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Abstract
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1. Introduction

Let H be a real Hilbert space and () # C C H a closed convex set. Let A : C — H be a nonlinear
mapping. The variational inequality is to find a point ' € C such that

(Azt, 2t — 2ty >0, vat e C, (1.1)

which was introduced and studied by Stampacchia [9]. Variational inequalities are being used as mathemat-
ical programming tools and models to study a wide class of unrelated problems arising in mathematical,
physical, regional, engineering, and nonlinear optimization sciences. For example, in [16] [19] 20], the solu-
tions of the variational inequalities are being used as the mathematical programming tools related to some
fixed points problems. For some related works, we refer the reader to [2, [5H7, [13] 18]. Especially, Korpelevich
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[8] introduced the following Korpelevich’s algorithm to solve (1.1). For given z¢ € C, define a sequence {z,,}
by the following form
= Po(x, — TAx,),
Tnt1 = Po(xy, — TAy,), n >0,
where Pc is the metric projection from R™ onto its subset C, 7 € (0,1/x) and A : C — R" is a monotone
operator.

Remark 1.1. Korpelevich’s algorithm (|1.2)) fails, in general, to converge strongly in the setting of infinite-
dimensional Hilbert spaces.

In order to obtain the strong convergence, Yao et al. [15] presented the following modified Korpelevich’s
algorithm. For given g € C, let {z,,} be a sequence defined by
Yn = PC [xn - TASUn - Oénﬂfn],

(1.3)
Tni1 = Polxn — TAyn + (yn — )], n>0.

Consequently, Yao et al. proved that the sequence {x, } generated by (1.3|) converges strongly to the solution

of .

In [14, 17], the authors suggested some iterative algorithms for finding the minimum-norm solution of
the variational inequalities.

On the other hand, in [I], Aoyama et al. extended the variational inequality to the generated
variational inequality under the setting of Banach spaces which is to find a point 2t € C such that

(Azt J(@t —2)) >0, vzt e C, (1.4)

where C' is a nonempty closed convex subset of a real Banach space E. We use S(C,A) to denote the

solution set of (|1.4).

Note that the generalized variational inequality (1.4 is connected with the fixed point problem for
nonlinear mappings. To solve (1.4]), Aoyama et al. [12] introduced an iterative algorithm. For given g € C,
let {z,,} be a sequence defined by

Tptl = Ty + (1 - an)QC[xn - )\nA-Tfn]v n >0, (1'5)

where Q¢ is a sunny nonexpansive retraction from E onto C, and {ay,} C (0,1) and {\,} C (0,00) are two
real number sequences. We also note that the sequence {z,} generated by has only weak convergence
in the setting of infinite-dimensional Banach spaces.

The main purpose of this paper is to solve problem . Motivated by the above algorithm ,
we suggest a variant form of Korpelevich’s algorithm by replacing the metric projection with the sunny
nonexpansive retraction. It is shown that the presented algorithm converges strongly to a special solution
of the variational inequality .

2. Preliminaries
Let E be a real Banach space and () # C C E a closed convex set.
Definition 2.1. A mapping A : C — F is said to be accretive if there exists j(z —y) € J(z — y) such that
(Az — Ay, j(z —y)) =2 0
for all z,y € C.

Definition 2.2. A mapping A : C' — E is said to be a-strongly accretive if there exists j(z —y) € J(x —y)
such that
(Az — Ay, j(z —y)) = allz —y|*, Va,yeC,

where a > 0 is a positive constant.
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Definition 2.3. A mapping A of C into F is said to be a-inverse-strongly accretive if, for a > 0,
(Az — Ay, j(z — y)) > oAz — Ay|?
for all z,y € C.

Let U ={z € E: ||z|| = 1}. A Banach space E is said to be uniformly convex if for each € € (0, 2], there
exists § > 0 such that for any x,y € U,

|z —yl| > € implies Hx;yH <1-4.

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach space F is said
to be smooth if the limit
e+t~ e
t—0 t
exists for all x,y € U. It is also said to be uniformly smooth if the limit (2.1]) is attained uniformly for
x,y € U. The norm of F is said to be Fréchet differentiable if for each x € U, the limit (2.1]) is attained
uniformly for y € U. And we define a function p : [0,00) — [0, 00) called the modulus of smoothness of F

as follows:

(2.1)

1
p(r) = sup {S(lz +yll + ko —yl) = 1: 2,y € X, o] = 1,y = 7.

It is known that F is uniformly smooth if and only if lim_,o p(7)/7 = 0. Let ¢ be a fixed real number with
1 < q < 2. Then a Banach space F is said to be g-uniformly smooth if there exists a constant ¢ > 0 such
that p(7) < c7? for all 7 > 0.

Lemma 2.4 ([11]). Let q be a given real number with 1 < ¢ <2 and let E be a q-uniformly smooth Banach
space. Then

2+ yl|7 < =17 + q(y, Jo(2)) + 2] Ky|*

for all z,y € E, where K is the q-uniformly smoothness constant of E and J, is the generalized duality
mapping from E into 2F" defined by

Jo(x) ={f € B : (x, f) = || | /| = =] *™"}, VzeE.
Let D be a subset of C' and let @) be a mapping of C' into D. Then @ is said to be sunny if
Q(Qz + t(z — Q) = Qu,

whenever Qz + t(z — Qz) € C for x € C and t > 0. A mapping @ of C into itself is called a retraction if
Q? = Q. If a mapping Q of C into itself is a retraction, then Qz = z for every z € R(Q), where R(Q) is the
range of Q. A subset D of C is called a sunny nonexpansive retract of C' if there exists a sunny nonexpansive
retraction from C' onto D. We know the following lemma concerning with the sunny nonexpansive retraction.

Lemma 2.5 ([4]). Let C be a closed convez subset of a smooth Banach space E, let D be a nonempty subset
of C'" and Q a retraction from C onto D. Then Q) is sunny and nonexpansive if and only if

(u—Qu,j(y — Qu)) <0
forallue C andy € D.

Lemma 2.6 ([1]). Let C be a nonempty closed convex subset of a smooth Banach space E. Let Q¢ : E — C
be a sunny nonexpansive retraction and let A : C'— E be an accretive operator. Then for all X > 0,

5(C,A) = F(Qc(I — A4)),
where S(C, A) = {z* € C: (Az*, J(x — z*)) >0, Vax e C}.
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Lemma 2.7 ([10]). Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space
E. Let the mapping A : C — E be a-inverse-strongly accretive. Then,

I = AA)z — (I = AA)y|? < [lz — yl* + 20K — a) | Az — Ay|]*.

In particular, if 0 < X\ < 325, then I — AA is nonezpansive.

Lemma 2.8 ([3]). Let E be a uniformly convexr Banach space and () # C C E be a bounded closed convex
set. Let T : C' — C be a nonexpansive mapping. If {x,} is a sequence of C' such that x, — x weakly and
Tp — Ty — 0 strongly, then x is a fized point of T.

Lemma 2.9 ([12]). Let {a,}, {1}, and {6,} be three real number sequences satisfying
(i) {an} C[0,00), {7} € (0,1), and 3272 yn = 00;
(i) Hmsup,, o0 0n/m <0 or Y 02 o |0n] < o005

(iii) ant1 < (1 —yn)an + 0n,n > 0.

Then lim,, o ap = 0.

3. Main results

In this section, we present our algorithm based on Korpelevich’s algorithm and consequently, we will
show its strong convergence.

In the sequel, we assume that E is a uniformly convex and 2-uniformly smooth Banach space which
admits a weakly sequentially continuous duality mapping. Let () # C C E be a closed convex set. Let
A : C — FE be an a-strongly accretive and L-Lipschitz continuous mapping. Let Q¢ : E — C be a sunny
nonexpansive retraction.

Algorithm 3.1. For given xg € C, define a sequence {z,} iteratively by

Yn = QC[xn — Az, + an(un - xn)]a

(3.1)
Ip+1 = QC[xn - HnAyn + 6n(yn - xn)]vn >0,

where {u,} C C is a sequence and {\,} C (0,2«), {an} C [0,1], {sn}, and {0,} C [0,1] are four real
number sequences.

Theorem 3.2. Suppose that S(C, A) # 0. Assume the following conditions are satisfied:

(C1): limy, o0 up, =u € C;

(C2): A\ € [a,b] C (0, 157z2);

(C3): 5 < 551z (Vn > 0), where K is the smooth constant of E;
(

(

N =

. . _ o0 _ . o _ .
C4): limp o0 0 =0, D 02 oy = 00, and lim,_, o =1

)\n*)\n—l — 0

C5): limy, 0 o

Hn—Hn—1
[e%

=0, and lim,,_,o

On—O0n— .
T:l =0, limp, 0

Then the sequence {x,} generated by (3.1)) converges strongly to Q'(u), where Q" is a sunny nonexpansive
retraction of E onto S(C, A).

Proof. Let p € S(C, A). Since lim,,_, u, = u € C, we can choose a constant M > 0 such that ||u, —p|| < M
for all n > 0. First, from Lemma we have p = Q¢[p — vAp| for all v > 0. In particular, p =

Qclp — MAp] = Qclanp + (1 — ay)(p — li\—gnAp)] for all n > 0.
Since A : €' — FE is a-strongly accretive and L-Lipschitzian, it must be f5-inverse-strongly accretive

mapping. Thus, by Lemma we have

(0%
1= AnA)z = (T = M AWy < o =yl + 200 (K200 — 75 ) A2 — Ay
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Since o, — 0 and A, € [a,b] C (0, worz), we get ap, < 1 — % for enough large n. Without loss of
Kzf/\ Ao (0, 72z ). Hence, I — An_ A

n
? 1—amy 1—an

generality, we may assume that, for alln € N, a,, <1 — noje.

is nonexpansive.

From (3.1), we have
lyn — pll = |Qclrn — AMnAzy + an(un — 2,)] — Q]|
An An
Azp)] = Qclomp + (1 — ay)(p — Ap)l|

= |Qclanun + (1 — ay) (2, —

1—a, 1—a,
< flowm(ttn — ) + (1 — @) [(@n — 2 Azy) — (p — —2— Ap)]| (3.2)
1—a, 1—a,
< o llun — pll + (1 — an)||(T = 22— Ay, — (T — —2"— A)p|
1—a, 1—a,

< anljun = pll + (1 = an)|lzn — pl-

By and , we get
2041 = pll = 1Qclen — pnAyn + 6n(yn — 4)] — Qclp — pnAp||
= Qcl(1 = 8a)an + by — 5 Aya)] — Qel(L = 82)p + 8ulp — K= AD)]|

n

Hn Hn
< H(l - 6n)(xn _p) + 571[(3/71 - ?Ayn) - (p - TAp)]H
< (1= 8)llan = pll + 8ull(vn — 5" Aya) = (0 = 5" 4p)| (3.3)

IN A

(

(1= 6n)llzn — pll + Onllyn — pll
(1 — (5n)Hxn — pH + 5nanHUn - pH + 571(1 - O‘n)Hxn - p”
= (1 - 5n04n)Hxn _pH + 6nan|]un _pH

< max{|lzn — pl|, [lun — pl}-

By the induction, we obtain ||x,+1 — p|| < max{||z¢o — p||, M}. So, {x,} is bounded. We compute (3.1)) to
get

Hyn - yn—1H = HQC[xn — \Az, + an(un - xn)} - QC[In—l — M—1Axp_1 + an—l(un—l - xn—l)]”
)\n )\n—l
< — — — (1 —apy— - _ — Ol Upy—
<A = an)(zn — 7= anA:cn) (I —an-1)(zp-1 - 7= an_lAa:n 1) + antin — ap_1tn—1|
11 = @)l — 2 A) — (2t — " Ado)] + (0t — o)
= — On ) [\Tn — n) — \Tn-1— n— n—1 — On)Tn—
o i — 1 1 1
+ ()\nfl - )\n)Al‘nfl + anpty — anflunfln
A An
< (1 —an) (2 — 1— anAJ:n) = (Tp—1 — 1_ anAfUn—l)”

+ lom = an—1|([[zn—1ll + [[uall]) + [An = An-al[[Azn-1ll + -1 lun — un—1|]
< (1= ap)llen = znall + lan — anal([[enall + lunl))

+ ‘)\n - )\n—l|||A$n—l|| + O5n—1||un - un—lH’
and thus

”xn—i-l - xn‘| = HQC’[xn - ,UnAyn + 5n(yn - xn)] - QC[-rn—l - Mn—lAyn—l + 5n—1(yn—1 - xn—l)]”
< H [J)n - MnAyn + 5n(yn - -rn)] - [xnfl - ,UnflAynfl + 5nfl(ynfl - xnfl)]H

= 111 = n)n + On(n — " Ayn)] = [(1 = bt)n -+ Onr (g1 — 5= Avn )|




L.-J. Zhu, M. Ren, W. Han, J. Nonlinear Sci. Appl. 9 (2016), 6058-6066

6063

< (1= 0p)l|wn — 2p—1|l + [0n — dn—1l|Tn—1]]
1z 1z

+ 0nll(yn — = AYn) — (Yn—1 — = Ayn—1)|| + |ttn — pin—1 || Ayn-1l| + 6n — Sn—1[||yn-1]]

On On
< (1= 6)ll7m — Tn s+ 160 — Sus (] + s
+ 0nllyn — yn—1ll + ltn — pin—1[[ Ayn—1|]
< (1= dnan)llon — zn-all + [6n = dn—1[(lzn—1ll + [yn—1l) + |tn — ptn—1[[| Ayn—1]]

+ lom — an—1[dn(([zn—1[ + lunll) + 0nlAn = An—1||Azp—1 | + an—16n|lun — up—1ll.

This together with conditions (C1), (C4), (C5), and Lemma 2.9 imply that

Jim [z g1 — 2] = 0.
From (3.2), we have
2 An )\n 2
lm = DlI? < ltn(ttn — p) + (1 — an)[(@n — —"— Azy) — (p— " Ap)]|
1—a, 1—a,
< aunlltn — plI? + (1= )| (n — —2 Ay) — (p — —2— Ap)|?
1 (679 1 Qp

K2\,

[0
< anlln = pl2+ (1 = an)ln = pl? + 200 (2 = 75 ) 14w, — Ap]2
l—-«a, L

By (3.1), (3.3)), and (3.4), we obtain
Hn Hn
2041 = Pl < (1 = 6n) (20 — p) + nl(yn — - Ayn) — (p — (TAP)]HQ

On
2 Hn Hn 2
< (1= dn)llzn = II" + dnll(yn — 5~ Ayn) — (0 — 5= Ap)l|
n n
2n K21, «
< (1 - 5n)Hxn _p”2 + 5n[Hyn _pH2 + 57( 5 - ﬁ)”Ayn - ApHQ]
K2\, o
< Gulawnlln = pI> + (1 = )z — pI* + A — 2| Az, — Apl]
K?u, «
(1= dn)llzn = pII* + 20 (=5 — 75) 1 Ayn — Ap|?
K2\, «
= anlpl|un — p||2 + (1 = dnan)||zn _pH2 + 2)‘n5n(17 - ﬁ)”Awn - Ap||2
—a, L
K?u, «
2 (=5 = 75) [ Aya — Ap|*
Therefore,
K2\ o 9 K?u o
< - — - — n - nin_i An_A 2
0< 2 = )l A — Apl? = 2pen( =5 — )] Ay — Al

< andnllun _pH2 + [|n —p||2 — lTng1 _pH2

_ K 2

= andp||un — plI* + (lzn — pll + |21 = pl)(lzn = pll = l2n+1 — pll)
< anbnllun — plI* + ([|zn — pll + 201 — plDllzn — Tnga ]l

Since o, — 0 and ||z, — xp41]| — 0, we derive

lim ||Az, — Ap|| = lim ||Ay, — Ap|| = 0.

It follows that
lim ||Ay, — Azy|| = 0.
n—oo

(3.4)
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Noting that A is a-strongly accretive, we deduce
Ay — Azl > allyn — 2],

which implies that

lim ||y, — anl| =0,
n—oo
that is,
lim [|Qclzn — AnAzn + an(up — z0)] — 24l = 0.
n—oo

It follows that
lim (|Qc[zn — AnAzy] — zp|| = 0.
n—oo

Next, we show that
lim sup(Q’ (u), j(xn, — Q'(u))) > 0. (3.5)

n—oo
To prove ({3.5)), since {z,} is bounded, we can choose a sequence {x,,} of {z,} which converges weakly to
z and
i sup (@ (u) o — @ () = i (Q/(w), (o, — @'(w). (36)

Next, we first prove z € S(C, A). Since \,, is bounded, there exists a subsequence )‘nij such that )‘nz'j Y
It follows that _
]lifgo HQC(I - )\nij A):Emj - xnij H = 0. (37)

By Lemma and (3.7)), we have z € F(Qc(I — AA)), it follows from Lemma 2.6 that z € S(C, A).
Now, from (3.6) and Lemma we have

limsup(u — Q'(u), j(zn — Q'(u))) = jlggo@ — Q'(u), j(zn,, — Q'(w)) = (u—Q'(u),j(z — Q'(u))) <0.

n—oo

Noticing that ||z, — yn|| = 0, we deduce

lim sup(u — Q'(u), j(yn — Q' (w))) < 0.

n—oo

Since u, — u, we get
lim sup(u, — Q'(w), j(yn — Q'(u))) < 0.

Using Lemma 25, we obtain o
(Qclantn + (1= an)an = 12— Am)] = [agtin + (1= an) i — T Aza)]. iy — Q@) <0
and
(0@ (@) + (1~ (@) — - AQ (W) ~ Qo (0) + (1 — ) (@)
- 2 AQ )] — QW) < 0.
So,
o = QWP = [ Qclantn + (1 = @) — 12— Az,)
— Qelon@/ () + (1= 0,)(Q' (1) — —22— AQ/ (u)]|

11—,
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< {anfin = Q') + (1= an)(n — 22 Aw) = (@) = 12— AQ ()] — ()
< anfun — Q). 30 ~ Q@) + (1 = @) — 1 A,)
~ (@) — T2 AQ W) — Q(w)]
< ot — Q). 3y — Q') + (1~ )l — QW) — Q' ()
< anlotn — Q) jom — Q) + 2 (n — Q>+~ @ ]?)

2
which implies that

lyn — Q' (W* < (1 = an) |20 — Q' (W)|I* + 20 (un — Q' (w), j(yn — Q' (w)))- (3.8)
Finally, we prove that the sequence z;,, — @Q'(u). As a matter of fact, from (3.1)) and (3.8), we have

201 = Q (W)? < (1= dn)llzn — Q' (W)|* + nllyn — Q' (w)|?
< (1 = nown)lzn — Q@ (w)|* + 20nan(un — Q' (w), j(yn — Q' (w))).

Applying Lemma to the last inequality, we conclude that x,, converges strongly to @’(u). This completes
the proof. m
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