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Abstract

In this paper, we prove some quadruple coincidence and quadruple fixed point theorems for (ϕ,ψ)-contractive
type mappings in partially ordered G-metric spaces with mixed g-monotone property. The results on fixed
point theorems are generalizations of some results obtained by Mustafa [Z. Mustafa, Fixed Point Theory
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1. Introduction and Preliminaries

Fixed point theory is one of the most powerful and fruitful tools in nonlinear analysis, differential
equation, and economic theory and has been studied in many various metric spaces. Especially, in 2006,
Mustafa and Sims [13] introduced a generalized metric spaces which are called G-metric space. Follow
Mustafa and Sims’ work, many authors developed and introduced various fixed point theorems in G-metric
spaces (see [2,3,14,15,17,20]). Some authors have been interested in partially ordered G-metric spaces
and prove some fixed point theorem. Simultaneously, fixed point theory has developed rapidly in partially
ordered G-metric spaces (see [1,4,11,19]). In [5], the authors first introduced the concepts of mixed monotone
property and quadruple fixed point for F : X4 → X and several quadruple fixed point theorems have been

∗Corresponding author
Email addresses: cjh19881129@163.com (Jianhua Chen), xjhuangxwen@163.com (Xianjiu Huang)

Received 2015-01-31



J. Chen, X. Huang, J. Nonlinear Sci. Appl. 8 (2015), 285–300 286

proved in partially ordered metric spaces. Afterwards, a quadruple fixed point in partially ordered metric
spaces is developed and related fixed points are obtained (see [6,7,8,9,10,16]). In [16], the authors first
introduced the concepts of g-mixed monotone property and quadruple coincidence point for F : X4 → X
and g : X → X and several quadruple coincidence point theorems have been proved in partially ordered
metric spaces. Then, in [18], Mustufa proved quadruple coincidence point in partially ordered G-metric
spaces using (φ− ψ) contractions. In [12], Liu first proved quadruple coincidence point in partially ordered
G-metric spaces with mixed g-monotone property.

Inspired by [2], in this paper, we prove some quadruple fixed point theorems for (ϕ,ψ)-contractive type
mappings in partially ordered G-metric spaces with mixed g-monotone property. The results on fixed point
theorems are generalizations of the results of Mustafa [18]. We also give an example to support our results.

Throughout this paper, let N denote the set of nonnegative integers, and R+ be the set of positive real
numbers.

Before giving our main results, we need to recall some basic concepts and results in G-metric spaces.

Definition 1.1. ([13]) Let X be a non-empty set, G : X × X × X → R+ be a function satisfying the
following properties:
(G1) G(x, y, z) = 0 if x = y = z.
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y.
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z.
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables).
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).
Then the function G is called a generalized metric and the pair (X,G) is called a G-metric space.

Definition 1.2. ([13]) Let (X,G) be a G-metric space and let {xn} be a sequence of points of X. A point
x ∈ X is said to be the limit of the sequence {xn} if lim

n,m→∞
G(xn, xm, x) = 0, and one says the sequence

{xn} is G-convergent to x.

Thus, if xn → x in G-metric space (X,G), then, for any ε > 0, there exists a positive integer N such
that G(x, xn, xm) < ε for all n,m > N .

In [13], the authors have shown that the G-metric induces a Hausdorff topology, and the convergence
described in the above definition is relative to this topology. The topology being Hausdorff, a sequence can
converge at most to a point. Respectively, the authors achieve the following conclusions.

Definition 1.3. ([13]) Let (X,G) be a G-metric space. A sequence {xn} is called G-Cauchy if every ε > 0,
there exists a positive N such that G(xn, xm, xl) < ε for all n,m, l > N , that is, if G(xn, xm, xl) → 0, as
n,m, l→∞.

Lemma 1.4. ([13]) If (X,G) is a G-metric space, then the following are equivalent.
(1) {xn} is G-convergent to x.
(2) G(xn, xn, x)→ 0 as n→∞.
(3) G(xn, x, x)→ 0 as n→∞.
(4) G(xm, xn, x)→ 0 as m,n→∞.

Lemma 1.5. ([13]) If (X,G) is a G-metric space, then the following are equivalent.
(1) The sequence {xn} is G-Cauchy.
(2) For every ε > 0, there exists a positive integer N such that G(xn, xm, xm) < ε for all n,m > N .

Lemma 1.6. ([13]) If (X,G) is a G-metric space, then G(x, y, y) ≤ 2G(y, x, x) for all x, y ∈ X.

Lemma 1.7. ([13]) If (X,G) is a G-metric space, then G(x, x, y) ≤ G(x, x, z)+G(z, z, y) for all x, y, z ∈ X.

Definition 1.8. ([13]) Let (X,G), (X ′, G′) be two G-metric spaces. Then a function f : X → X ′ is G-
continuous at a point x ∈ X if and only if it is G-sequentially continuous at x; that is, whenever {xn} is
G-convergent to x, {f(xn)} is G′-convergent to f(x).
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Lemma 1.9. ([13]) Let (X,G) be a G-metric spaces. Then the function G(x, y, z) is jointly continuous in
all three of its variables.

Definition 1.10. ([13]) A G-metric space (X,G) is said to be G-complete (or a complete G-metric space)
if every G-Cauchy sequence in (X,G) is convergent in X.

In [5], the authors introduced the following definitions.

Definition 1.11. ([5]) Let X be a nonempty set and F : X4 → X be a given mapping. An element
(x, y, z, w) ∈ X4 is called a quadruple fixed point of F if

x = F (x, y, z, w), y = F (y, z, w, x),

z = F (z, w, x, y) and w = F (w, x, y, z).

Definition 1.12. ([5]) Let (X,�) be a partially ordered set and let F : X4 → X. The mapping F is said
to have the mixed monotone property if F (x, y, z, w) is monotone non-decreasing in x, z and is monotone
non-increasing in y, w, that is, for any x, y, z, w ∈ X,

x1, x2 ∈ X,x1 � x2 ⇒ F (x1, y, z, w) � F (x2, y, z, w),

y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1, z, w) � F (x, y2, z, w),

z1, z2 ∈ X, z1 � z2 ⇒ F (x, y, z1, w) � F (x, y, z2, w),

and
w1, w2 ∈ X,w1 � w2 ⇒ F (x, y, z, w1) � F (x, y, z, w2).

Definition 1.13. ([5]) Let X be a non-empty set. Then we say that the mappings F : X4 → X and
g : X → X are commutative if for all x, y, z, w ∈ X,

g(F (x, y, z, w)) = F (gx, gy, gz, gw).

In [16], the authors gave the following definitions.

Definition 1.14. ([16]) Let (X,�) be a partially ordered set and F : X4 → X and g : X → X be two
mappings. We say that F has the mixed-g-monotone property if F (x, y) is g-monotone nondecreasing in
x, z and it is g-monotone nonincreasing in y, w, that is, for any x, y, z, w ∈ X, we have:

x1, x2 ∈ X, g(x1) � g(x2)⇒ F (x1, y, z, w) � F (x2, y, z, w),

y1, y2 ∈ X, g(y1) � g(y2)⇒ F (x, y1, z, w) � F (x, y2, z, w),

z1, z2 ∈ X, g(z1) � g(z2)⇒ F (x, y, z1, w) � F (x, y, z2, w),

and
w1, w2 ∈ X, g(w1) � g(w2)⇒ F (x, y, z, w1) � F (x, y, z, w2).

Definition 1.15. ([16]) An element (x, y, z, w) ∈ X4 is called a quadruple coincidence point of the mapping
F : X4 → X and g : X → X if

gx = F (x, y, z, w) gy = F (y, z, w, x) gz = F (z, w, x, y) and gw = F (w, x, y, z).

(x, y, z, w) is said to be a quadruple point of coincidence of F and g.
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Definition 1.16. ([16]) Let F : X4 → X and g : X → X. An element (x, y, z, w) is called a quadruple
common fixed point of F and g if

F (x, y, z, w) = gx = x, F (y, z, w, x) = gy = y,

F (z, w, x, y) = gz = z, and F (w, x, y, z) = gw = w.

In [18], Mustafa considered the following class of functions. We denote by Φ the set of functions
ϕ : [0,+∞)→ [0,+∞) satisfying
(iϕ) ϕ is continuous and non-decreasing;
(iiϕ) ϕ(t) = 0 iff t = 0;
(iiiϕ) ϕ(s+ t) ≤ ϕ(s) + ϕ(t) for all s, t ≥ 0.

And let Ψ denote all functions ψ : [0,+∞)→ [0,+∞) which satisfy
(iψ) lim

t→r
ψ(t) > 0 for all r > 0, and

(iiψ) lim
t→0+

ψ(t) = 0.

For example [18], the function ϕ(t) = kt, k > 0, ϕ(t) = t
1+t are in Φ and ψ1(t) = kt, k > 0, ψ2(t) = ln(2k+1)

2
are in Ψ.

Remark 1.17. ([18]) Φ ⊆ Ψ.

Remark 1.18. ([18]) For all t ∈ [0,+∞), we have 1
2ϕ(t) ≤ ϕ( t2).

Mustafa [18] proved the following theorems.

Theorem 1.19. Let (X,�) be a partially ordered set and (X,G) be a G-metric space. Let F : X4 → X and
g : X → X be such that F has the mixed g-monotone property. Assume that there exists ϕ ∈ Φ and ψ ∈ Ψ
such that

ϕ
(
G(F (x, y, z, w), F (u, v, s, t), F (a, b, c, d))

)
≤ 1

4
ϕ
(
G(gx, gu, ga) +G(gy, gv, gb) +G(gz, gs, gc) +G(gw, gt, gd)

)
−ψ

(
G(gx, gu, ga) +G(gy, gv, gb) +G(gz, gs, gc) +G(gw, gt, gd)

4

) (1.1)

for all x, y, z, w, u, v, s, t, a, b, c, d ∈ X with gx � gu � ga, gy � gv � gb, gz � gs � gc and gw � gt � gd.
Suppose also that F (X4) ⊆ g(X) and g is continuous and commutes with F . If there exist x0, y0, z0, w0 ∈ X
such that

gx0 � F (x0, y0, z0, w0), gy0 � F (y0, z0, w0, x0),

gz0 � F (z0, w0, x0, y0), and gw0 � F (w0, x0, y0, z0).

suppose either
(a) (X,G) is a complete G-metric space and F is continuous or
(b) (g(X), G) is complete and (X,G,�) has the following property:

(i) if a non-decreasing sequence xn → x, then xn � x for all n,
(ii) if a non-increasing sequence yn → y, then y � yn for all n,

then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = gx, F (y, z, w, x) = gy, F (z, w, x, y) = gz, and F (w, x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Theorem 1.20. In addition to the hypothesis of Theorem 1.19, suppose that for all (x, y, z, w), (u, v, r, l) ∈
X4, there exists (a, b, c, d) ∈ X4 such that (F (a, b, c, d), F (b, c, d, a), F (c, d, a, b), F (d, a, b, c)) is comparable to
(F (x, y, z, w), F (y, z, w, x), F (z, w, x, y), F (w, x, y, z)) and (F (u, v, r, l), F (v, r, l, u), F (r, l, u, v), F (l, u, v, r)).
Then F and g have a unique quadruple common fixed point (x, y, z, w) such that x = gx = F (x, y, z, w),
y = gy = F (y, z, w, x), z = gz = F (z, w, x, y), and w = gw = F (w, x, y, z).



J. Chen, X. Huang, J. Nonlinear Sci. Appl. 8 (2015), 285–300 289

2. Main results

In this section, we prove quadruple fixed point theorems for (ϕ,ψ)-contractive type mappings in partially
ordered G-metric spaces with mixed g-monotone property.

Next, we prove our main results.

Theorem 2.1. Let (X,�) be a partially ordered set and (X,G) be a G-metric space. Let F : X4 → X and
g : X → X be such that F has the mixed-g-monotone property. Assume that there exist ϕ ∈ Φ and ψ ∈ Ψ
such that

ϕ

(
1

4

[
G(F (x, y, z, w), F (u, v, s, t), F (a, b, c, d)) +G(F (y, z, w, x), F (v, s, t, u), F (b, c, d, a))

+G(F (z, w, x, y, ), F (s, t, u, v), F (c, d, a, b)) +G(F (w, x, y, z), F (t, u, v, s), F (d, a, b, c))
])

≤ ϕ
(
G(gx, gu, ga) +G(gy, gv, gb) +G(gz, gs, gc) +G(gw, gt, gd)

4

)
−ψ

(
G(gx, gu, ga) +G(gy, gv, gb) +G(gz, gs, gc) +G(gw, gt, gd)

4

)
(2.1)

for all x, y, z, w, u, v, s, t, a, b, c, d ∈ X with gw � gu � ga, gy � gv � gb, gz � gs � gc and gw � gt � gd.
Suppose also that F (X4) ⊆ g(X) and g is continuous and commutes with F . If there exist x0, y0, z0, w0 ∈ X
such that

gx0 � F (x0, y0, z0, w0), gy0 � F (y0, z0, w0, x0),

gz0 � F (z0, w0, x0, y0), and gw0 � F (w0, x0, y0, z0).

suppose either
(a) (X,G) is a complete G-metric space and F is continuous or
(b) (g(X), G) is complete and (X,G,�) has the following property:

(i) if a non-decreasing sequence xn → x, then xn � x for all n,
(ii) if a non-increasing sequence yn → y, then y � yn for all n,

then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = gx, F (y, z, w, x) = gy, F (z, w, x, y) = gz, and F (w, x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Proof. Let x0, y0, z0, w0 ∈ X be such that

gx0 � F (x0, y0, z0, w0), gy0 � F (y0, z0, w0, x0),

gz0 � F (z0, w0, x0, y0), and gw0 � F (w0, x0, y0, z0).

Since F (X4) ⊆ g(X), we can choose x1, y1, z1, w1 ∈ X such that

gx1 = F (x0, y0, z0, w0), gy1 = F (y0, z0, w0, x0),
gz1 = F (z0, w0, x0, y0), and gw1 = F (w0, x0, y0, z0).

(2.2)

Again since F (X4) ⊆ g(X), we can choose x2, y2, z2, w2 ∈ X such that

gx2 = F (x1, y1, z1, w1), gy2 = F (y1, z1, w1, x1),
gz2 = F (z1, w1, x1, y1), and gw2 = F (w1, x1, y1, z1).
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Continuing this process, we can construct sequences {xn}, {yn}, {zn}, and {wn} in X such that

gxn+1 = F (xn, yn, zn, wn), gyn+1 = F (yn, zn, wn, xn),
gzn+1 = F (zn, wn, xn, yn), and gwn+1 = F (wn, xn, yn, zn).

(2.3)

Next, we shall that
gxn � gxn+1, gyn � gyn+1,
gzn � gzn+1, and gwn � gwn+1 for n = 0, 1, 2, 3, · · · . (2.4)

For this purpose, we use the mathematical induction. Since gx0 � F (x0, y0, z0, w0), gy0 � F (y0, z0, w0, x0),
gz0 � F (z0, w0, x0, y0), and gw0 � F (w0, x0, y0, z0), then by (2.2), we get

gx0 � gx1, gy0 � gy1, gz0 � gz1, and gw0 � gw1,

that is, (2.4) holds for n = 0. We presume that (2.4) holds for some n > 0. As F has the mixed g-monotone
property and gxn � gxn+1, gyn � gyn+1, gzn � gzn+1, and gwn � gwn+1, we obtain

gxn+1 = F (xn, yn, zn, wn) � F (xn+1, yn, zn, wn)
� F (xn+1, yn+1, zn, wn) � F (xn+1, yn+1, zn+1, wn)
� F (xn+1, yn+1, zn+1, wn+1) = gxn+2,

gyn+2 = F (yn+1, zn+1, wn+1, xn+1) � F (yn+1, zn, wn+1, xn+1)
� F (yn+1, zn, wn, xn+1) � F (yn+1, zn, wn, xn)
� F (yn, zn+1, wn+1, xn) = gyn+1,

gzn+1 = F (zn, wn, xn, yn) � F (zn+1, wn, xn, zn)
� F (zn+1, wn+1, xn, yn) � F (zn+1, wn+1, xn+1, yn)
� F (zn+1, wn+1, xn+1, yn+1) = gzn+2,

and
gwn+2 = F (wn+1, xn+1, yn+1, zn+1) � F (wn+1, xn, yn+1, zn+1)

� F (wn+1, xn, yn, zn+1) � F (wn+1, xn, yn, zn)
� F (wn, xn+1, yn+1, zn) = gwn+1.

Thus (2.4) holds for any n ∈ N. Assume for some n ∈ N,

gxn = gxn+1, gyn = gyn+1, gzn = gzn+1 and gwn = gwn+1,

then by (2.3), we have gxn = F (xn, yn.zn, wn), gyn = F (yn, zn, wn, xn), gzn = F (zn, wn, xn, yn), and
gwn = F (wn, xn, yn, zn). It is clearly that (xn, yn, zn, wn) is a quadruple coincidence point of F and g. From
now on, assume for any n ∈ N that at least

gxn 6= gxn+1 or gyn 6= gyn+1 or gzn 6= gzn+1 or gwn 6= gwn+1. (2.5)

Since gxn � gxn+1, gyn � gyn+1, gzn � gzn+1, and gwn � gwn+1, let

δn =
1

4

[
G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn)

+G(gzn+1, gzn+1, gzn) +G(gwn+1, gwn+1, gwn)
]
,

(2.6)

then from (2.1), (2.3) and (2.6), we have

ϕ(δn) = ϕ

(
1

4

[
G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn) +G(gzn+1, gzn+1, gzn)

+G(gwn+1, gwn+1, gwn)
])

= ϕ

(
1

4

[
G(F (xn, yn, zn, wn), F (xn, yn, zn, wn), F (xn−1, yn−1, zn−1, wn−1))

+G(F (yn, zn, wn, xn), F (yn, zn, wn, xn), F (yn−1, zn−1, wn−1, xn−1))
+G(F (zn, wn, xn, yn), F (zn, wn, xn, yn), F (zn−1, wn−1, xn−1, yn−1))

+G(F (wn, xn, yn, zn), F (wn, xn, yn, zn), F (wn−1, xn−1, yn−1, zn−1))
])
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≤ ϕ
(

1
4

[
G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1) +G(gzn, gzn, gzn−1)

+G(gwn, gwn, gwn−1)
])

−ψ
(

1

4

[
G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1) +G(gzn, gzn, gzn−1)

+G(gwn, gwn, gwn−1)
])

= ϕ(δn−1)− ψ(δn−1).

(2.7)

Hence, ϕ(δn) ≤ ϕ(δn−1). Using the fact that ϕ is nondecreasing, we get δn ≤ δn−1. Thus, the sequence {δn}
is decreasing, therefore, there is some δ ≥ 0 such that

lim
n→∞

δn = lim
n→∞

1

4

[
G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn)

+G(gzn+1, gzn+1, gzn) +G(gwn+1, gwn+1, gwn)
]

= δ.
(2.8)

We will show that δ = 0. Suppose to the contrary that δ > 0, taking the limit as n → ∞ of both sides of
(2.7) and using the fact that ϕ is continuous and lim

t→r
ψ(t) > 0 for r > 0, we have

ϕ(δ) = lim
n→∞

ϕ(δn) ≤ lim
n→∞

ϕ(δn−1)− lim
n→∞

ψ(δn−1) = ϕ(δ)− lim
n→∞

ψ(δn−1) < ϕ(δ),

which is a contradiction. Thus, δ = 0, that is,

lim
n→∞

δn = lim
n→∞

1

4

[
G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn)

+G(gzn+1, gzn+1, gzn) +G(gwn+1, gwn+1, gwn)
]

= 0.
(2.9)

Now we prove that (gxn), (gyn), (gzn) and (gwn) are G-Cauchy sequences in the G-metric space (X,G).
Suppose on the contrary that at least one of (gxn) (gyn), (gzn) and (gwn) is not a G-Cauchy sequence in
(X,G). Then there exists ε > 0 and sequences of natural numbers (m(k)) and (l(k)) such that for every
natural number k, m(k) > l(k) ≥ k and

rk =
1

4
[G(gxm(k), gxm(k), gxl(k)) +G(gym(k), gym(k), gyl(k))

+G(gzm(k), gzm(k), gzl(k)) +G(gwm(k), gwm(k), gwl(k))] ≥ ε.
(2.10)

Now corresponding to l(k) we choose m(k) to be the smallest for which (2.10) holds. So

1

4
[G(gxm(k)−1, gxm(k)−1, gxl(k)) +G(gym(k)−1, gym(k)−1, gyl(k))

+G(gzm(k)−1, gzm(k)−1, gzl(k)) +G(gwm(k)−1, gwm(k)−1, gwl(k))] < ε.
(2.11)

Using the rectangle inequality and having in mind (2.10) and (2.11), we get

ε ≤ rk
=

1

4
[G(gxm(k), gxm(k), gxl(k)) +G(gym(k), gym(k), gyl(k)) +G(gzm(k), gzm(k), gzl(k))

+G(gwm(k), gwm(k), gwl(k))]

≤ 1

4
[G(gxm(k), gxm(k), gxm(k)−1) +G(gxm(k)−1, gxm(k)−1, gxl(k)) +G(gym(k), gym(k), gym(k)−1)

+G(gym(k)−1, gym(k)−1, gyl(k)) +G(gzm(k), gzm(k), gzm(k)−1) +G(gzm(k)−1, gzm(k)−1, gzl(k))

+G(gwm(k), gwm(k), gwm(k)−1) +G(gwm(k)−1, gwm(k)−1, gwl(k))]

< δm(k)−1 + ε.
(2.12)
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In (2.12), letting n→∞, we can get lim
n→∞

rk = ε+. Using the rectangle inequality, we get

ε ≤ rk
=

1

4

[
G(gxm(k), gxm(k), gxl(k)) +G(gym(k), gym(k), gyl(k)) +G(gzm(k), gzm(k), gzl(k))

+G(gwm(k), gwm(k), gwl(k))
]

≤ 1

4

[
G(gxm(k), gxm(k), gxm(k)+1) +G(gxm(k)+1, gxm(k)+1, gxl(k)+1) +G(gxl(k)+1, gxl(k)+1, gxl(k))

+G(gym(k), gym(k), gym(k)+1) +G(gym(k)+1, gym(k)+1, gyl(k)+1) +G(gyl(k)+1, gyl(k)+1, gyl(k))

+G(gzm(k), gzm(k), gzm(k)+1) +G(gzm(k)+1, gzm(k)+1, gzl(k)+1) +G(gzl(k)+1, gzl(k)+1, gzl(k))

+G(gwm(k), gwm(k), gwm(k)+1) +G(gwm(k)+1, gwm(k)+1, gwl(k)+1) +G(gwl(k)+1, gwl(k)+1, gwl(k))
]

= δl(k) +
1

4

[
G(gxm(k), gxm(k), gxm(k)+1) +G(gym(k), gym(k), gym(k)+1) +G(gzm(k), gzm(k), gzm(k)+1)

+G(gwm(k), gwm(k), gwm(k)+1)
]

+
1

4

[
G(gxm(k)+1, gxm(k)+1, gxl(k)+1) +G(gym(k)+1, gym(k)+1,

gyl(k)+1) +G(gzm(k)+1, gzm(k)+1, gzl(k)+1) +G(gwm(k)+1, gwm(k)+1, gwl(k)+1)
]
.

In the above of inequality, using that G(x, x, y) ≤ 2G(x, y, y) for any x, y ∈ X, we obtain

ε ≤ rk
≤ δl(k) +

1

2
δm(k) +

1

4

[
G(gxm(k)+1, gxm(k)+1, gxl(k)+1) +G(gym(k)+1, gym(k)+1, gyl(k)+1)

+G(gzm(k)+1, gzm(k)+1, gzl(k)+1) +G(gwm(k)+1, gwm(k)+1, gwl(k)+1)
]
.

(2.13)

Now, using the property of ϕ, we have

ϕ
(1

4

[
G(gxm(k)+1, gxm(k)+1, gxl(k)+1) +G(gym(k)+1, gym(k)+1, gyl(k)+1)

+G(gzm(k)+1, gzm(k)+1, gzl(k)+1) +G(gwm(k)+1, gwm(k)+1, gwl(k)+1)
])

= ϕ
(1

4

[
G(F (xm(k), ym(k), zm(k), wm(k)), F (xm(k), ym(k), zm(k), wm(k)), F (xl(k), yl(k), zl(k), wl(k))

+G(F (ym(k), zm(k), wm(k), xm(k)), F (ym(k), zm(k), wm(k), xm(k)), F (yl(k), zl(k), wl(k), xl(k))

+G(F (zm(k), wm(k), xm(k), ym(k)), F (zm(k), wm(k), xm(k), ym(k)), F (zl(k), wl(k), xl(k), yl(k))

+G(F (wm(k), xm(k), ym(k), zm(k)), F (wm(k), xm(k), ym(k), zm(k)), F (wl(k), xl(k), yl(k), zl(k))
])

≤ ϕ
(1

4
[G(gxm(k), gxm(k), gxl(k)) +G(gym(k), gym(k), gyl(k)) +G(gzm(k), gzm(k), gzl(k))

+G(gwm(k), gwm(k), gwl(k))]
)
− ψ

(1

4
[G(gxm(k), gxm(k), gxl(k)) +G(gym(k), gym(k), gyl(k))

+G(gzm(k), gzm(k), gzl(k)) +G(gwm(k), gwm(k), gwl(k))]
)

= ϕ(rk)− ψ(rk).
(2.14)

Combining (2.13), (2.14) and the the property of ϕ, we get

ϕ(ε) ≤ ϕ(rk)

≤ ϕ(δl(k)) +
1

2
ϕ(δm(k)) + ϕ

(1

4
[G(gxm(k)+1, gxm(k)+1, gxl(k)+1) +G(gym(k)+1, gym(k)+1,

gyl(k)+1) +G(gzm(k)+1, gzm(k)+1, gzl(k)+1) +G(gwm(k)+1, gwm(k)+1, gwl(k)+1)]
)

≤ ϕ(δl(k)) +
1

2
ϕ(δm(k)) + ϕ(rk)− ψ(rk).

(2.15)
In (2.15), let k →∞, we have

ϕ(ε) ≤ lim
k→∞

ϕ(rk) ≤ ϕ(0) +
1

2
ϕ(0) + ϕ(ε)− lim

k→∞
ϕ(rk) < ϕ(ε),

which is a contraction. This implies that (gxn), (gyn), (gzn), and (gwn) are G-Cauchy sequences in (X,G).
Now suppose that the assumption (a) holds. Since X is a G-complete metric space, there exist x, y, z, w ∈ X
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such that
lim
n→∞

g(xn) = x, lim
n→∞

g(yn) = y,

lim
n→∞

g(zn) = z, and lim
n→∞

g(wn) = w.
(2.16)

From (2.16) and the continuity of g, we have

lim
n→∞

gg(xn) = gx, lim
n→∞

gg(yn) = gy,

lim
n→∞

gg(zn) = gz, and lim
n→∞

gg(wn) = gw.

From the commutativity of F and g, we have

g(gxn+1) = gF (xn, yn, zn, wn) = F (gxn, gyn, gzn, gwn), (2.17)

g(gyn+1) = gF (yn, zn, wn, xn) = F (gyn, gzn, gwn, gxn), (2.18)

g(gzn+1) = gF (zn, wn, xn, yn) = F (gzn, gwn, gxn, gyn), (2.19)

and
g(gwn+1) = gF (wn, xn, yn, zn) = F (gwn, gxn, gyn, gzn). (2.20)

We shall show that gx = F (x, y, z, w), gy = F (y, z, w, x), gz = F (z, w, x, y), and gw = F (w, x, y, z). By
letting n→∞ in (2.17)-(2.20) and using the continuity of F , we obtain

gx = lim
n→∞

g(gxn+1) = lim
n→∞

gF (xn, yn, zn, wn) = lim
n→∞

F (gxn, gyn, gzn, gwn)

= F (x, y, z, w),

gy = lim
n→∞

g(gyn+1) = lim
n→∞

gF (yn, zn, wn, xn) = lim
n→∞

F (gyn, gzn, gwn, gxn)

= F (y, z, w, x),

gz = lim
n→∞

g(gzn+1) = lim
n→∞

gF (zn, wn, xn, yn) = lim
n→∞

F (gzn, gwn, gxn, gyn)

= F (z, w, x, y),

and
gw = lim

n→∞
g(gwn+1) = lim

n→∞
gF (wn, xn, yn, zn) = lim

n→∞
F (gwn, gxn, gyn, gzn)

= F (w, x, y, z).

Hence, (x, y, z, w) is a coincidence point of F and g.
Now suppose that the assumption (b) holds. Since (gxn), (gyn), (gzn), and (gwn) areG-Cauchy sequences

in the complete G-metric space (g(X), G), then there exist x, y, z, w ∈ X such that

gxn → gx, gyn → gy, gzn → gz, gwn → gw. (2.21)

Since (gxn), (gzn) are non-decreasing and (gyn), (gwn) are non-increasing and since (X,G,≤) satisfies
conditions (i) and (ii), we have

gxn � gx, gyn � gy, gzn � gz, and gwn � gw for all n ∈ N.

If gxn = gx, gyn = gy, gzn = gz, and gwn = gw for some n ≥ 0, then gx = gxn � gxn+1 � gx = gxn,
gy � gyn+1 � gyn = gy, gz = gzn � gzn+1 � gz = gzn, and gw � gwn+1 � gwn = gw, which implies that

gxn = gxn+1 = F (xn, yn, zn, wn), gyn = gyn+1 = F (yn, zn, wn, xn),

and
gzn = gzn+1 = F (zn, wn, xn, yn), gwn = gwn+1 = F (wn, xn, yn, zn),
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that is, (xn, yn, zn, wn) is a quadruple coincidence point of F and g. Then, we suppose that (gxn, gyn, gzn, gwn)
6= (gx, gy, gz, gw) for all n ∈ N. By the rectangle inequality, consider now

G(gx, F (x, y, z, w), F (x, y, z, w)) ≤ G(gx, gxn+1, gxn+1) +G(gxn+1, F (x, y, z, w), F (x, y, z, w))
= G(gx, gxn+1, gxn+1) +G(F (xn, yn, zn, wn), F (x, y, z, w), F (x, y, z, w)).

It can conclude that

G(gx, F (x, y, z, w), F (x, y, z, w))−G(gx, gxn+1, gxn+1) ≤ G(F (xn, yn, zn, wn), F (x, y, z, w), F (x, y, z, w)).
(2.22)

Similarly, we can get

G(gy, F (y, z, w, x), F (y, z, w, x))−G(gy, gyn+1, gyn+1) ≤ G(F (yn, zn, wn, xn), F (y, z, w, x), F (y, z, w, x)),
(2.23)

G(gz, F (z, w, x, y)F (z, w, x, y))−G(gz, gzn+1, gzn+1) ≤ G(F (zn, wn, xn, yn), F (z, w, x, y), F (z, w, x, y)),
(2.24)

and

G(gw, F (w, x, y, z), F (w, x, y, z))−G(gw, gwn+1, gwn+1) ≤ G(F (wn, xn, yn, zn), F (w, x, y, z), F (w, x, y, z)).
(2.25)

By using (2.22)-(2.25), we have

1

4
[G(gx, F (x, y, z, w), F (x, y, z, w))−G(gx, gxn+1, gxn+1)

+G(gy, F (y, z, w, x), F (y, z, w, x))−G(gy, gyn+1, gyn+1)
+G(gz, F (z, w, x, y)F (z, w, x, y))−G(gz, gzn+1, gzn+1)
+G(gw, F (w, x, y, z), F (w, x, y, z))−G(gw, gwn+1, gwn+1)]

≤ 1

4
[G(F (xn, yn, zn, wn), F (x, y, z, w), F (x, y, z, w)) +G(F (yn, zn, wn, xn), F (y, z, w, x), F (y, z, w, x))

+G(F (zn, wn, xn, yn), F (z, w, x, y), F (z, w, x, y)) +G(F (wn, xn, yn, zn), F (w, x, y, z), F (w, x, y, z))].

By the property of ϕ and (2.1), we can get

ϕ

(
1

4
[G(gx, F (x, y, z, w), F (x, y, z, w))−G(gx, gxn+1, gxn+1)

+G(gy, F (y, z, w, x), F (y, z, w, x))−G(gy, gyn+1, gyn+1)
+G(gz, F (z, w, x, y)F (z, w, x, y))−G(gz, gzn+1, gzn+1)

+G(gw, F (w, x, y, z), F (w, x, y, z))−G(gw, gwn+1, gwn+1)]

)
≤ ϕ

(
1

4
[G(F (xn, yn, zn, wn), F (x, y, z, w), F (x, y, z, w)) +G(F (yn, zn, wn, xn), F (y, z, w, x), F (y, z, w, x))

+G(F (zn, wn, xn, yn), F (z, w, x, y), F (z, w, x, y)) +G(F (wn, xn, yn, zn), F (w, x, y, z), F (w, x, y, z))]

)
≤ ϕ

(
1

4
[G(gxn, gx, gx) +G(gyn, gy, gy) +G(gzn, gz, gz) +G(gwn, gw, gw)]

)
− ψ

(
1

4
[G(gxn, gx, gx)

+G(gyn, gy, gy) +G(gzn, gz, gz) +G(gwn, gw, gw)]

)
.

In the above inequality, let n→∞, using the property of ψ and (2.21), we have

ϕ

(
1

4
[G(gx, F (x, y, z, w), F (x, y, z, w)) +G(gy, F (y, z, w, x), F (y, z, w, x))

+G(gz, F (z, w, x, y), F (z, w, x, y)) +G(gw, F (w, x, y, z), F (w, x, y, z))]

)
≤ ϕ(0)− 0 = 0.
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Hence, G(gx, F (x, y, z, w), F (x, y, z, w)) = 0, G(gy, F (y, z, w, x), F (y, z, w, x)) = 0, G(gz, F (z, w, x, y),
F (z, w, x, y)) = 0, and G(gw, F (w, x, y, z), F (w, x, y, z)) = 0, that is, gx = F (x, y, z, w), gy = F (y, z, w, x),
gz = F (z, w, x, y) and gw = F (w, x, y, z). The proof is completed. �

If we take ϕ(t) = t in Theorem 2.1, we can get the following corollary.

Corollary 2.2. Let (X,�) be a partially ordered set and (X,G) be a G-metric space. Let F : X4 → X and
g : X → X be such that F has the mixed g-monotone property. Assume that there exists ψ ∈ Ψ such that

G(F (x, y, z, w), F (u, v, s, t), F (a, b, c, d)) +G(F (y, z, w, x), F (v, s, t, u), F (b, c, d, a))
+G(F (z, w, x, y, ), F (s, t, u, v), F (c, d, a, b)) +G(F (w, x, y, z), F (t, u, v, s), F (d, a, b, c))

≤ G(gx, gu, ga) +G(gy, gv, gb) +G(gz, gs, gc) +G(gw, gt, gd)

−4ψ

(
G(gx, gu, ga) +G(gy, gv, gb) +G(gz, gs, gc) +G(gw, gt, gd)

4

)
for all x, y, z, w, u, v, s, t, a, b, c, d ∈ X with gx � gu � ga, gy � gv � gb, gz � gs � gc and gw � gt � gd.
Suppose also that F (X4) ⊆ g(X) and g is continuous and commutes with F . If there exist x0, y0, z0, w0 ∈ X
such that

gx0 � F (x0, y0, z0, w0), gy0 � F (y0, z0, w0, x0),

gz0 � F (z0, w0, x0, y0), and gw0 � F (w0, x0, y0, z0).

suppose either
(a) (X,G) is a complete G-metric space and F is continuous or
(b) (g(X), G) is complete and (X,G,�) has the following property:

(i) if a non-decreasing sequence xn → x, then xn � x for all n,
(ii) if a non-increasing sequence yn → y, then y � yn for all n,

then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = gx, F (y, z, w, x) = gy, F (z, w, x, y) = gz, and F (w, x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

If we take ψ(t) = (1− k)t for all k ∈ [0, 1) in Corollary 2.1, we can get the following corollary.

Corollary 2.3. Let (X,�) be a partially ordered set and (X,G) be a G-metric space. Let F : X4 → X and
g : X → X be such that F has the mixed g-monotone property. Assume that there exists k ∈ [0, 1) such that

G(F (x, y, z, w), F (u, v, s, t), F (a, b, c, d)) +G(F (y, z, w, x), F (v, s, t, u), F (b, c, d, a))
+G(F (z, w, x, y, ), F (s, t, u, v), F (c, d, a, b)) +G(F (w, x, y, z), F (t, u, v, s), F (d, a, b, c))

≤ k[G(gx, gu, ga) +G(gy, gv, gb) +G(gz, gs, gc) +G(gw, gt, gd)]

for all x, y, z, w, u, v, s, t, a, b, c, d ∈ X with gx � gu � ga, gy � gv � gb, gz � gs � gc and gw � gt � gd.
Suppose also that F (X4) ⊆ g(X) and g is continuous and commutes with F . If there exist x0, y0, z0, w0 ∈ X
such that

gx0 � F (x0, y0, z0, w0), gy0 � F (y0, z0, w0, x0),

gz0 � F (z0, w0, x0, y0), and gw0 � F (w0, x0, y0, z0).

suppose either
(a) (X,G) is a complete G-metric space and F is continuous or
(b) (g(X), G) is complete and (X,G,�) has the following property:

(i) if a non-decreasing sequence xn → x, then xn � x for all n,
(ii) if a non-increasing sequence yn → y, then y � yn for all n,



J. Chen, X. Huang, J. Nonlinear Sci. Appl. 8 (2015), 285–300 296

then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = gx, F (y, z, w, x) = gy, F (z, w, x, y) = gz, and F (w, x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Now, we shall prove the existence and uniqueness of a quadruple common fixed point. According to [18],
for a product X4 of a partially ordered set (X,�), we define a partial ordering in the following way. For all
(x, y, z, w), (u, v, r, h) ∈ X4,

(x, y, z, w) � (u, v, r, h)⇔ x � u, y � v, z � r, and w � l.

We say that (x, y, z, w) and (u, v, r, l) are comparable if

(x, y, z, w) � (u, v, r, l) or (u, v, r, l) � (x, y, z, w).

Also, we say that (x, y, z, w) is equal to (u, v, r, l) if and only if x = u, y = v, z = r, w = l.

Theorem 2.4. In addition to the hypothesis of Theorem 2.1, suppose that for all (x, y, z, w), (u, v, r, l) ∈ X4,
there exists (a, b, c, d) ∈ X4 such that (F (a, b, c, d), F (b, c, d, a), F (c, d, a, b), F (d, a, b, c)) is comparable to
(F (x, y, z, w), F (y, z, w, x), F (z, w, x, y), F (w, x, y, z)) and (F (u, v, r, l), F (v, r, l, u), F (r, l, u, v), F (l, u, v, r)).
Then F and g have a unique quadruple common fixed point (x, y, z, w) such that x = gx = F (x, y, z, w),
y = gy = F (y, z, w, x), z = gz = F (z, w, x, y), and w = gw = F (w, x, y, z).

Proof. From Theorem 2.1, the set of coupled coincidences is non-empty. We shall show that if (x, y, z, w)
and (u, v, r, l) are quadruple coincidence points of F and g, that is,

F (x, y, z, w) = gx, F (u, v, r, l) = gu,
F (y, z, w, x) = gy, F (v, r, l, u) = gv,
F (z, w, x, y) = gz, F (r, l, u, v) = gr,
F (w, x, y, z) = gw, F (l, u, v, r) = gl.

Next, we illustrate that (gx, gy, gz, gw) and (gu, gv, gr, gl) are equal. By assumption, there exists (a, b, c, d) ∈
X4 such that (F (a, b, c, d), F (b, c, d, a), F (c, d, a, b), F (d, a, b, c)) is comparable to (F (x, y, z, w), F (y, z, w, x),
F (z, w, x, y), F (w, x, y, z)) and (F (u, v, r, l), F (v, r, l, u), F (r, l, u, v), F (l, u, v, r)).

We define the sequence (gan), (gbn), (gcn), and (gdn) such that a0 = a, b0 = b, c0 = c, d0 = d and

gan = F (an−1, bn−1, cn−1, dn−1), gbn = F (bn−1, cn−1, dn−1, an−1),
gcn = F (cn−1, dn−1, an−1, bn−1), gdn = F (dn−1, an−1, bn−1, cn−1)

(2.26)

for all n ∈ N. Further, set x0 = x, y0 = y, z0 = z, w0 = w and u0 = u, v0 = v, r0 = r, l0 = l and in the
same way define the sequences (gxn), (gyn), (gzn), (gwn) and (gun), (gvn), (grn), (gln). Then it is easy to
see that

gx1 = F (x, y, z, w), gu1 = F (u, v, r, l),
gy1 = F (y, z, w, x), gv1 = F (v, r, l, u),
gz1 = F (z, w, x, y), gr1 = F (r, l, u, v),
gw1 = F (w, x, y, z), gl1 = F (l, u, v, r).

(2.27)

Since (F (x, y, z, w), F (y, z, w, x), F (z, w, x, y), F (w, x, y, z)) = (gx1, gy1, gz1, gw1) = (gx, gy, gz, gw) is com-
parable to (F (a, b, c, d), F (b, c, d, a), F (c, d, a, b), F (d, a, b, c)) = (ga1, gb1, gc1, gd1), then it is easy to show
(gx, gy, gz, gw) � (gan, gbn, gcn, gdn). Recursively, we get that

(gx, gy, gz, gw) � (gan, gbn, gcn, gdn) for all n ∈ N. (2.28)
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It can conclude that gx � gan, gy � gbn, gz � gcn, gw � gdn. By (2.27), (2.28) and (2.1) , we can get

ϕ

(
G(gx, gx, gan+1) +G(gbn+1, gy, gy) +G(gz, gz, gcn+1) +G(gdn+1, gw, gw)

4

)
= ϕ

(
1

4

[
G(F (x, y, z, w), F (x, y, z, w), F (an, bn, cn, dn)) +G(F (bn, cn, dn, an), F (y, z, w, x), F (y, z, w, x))

+G(F (z, w, x, y), F (z, w, x, y), F (cn, dn, an, bn)) +G(F (dn, an, bn, cn), F (w, x, y, z), F (w, x, y, z))
])

≤ ϕ
(
G(gx, gx, gan) +G(gy, gy, gbn) +G(gz, gz, gcn) +G(gw, gw, gdn)

4

)
−ψ

(
G(gx, gx, gan) +G(gy, gy, gbn) +G(gz, gz, gcn) +G(gw, gw, gdn)

4

)
.

(2.29)
Thus,

ϕ

(
G(gx, gx, gan+1) +G(gbn+1, gy, gy) +G(gz, gz, gcn+1) +G(gdn+1, gw, gw)

4

)
≤ ϕ

(
G(gx, gx, gan) +G(gy, gy, gbn) +G(gz, gz, gcn) +G(gw, gw, gdn)

4

)
.

From the property of ϕ, we have

G(gx, gx, gan+1) +G(gbn+1, gy, gy) +G(gz, gz, gcn+1) +G(gdn+1, gw, gw)

4

≤ G(gx, gx, gan) +G(gy, gy, gbn) +G(gz, gz, gcn) +G(gw, gw, gdn)

4
.

Hence, using (G4) of Definition 1.1, we know that the sequence {14 [G(gan, gx, gx) +G(gbn, gy, gy)
+G(gcn, gz, gz) +G(gdn, gw, gw)]} is decreasing. Therefore, there exists α > 0 such that

lim
n→∞

G(gan, gx, gx) +G(gbn, gy, gy) +G(gcn, gz, gz) +G(gdn, gw, gw)

4
= α.

We shall show that α = 0. Suppose to the contrary α > 0. Taking the limit as n → ∞ in (2.29), then we
can get

ϕ(α) ≤ ϕ(α)− lim
n→∞

ψ

(
G(gan, gx, gx) +G(gbn, gy, gy) +G(gcn, gz, gz) +G(gdn, gw, gw)

4

)
< ϕ(α),

which is a contraction. Thus α = 0, that is,

lim
n→∞

G(gan, gx, gx) +G(gbn, gy, gy) +G(gcn, gz, gz) +G(gdn, gw, gw)

4
= 0.

This yields that
lim
n→∞

G(gan, gx, gx) = 0, lim
n→∞

G(gbn, gy, gy) = 0,

lim
n→∞

G(gcn, gz, gz) = 0, lim
n→∞

G(gdn, gw, gw) = 0.

Analogously, we can conclude that

lim
n→∞

G(gan, gu, gu) = 0, lim
n→∞

G(gbn, gv, gv) = 0,

lim
n→∞

G(gcn, gr, gr) = 0, lim
n→∞

G(gdn, gl, gl) = 0.

By the uniqueness of the limit, we can get (gx, gy, gz, gw) = (gu, gv, gr, gl). Since gx = F (x, y, z, w),
gy = F (y, z, w, x), gz = F (z, w, x, y), and gz = F (z, w, x, y), by commutativity of F and g, we have

gx∗ = g(gx) = gF (x, y, z, w) = F (gx, gy, gz, gw),
gy∗ = g(gy) = gF (y, z, w, x) = F (gy, gz, gw, gx),
gz∗ = g(gz) = gF (z, w, x, w) = F (gz, gw, gx, gy),
gw∗ = g(gw) = gF (w, x, y, z) = F (gw, gx, gy, gz),
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where gx = x∗, gy = y∗, gz = z∗, and gw = w∗. Thus, (x∗, y∗, z∗, w∗) is a quadruple coincidence point of F
and g. Consequently, (gx∗, gy∗, gz∗, gz∗) and (gx, gy, gz, gw) are equal. We deduce

gx∗ = gx = x∗, gy∗ = gy = y∗, gz∗ = gz = z∗, gw∗ = gw = w∗.

Therefore, (x∗, y∗, z∗, w∗) is a quadruple common fixed point of F and g. To prove the uniqueness, assume
that (p, q, i, j) is another quadruple common fixed point. Then, it is clearly that p = gp = gx∗ = x∗,
q = gq = gy∗ = y∗, and i = gi = gz∗ = z∗, j = gj = gw∗ = w∗. The proof is completed. �

Next, we give an example to illustrate that Theorem 2.1 is an extension of Theorem 1.19.

Example 2.5. Let X = R and (X,�) be a partially ordered set with the natural ordering of real numbers.
Let G(x, y, z) = |x− y|+ |y− z|+ |z− x| for all x, y, z ∈ X. Then (X,G) is a complete G-metric space. Let
the mapping g : X → X be defined by

g(x) = x for all x ∈ X,

and let the mapping F : X4 → X be defined by

F (x, y, z, w) =
x− 2y + z − 2w

8

for all x, y, z, w ∈ X. Then F satisfies the mixed g-monotone property and F commutes with g. Now, we
suppose that (1.1) holds, that is, there exists ϕ ∈ Φ and ψ ∈ Ψ such that (1.1) holds. This means that

ϕ
(
G(F (x, y, z, w), F (u, v, s, t), F (a, b, c, d))

)
= ϕ

(
G(
x− 2y + z − 2w

8
,
u− 2v + s− 2t

8
,

a− 2b+ c− 2d

8
)

)
= ϕ

(
|x− 2y + z − 2w

8
− u− 2v + s− 2t

8
|

+|u− 2v + s− 2t

8
− a− 2b+ c− 2d

8
|

+|a− 2b+ c− 2d

8
− x− 2y + z − 2w

8
|
)

≤ 1

4
ϕ
(
(|x− u|+ |u− a|+ |a− x|) + (|y − v|+ |v − b|

+|b− y|) + (|z − s|+ |s− c|+ |c− z|) + (|w − t|
+|t− d|+ |d− w|)

)
−ψ

(1

4
[(|x− u|+ |u− a|+ |a− x|) + (|y − v|+ |v − b|

+|b− y|) + (|z − s|+ |s− c|+ |c− z|) + (|w − t|
+|t− d|+ |d− w|)]

)
for all gx ≥ gu ≥ ga, gy ≤ gv ≤ gb, gz ≥ gs ≥ gs and gw ≤ gs ≤ gd. Take gx = gu = ga, gy = gv = gb,
gz = gs = gc and gw 6= gt 6= gd in the previous inequality and denote r = 1

4 [|w − t|+ |t− d|+ |d− w|]. We
get

ϕ(r) ≤ 1

4
ϕ(4r)− ψ(r), r > 0.

On the other hand, by (iiiϕ), we have 1
4ϕ(4r) ≤ ϕ(r) and therefore, we deduce that, for all r > 0, ψ(r) ≤ 0,

that is, ψ(r) = 0, which contradicts (iψ). This shows that F and g do not satisfy (1.1).
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Now, we prove that (2.1) holds. Indeed, since we have

G(F (x, y, z, w), F (u, v, s, t), F (a, b, c, d)) = G(
x− 2y + z − 2w

8
,
u− 2v + s− 2t

8
,
a− 2b+ c− 2d

8
)

= |x− 2y + z − 2w

8
− u− 2v + s− 2t

8
|

+|u− 2v + s− 2t

8
− a− 2b+ c− 2d

8
|

+|a− 2b+ c− 2d

8
− x− 2y + z − 2w

8
|

≤ 1

8
|x− u|+ 1

4
|y − v|+ 1

8
|z − s|+ 1

4
|w − t|

+
1

8
|u− a|+ 1

4
|v − b|+ 1

8
|s− c|+ 1

4
|t− d|

+
1

8
|a− x|+ 1

4
|b− y|+ 1

8
|c− z|+ 1

4
|d− w|.

(2.30)

Similarly, we can achieve the following inequalities as follows:

G(F (y, z, w, x), F (v, s, t, u), F (b, c, d, a)) ≤ 1

8
|y − v|+ 1

4
|z − s|+ 1

8
|w − t|+ 1

4
|x− u|

+
1

8
|v − b|+ 1

4
|s− c|+ 1

8
|t− d|+ 1

4
|u− a|

+
1

8
|b− y|+ 1

4
|c− z|+ 1

8
|b− w|+ 1

4
|a− x|,

(2.31)

G(F (z, w, x, y), F (s, t, u, v), F (c, d, a, b)) ≤ 1

8
|z − s|+ 1

4
|w − t|+ 1

8
|x− u|+ 1

4
|y − v|

+
1

8
|s− c|+ 1

4
|t− d|+ 1

8
|u− a|+ 1

4
|v − b|

+
1

8
|c− z|+ 1

4
|d− w|+ 1

8
|a− x|+ 1

4
|b− y|,

(2.32)

and

G(F (w, x, y, z), F (t, u, v, s), F (d, a, b, c)) ≤ 1

8
|w − t|+ 1

4
|x− u|+ 1

8
|y − v|+ 1

4
|z − s|

+
1

8
|t− d|+ 1

4
|u− a|+ 1

8
|v − b|+ 1

4
|s− c|

+
1

8
|d− w|+ 1

4
|a− x|+ 1

8
|b− y|+ 1

4
|c− z|.

(2.33)

Combined with (2.30)-(2,33), we can get

1

4

[
G(F (x, y, z, w), F (u, v, s, t), F (a, b, c, d)) +G(F (y, z, w, x), F (v, s, t, u), F (b, c, d, a))

G(F (z, w, x, y), F (s, t, u, v), F (c, d, a, b)) +G(F (w, x, y, z), F (t, u, v, s), F (d, a, b, c))
]

≤ 1

4
× 6

8

[
|x− u|+ |w − t|+ |z − s|+ |w − t|+ |u− a|+ |v − b|+ |s− c|+ |t− d|

+|a− x|+ |b− y|+ |c− z|+ |d− w|
]
.

=
3

16

[
|x− u|+ |w − t|+ |z − s|+ |w − t|+ |u− a|+ |v − b|+ |s− c|+ |t− d|

+|a− x|+ |b− y|+ |c− z|+ |d− w|
]
.

(2.34)

On the other hand, from (2.1), we have

1

4

[
G(gx, gu, ga) +G(gy, gv, gb) +G(gz, gs, gc) +G(gw, gt, gd)

]
=

1

4

[
G(x, u, a) +G(y, v, b) +G(z, s, c) +G(w, t, d)

]
=

1

4

[
|x− u|+ |w − t|+ |z − s|+ |w − t|+ |u− a|+ |v − b|+ |s− c|+ |t− d|
+|a− x|+ |b− y|+ |c− z|+ |d− w|

]
.

(2.35)
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By (2.34) and (2.35), If we take ϕ(t) = 1
2 t and ψ(t) = 1

8 t, then (2.1) holds with noting that x0 = −2, y0 = 3,
z0 = −2 and w0 = 3. So by our Theorem 2.1 we obtain that F and g have a quadruple coupled fixed point
(0,0,0,0) but Theorem 1.1 does not apply to F in this example. Hence, our results generalize and extend
Theorem 1.19.
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