Problems of existence and unique solutions are discussed. c©2015 All rights reserved.
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1. Introduction

We consider the following integral boundary value problem for nonlinear fractional differential equation:{
Dqx(t) = f(t, x(t)), t ∈ J = [0, T ], T > 0,

x(0) = λ
∫ T
0 x(s)ds+ d, d ∈ R,

(1.1)

where f ∈ C(J × R,R), λ ≥ 0 and 0 < q < 1. The integral boundary conditions λ = 1 or −1, which have
been considered by authors ([14, 18]).

Recently, the fractional differential equations have been of great interest and development. It is caused
both of the theory of fractional calculus itself and by the applications of such constructions in various sciences
such as physics, mechanics, chemistry, engineering, etc. For details, see [1]-[22].

In order to obtain the solutions of fractional differential equations, the monotone iterative technique
have been given extensive attention in recent years (see [2, 9, 13, 17, 21]). On the other hand, the method of
upper and lower solutions is an interesting and powerful tools to deal with existence results for differential
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equations problem. So, many authors developed the upper and lower solutions methods to solve fractional
differential equations (see [6, 10, 12, 16, 22]). Based on above methods of the application in the fractional
differential equations, we used the upper and lower solutions combined with monotone iterative technique
treatment of fractional differential equations.

2. Preliminaries

Definition 2.1. The Riemann-Liouville fractional integral defined as follow

Iqu(t) =
1

Γ(q)

∫ t

0
(t− s)q−1u(s)ds,

where Γ denotes the Gamma function.

Definition 2.2. The Riemann-Liouville fractional derivative defined as follow

Dqu(t) =
1

Γ(1− q)
d

dx

∫ t

0
(t− s)−qu(s)ds,

where Γ denotes the Gamma function.

To study the problem (1.1), we first consider the following problem:{
Dqu(t) = δ(t), t ∈ J,
u(0) = λ

∫ T
0 u(s)ds+ d,

(2.1)

where δ ∈ C(J,R).

Lemma 2.3. u(t) ∈ C1(J,R) is a solution of (2.1) if and only if u(t) ∈ C1(J,R) is a solution of the
following integral equation

u(t) =
1

Γ(q)

∫ t

0
(t− s)q−1δ(s)ds+ λ

∫ T

0
u(s)ds+ d.

Proof. The proof is easy, so we omit it.

Lemma 2.4. If λ <
Γ(q + 1)− T q

TΓ(q + 1)
, then (2.1) has a unique solution u ∈ C(J,R).

Proof. Define an operator A : C(J,R)→ C(J,R) as

Au(t) =
1

Γ(q)

∫ t

0
(t− s)q−1δ(s)ds+ λ

∫ T

0
u(s)ds+ d,

For any u, v ∈ C(J,R), we have

|Au(t)−Av(t)| = 1

Γ(q)

∫ t

0
(t− s)q−1|u(s)− v(s)|ds+ λ

∫ T

0
|u(s)− v(s)|ds

≤ [
T q

Γ(q + 1)
+ λT ]|u(s)− v(s)|.

Therefore, ‖Au − Av‖ < ‖u − v‖, we know that A is a contraction operator on C(J,R). Consequently, by
the contraction mapping theorem, A has a unique fixed point u, i.e. u(t) is a unique solution of (2.1).
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Definition 2.5. A function u ∈ C1(J,R) is said to an upper solution of problem (1.1) for λ ≥ 0 on J . If{
Dqu(t) ≥ f(t, u(t)), t ∈ J,
u(0) ≥ λ

∫ T
0 u(s)ds+ d,

(2.2)

and a lower solution of (1.1) if the inequalities are reversed.

Let Ω = {u : y0(t) ≤ u ≤ z0(t)} and D = {w ∈ C1(J,R) : y0(t) ≤ w(t) ≤ z0(t), t ∈ J} be nonempty sets
and M = supt∈J M(t).

Lemma 2.6 ([9]). Let m : R+ → R be locally Hölder continuous such that for any t ∈ (0,∞), we have
m(t1) = 0 and m(t) ≤ 0 for 0 ≤ t ≤ t1. Then it follows that Dqm(t1) ≥ 0.

Lemma 2.7 (Comparison Result [17]). Let p : C1−q([0, T ])→ R be locally Hölder continuous, and p satisfies{
Dqp(t) ≥ −M(t)p(t),

t1−qp(t) |t=0≥ 0.
(2.3)

If MT qΓ(1− q) < 1, then, p(t) ≥ 0, ∀t ∈ J .

3. Main results

In this section, we mainly investigate the existence of extremal solutions of problem (1.1) by the method
of upper and lower solutions combined with monotone iterative technique.

Theorem 3.1. Assume that (H1): f ∈ C(J ×Ω, R), (H2): there exists M > 0 such that f(t, v)− f(t, u) ≤
M [u − v] if v ≤ u, u, v ∈ Ω, t ∈ J , and u, v ∈ D are upper and lower solutions of problem (1), respectively,
and v(t) ≤ u(t) on J . If

Dqy(t) = f(t, u(t))−M [y(t)− u(t)], t ∈ J, y(0) = λ
∫ T
0 u(s)ds+ d,

Dqz(t) = f(t, v(t))−M [z(t)− v(t)], t ∈ J, z(0) = λ
∫ T
0 v(s)ds+ d, then

v(t) ≤ z(t) ≤ y(t) ≤ u(t), t ∈ J,

and y, z are upper and lower solutions of problem (1.1), respectively.

Proof. Note that there exist unique solutions for z and y. Put q = u− y, p = z − v, so

Dqp(t) = Dqz(t)−Dqv(t) ≥ f(t, v(t))−M [z(t)− v(t)]− f(t, v(t)) = −Mp(t), t ∈ J,

p(0) ≥ λ
∫ T

0
v(s)ds− λ

∫ T

0
v(s)ds = 0,

and
Dqq(t) = Dqu(t)−Dqy(t) ≥ f(t, u(t))−M [y(t)− u(t)]− f(t, u(t)) = −Mq(t), t ∈ J.

q(0) ≥ λ
∫ T

0
u(s)ds− λ

∫ T

0
u(s)ds = 0.

By Lemma 2.7, we have p(t) ≥ 0, q(t) ≥ 0, t ∈ J , showing that z(t) ≥ v(t),u(t) ≥ y(t), t ∈ J . Now let
m = y − z. Assumption (H2) yields

Dqm(t) = Dqy(t)−Dqz(t) = f(t, u(t))−M [y(t)− u(t)]− f(t, v(t))−M [z(t)− v(t)]
= f(t, u(t))− f(t, v(t))−M [y(t)− u(t)− z(t) + v(t)]
≥ −M [u(t)− v(t)] +M(u(t)− v(t))−M(y(t)− z(t)) = −Mm(t), t ∈ J.
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m(0) ≥ λ
∫ T

0
u(s)ds− λ

∫ T

0
v(s)ds = 0.

Hence m(t) ≥ 0, t ∈ J showing that z(t) ≤ y(t), t ∈ J . So v(t) ≤ z(t) ≤ y(t) ≤ u(t), t ∈ J .
Now, we need to show that y, z are upper and lower solutions of problem (1), respectively. Using Assumption
H2, we have

Dqy(t) = f(t, u(t))−M [y(t)− u(t)]
= f(t, u(t))−M [y(t)− u(t)]− f(t, y(t)) + f(t, y(t))
≥ f(t, y(t))−M [y(t)− u(t)] +M [y(t)− u(t)] = f(t, y(t))

y(0) = λ

∫ T

0
u(s)ds+ d ≥ λ

∫ T

0
y(s)ds+ d.

Similarly, we can prove that
Dqz(t) ≤ f(t, z(t))

z(0) ≤ λ
∫ T

0
z(s)ds+ d.

So, y, z are upper and lower solutions of (1), respectively.

Theorem 3.2. Assume that the conditions (H1), (H2) and (H3): y0, z0 ∈ C1(J,R) are upper and lower
solutions of (1), respectively, and such that y0(t) ≥ z0(t), t ∈ J are satisfied. Then there exist monotone
sequences {zn, yn} such that zn(t)→ z(t), yn(t)→ y(t), t ∈ J as n→∞ and this convergence is uniformly
and monotonically on J . Moreover, z, y are extremal solutions of (1.1) in D.

Proof. For n = 1, 2, · · · , we suppose that

Dqzn+1(t) = f(t, zn(t))−M [zn+1(t)− zn(t)], t ∈ J, zn+1(0) = λ

∫ T

0
zn(s)ds+ d.

Dqyn+1(t) = f(t, yn(t))−M [yn+1(t)− yn(t)], t ∈ J, yn+1(0) = λ

∫ T

0
yn(s)ds+ d,

obviously, by Theorem 3.1, we have that z0(t) ≤ z1(t) ≤ y1(t) ≤ y0(t), t ∈ J , and y1, z1 are upper and lower
solutions of (1), respectively.

Assume that
z0(t) ≤ z1(t) ≤ · · · ≤ zk(t) ≤ yk(t) ≤ · · · ≤ y1(t) ≤ y0(t), t ∈ J,

for some k ≥ 1 and let yk, zk be upper and lower solutions of (1), respectively. Then, using again Theorem
3.1, we get zk(t) ≤ zk+1(t) ≤ yk+1(t) ≤ yk(t), t ∈ J . By induction, we have that

z0(t) ≤ z1(t) ≤ · · · ≤ zn(t) ≤ yn(t) ≤ · · · ≤ y1(t) ≤ y0(t), t ∈ J.

Obviously, the sequences {yn}, {zn} are uniformly bounded and equicontinuous, applying the standard
arguments, we have

lim
n→∞

yn = y(t), lim
n→∞

zn = z(t)

uniformly on J . indeed, y and z are extremal generalized solutions of (1). To prove that y, z are extremal
generalized solutions of (1), Assume that for some k, zk(t) ≤ w(t) ≤ yk(t), t ∈ J . Put p = w − zk+1,
q = yk+1 − w. Then

Dqp(t) = f(t, w(t))− f(t, zk(t)) +M [zk+1(t)− zk(t)]
≥ −M [w(t)− zk(t)]−M [zk(t)]− zk+1(t) = −Mp(t),

p(0) ≥ λ
∫ T

0
[w(s)− zk(s)]ds ≥ 0,
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and
Dqq(t) = f(t, yk(t))− f(t, w(t))−M [yk+1(t)− yk(t)]
≥ −M [yk(t)− w(t)]−M [yk+1(t)− yk(t)] = −Mq(t),

q(0) ≥ λ
∫ T

0
[yk(s)− w(s)]ds ≥ 0,

By Lemma 2.7, we have zk+1(t) ≤ w(t) ≤ yk+1(t), t ∈ J . It proves, by induction, that zn(t) ≤ w(t) ≤
yn(t), t ∈ J , for all n. Taking the limit n→∞, we get z(t) ≤ w(t) ≤ y(t), t ∈ J .

Example 3.3. Consider the following integral boundary problem:{
Dqu(t) = etsin

2u(t), t ∈ J = [0, ln2],

u(0) = λ
∫ T
0 u(s)ds,

(3.1)

where Dq is Riemann-Liouville fractional derivative of order 0 < q < 1. In fact, 0 ≤ Dqu(t) = etsin
2u(t) ≤

et, t ∈ J, x ∈ R. Take y0(t) = et, z0(t) = 0 on J are upper and lower solutions of problem (3.1), respectively.
By Theorem 3.2, problem (3.1) has extremal solutions in the segment [z0, y0].
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