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Abstract

In this paper, we prove some quadruple coincidence and quadruple fixed point theorems for (¢, 1))-contractive
type mappings in partially ordered G-metric spaces with mixed g-monotone property. The results on fixed
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1. Introduction and Preliminaries

Fixed point theory is one of the most powerful and fruitful tools in nonlinear analysis, differential
equation, and economic theory and has been studied in many various metric spaces. Especially, in 2006,
Mustafa and Sims [13] introduced a generalized metric spaces which are called G-metric space. Follow
Mustafa and Sims’ work, many authors developed and introduced various fixed point theorems in G-metric
spaces (see [2,3,14,15,17,20]). Some authors have been interested in partially ordered G-metric spaces
and prove some fixed point theorem. Simultaneously, fixed point theory has developed rapidly in partially
ordered G-metric spaces (see [1,4,11,19]). In [5], the authors first introduced the concepts of mixed monotone
property and quadruple fixed point for F : X* — X and several quadruple fixed point theorems have been
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proved in partially ordered metric spaces. Afterwards, a quadruple fixed point in partially ordered metric
spaces is developed and related fixed points are obtained (see [6,7,8,9,10,16]). In [16], the authors first
introduced the concepts of g-mixed monotone property and quadruple coincidence point for F : X4 — X
and g : X — X and several quadruple coincidence point theorems have been proved in partially ordered
metric spaces. Then, in [18], Mustufa proved quadruple coincidence point in partially ordered G-metric
spaces using (¢ — 1) contractions. In [12], Liu first proved quadruple coincidence point in partially ordered
G-metric spaces with mixed g-monotone property.

Inspired by [2], in this paper, we prove some quadruple fixed point theorems for (i, 1)-contractive type
mappings in partially ordered G-metric spaces with mixed g-monotone property. The results on fixed point
theorems are generalizations of the results of Mustafa [18]. We also give an example to support our results.

Throughout this paper, let N denote the set of nonnegative integers, and R™ be the set of positive real
numbers.

Before giving our main results, we need to recall some basic concepts and results in G-metric spaces.

Definition 1.1. ([13]) Let X be a non-empty set, G : X x X x X — R™ be a function satisfying the
following properties:

Gl) G(z,y,z) =0ifxr =y = z.

G2) 0 < G(z,x,y) for all x,y € X with x # y.

G3) G(z,z,y) < G(z,y,z) for all z,y,z € X with y # z.

G4) G(z,y,2) = G(x, z,y) = G(y, z,z) = ... (symmetry in all three variables).

(Gh) G(x,y, 2) < G(z,a,a) + G(a,y, z) for all x,y,z,a € X (rectangle inequality).

Then the function G is called a generalized metric and the pair (X, G) is called a G-metric space.

A~~~

Definition 1.2. ([13]) Let (X, G) be a G-metric space and let {x, } be a sequence of points of X. A point

x € X is said to be the limit of the sequence {x,} if lim G(zy,,zmn,x) = 0, and one says the sequence
n,Mm—00

{zn} is G-convergent to x.

Thus, if z,, — = in G-metric space (X, G), then, for any € > 0, there exists a positive integer N such
that G(z, xn, ) < € for all n,m > N.

In [13], the authors have shown that the G-metric induces a Hausdorff topology, and the convergence
described in the above definition is relative to this topology. The topology being Hausdorff, a sequence can
converge at most to a point. Respectively, the authors achieve the following conclusions.

Definition 1.3. ([13]) Let (X, G) be a G-metric space. A sequence {x,} is called G-Cauchy if every ¢ > 0,
there exists a positive N such that G(zy, zpm,z;) < € for all n,m,l > N, that is, if G(zy,zm, ;) — 0, as
n,m,l — oo.

Lemma 1.4. ([13]) If (X, G) is a G-metric space, then the following are equivalent.
(1) {zn} is G-convergent to x.

(2) G(xp, Tn,x) — 0 as n — oo.

(3) G(xp,x,z) — 0 as n — oo.

(4) G(Zp, Tpnyx) = 0 as m,n — oo.

Lemma 1.5. ([13]) If (X, G) is a G-metric space, then the following are equivalent.
(1) The sequence {xy} is G-Cauchy.
(2) For every € > 0, there exists a positive integer N such that G(xy, T, Tpm) < € for alln,m > N.

Lemma 1.6. ([13]) If (X, G) is a G-metric space, then G(z,y,y) < 2G(y,z,z) for all z,y € X.
Lemma 1.7. ([13]) If (X, G) is a G-metric space, then G(z,z,y) < G(z,z,2)+G(z, z,y) for all z,y,z € X.

Definition 1.8. ([13]) Let (X,G), (X',G’) be two G-metric spaces. Then a function f : X — X' is G-
continuous at a point z € X if and only if it is G-sequentially continuous at z; that is, whenever {x,} is
G-convergent to x, {f(x,)} is G'-convergent to f(z).
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Lemma 1.9. ([13]) Let (X,G) be a G-metric spaces. Then the function G(x,y,z) is jointly continuous in
all three of its variables.

Definition 1.10. ([13]) A G-metric space (X, G) is said to be G-complete (or a complete G-metric space)
if every G-Cauchy sequence in (X, G) is convergent in X.

In [5], the authors introduced the following definitions.

Definition 1.11. ([5]) Let X be a nonempty set and F : X%* — X be a given mapping. An element
(z,y,z,w) € X*is called a quadruple fixed point of F' if

:U:F(x,y,z,w), y:F(y,z,w,:B),
z=F(z,w,z,y) and w= F(w,z,y,z).

Definition 1.12. ([5]) Let (X, <) be a partially ordered set and let F': X* — X. The mapping F is said
to have the mixed monotone property if F(x,y, z,w) is monotone non-decreasing in z,z and is monotone
non-increasing in y, w, that is, for any z,y, z,w € X,

T1,T2 € val 2T = F(xlvyvsz) = F(x%yasz)a
Y1,Y2 € X:yl = Y2 = F(Jf',ylasz) t F(Jf',y%sz)a
z1,%22 € X,Zl =z = F(‘T’y7zlvw) = F(xayaZQaw)v

and
wi, W2 € X, w) = wy = F(m7y727'w1) = F(‘Tvyaz7w2)‘

Definition 1.13. ([5]) Let X be a non-empty set. Then we say that the mappings F : X* — X and
g : X — X are commutative if for all z,y, z,w € X,

9(F(z,y,z,w)) = F(gz, 9y, 92, gw).
In [16], the authors gave the following definitions.

Definition 1.14. ([16]) Let (X, <) be a partially ordered set and F' : X* — X and g : X — X be two
mappings. We say that F' has the mixed-g-monotone property if F(x,y) is g-monotone nondecreasing in
x, z and it is g-monotone nonincreasing in y, w, that is, for any x,y, z,w € X, we have:

T1,T2 € Xv g(‘rl) = g(fbg) = F(ﬂ:l,y,z,w) = F(:Eg,y,z,w),

Y1,Y2 € X’ g(yl) = g(yQ) = F($7y1727w) = F(l’,yQ,Z,UJ),

21, %2 S X7 g(zl) j 9(22) = F<$7y7217w) j F(x7y7 ZQ,'UJ),

and
wy, W2 € Xa g(wl) = g(w2) = F('xayvszl) = F(%ZLZ:’U&)-

Definition 1.15. ([16]) An element (z,y, z,w) € X* is called a quadruple coincidence point of the mapping
F:X* 5 Xandg: X — X if

gr = F(x,y,z,w) gy=F(y,z,w,z) ¢gz=F(z,w,z,y) and gw = F(w,z,y, 2).

(x,y, z,w) is said to be a quadruple point of coincidence of F' and g.
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Definition 1.16. ([16]) Let F : X* — X and g : X — X. An element (z,y,z,w) is called a quadruple
common fixed point of F' and g if

F(z,y,z,w) =gz =z, F(y,zwzr)=gy=1y,
F(z,w,z,y) =gz =2, and F(w,z,y,2z) = gw = w.
In [18], Mustafa considered the following class of functions. We denote by @ the set of functions
¢ : [0, +00) — [0, +00) satisfying
(ip) ¢ is continuous and non-decreasing;
(ii,) () = 0 iff t = 0;
(iiiy) p(s+1t) < @(s) + ¢(t) for all s,t > 0.

And let ¥ denote all functions % : [0, +00) — [0, +00) which satisfy
(iy) %E}n (t) > 0 for all » > 0, and
i) i t) =0.
(i) lim (0
For example [18], the function ¢(t) = kt, k > 0, ¢(t) = ﬁt are in ® and 1 (t) = kt, k > 0, ¢a(t) = W
are in W.
Remark 1.17. ([18]) ® C .
Remark 1.18. ([18]) For all t € [0, +00), we have 3¢(t) < p(L).
Mustafa [18] proved the following theorems.
Theorem 1.19. Let (X, <) be a partially ordered set and (X, G) be a G-metric space. Let F: X* — X and

g: X — X be such that F' has the mixed g-monotone property. Assume that there exists p € ® and ¥ € ¥
such that

@(G(F(x,y,z,w),F(u,v,s,t),F(a, b, c, d)))
1
< 7#(Glgz, gu, ga) + G(gy, gv, gb) + G(g2, g5, gc) + Glgw, gt, gd)) (1.1)
i (G(gw, gu, ga) + G(gy, gv, gb) + G(gz, gs, gc) + G(gw, gt, gd))
4

for all x,y, z,w,u,v,s,t,a,b,c,d € X with gr = gu = ga, gy = gv = gb, gz = gs = gc and gw = gt =< gd.
Suppose also that F(X4) C g(X) and g is continuous and commutes with F'. If there exist xg, yo, 20, wo € X
such that

gro = F(xo,%0, 20,w0), 9yo = F(yo, 20, wo, xo),
920 = F(z0,wo,z0,y0), and gwo = F(wo, o, Yo, 20)-

suppose either
(a) (X,G) is a complete G-metric space and F' is continuous or
(b) (9(X),G) is complete and (X, G, <) has the following property:

(i) if a non-decreasing sequence x,, — x, then x, < x for all n,
(i1) if a non-increasing sequence y, — vy, then y <y, for all n,
then there exist x,y,z,w € X such that
F(z,y,z,w) =gz, F(y,2z,w,x) =gy, F(z,w,2,y) =gz and F(w,z,y,z)=guw,
that is, F' and g have a quadruple coincidence point.

Theorem 1.20. In addition to the hypothesis of Theorem 1.19, suppose that for all (z,y,z,w), (u,v,r,1) €
X4, there exists (a,b,c,d) € X* such that (F(a,b,c,d), F(b,c,d,a), F(c,d,a,b), F(d,a,b,c)) is comparable to
(F(z,y,z,w), F(y,z,w,x), F(z,w,z,y), F(w,x,y, 2)) and (F(u,v,r,1), F(v,r,l,u), F(r,l,u,v), F(l,u,v,r)).
Then F and g have a unique quadruple common fized point (x,y,z,w) such that v = gz = F(z,y,z,w),
y=9y=F(y,z,w,x), z=gz = F(z,w,z,y), and w = gw = F(w,x,y, z).
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2. Main results

In this section, we prove quadruple fixed point theorems for (¢, 1))-contractive type mappings in partially
ordered G-metric spaces with mixed g-monotone property.
Next, we prove our main results.

Theorem 2.1. Let (X, =) be a partially ordered set and (X, G) be a G-metric space. Let F : X* — X and
g: X — X be such that F' has the mized-g-monotone property. Assume that there exist ¢ € ® and ¢ € ¥
such that

(IO .20, F0,5,0) Fla, ) + GOy 2010,2),Flo.5,1,0), PO o)

FG(F (2w, 2,9, ), F(s,t,u,0), F(c,d,a,b)) + G(F(w, .y, 2), F(t,u,v, ), F(d, a,b, c>>])

(G(gx, gu, ga) + G(gy, gv, gb) + G(gz, gs, gc) + G(gw, gt, gd)
4
_ (G(gw,gu, ga) + G(gy, gv, gb) + G(gz, gs, gc) + G(gw,gt,gd)>
4

<

(2.1)
for all x,y, z,w,u,v,s,t,a,b,c,d € X with gw = gu > ga, gy <X gv 2 gb, gz = gs = gc and gw =X gt < gd.
Suppose also that F(X*) C g(X) and g is continuous and commutes with F. If there exist xq,yo, 20, wo € X
such that

gxo = F (0,0, 20, w0), gyo = F(yo, 20, wo, Zo),
920 = F(z0,wo,zo,y0), and gwo = F(wo, o, Yo, 20)-

suppose either
(a) (X,G) is a complete G-metric space and F' is continuous or
(b) (9(X),G) is complete and (X, G, <) has the following property:

(i) if a non-decreasing sequence x,, — x, then x,, < x for all n,
(ii) if a non-increasing sequence y, — vy, then y <y, for all n,

then there exist x,y,z,w € X such that
F(x,y,z,w) =gz, F(y,z,w,z) =gy, F(z,w,z,y) =gz, and F(w,z,y,2) = gw,
that is, F' and g have a quadruple coincidence point.
Proof. Let xg,yo, z0, wg € X be such that
gzo = F(20, Y0, 20,w0),  gyo = F(yo, 20, wo, o),

920 = F'(20,wo0,0,%0), and gwy = F(wo,xo, Yo, 20)-

Since F(X*) C g(X), we can choose 21,91, 21, w; € X such that

gry = F(x07y07207w0)7 gy1 = F(y07207w07x0)7 (2 2)
gz1 = F(z0,wo,0,%0), and gwi = F(wg,xo, Yo, 20). '
Again since F(X*) C g(X), we can choose z2,y2, 20, ws € X such that

gro = F(x1,y1,21,w1), gy2 = F(y1, 21, w1, 21),
gzo = F(z1,w1,21,51), and gws = F(wy,x1,y1,21).
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Continuing this process, we can construct sequences {x,}, {yn}, {zn}, and {w,} in X such that

9Tny1 = F(Tn, Yn, 20, Wn),  9Yn+1 = F(Yn, 20, Wn,y Tn), (2.3)
92n+1 = F(zn, Wn, Tnyyn), and gupi1 = F(wn, Tn, Yn, 2n)-
Next, we shall that
9Tn 2 GTnt1s  GYn = GYnt1, (2.4)
9Zn = gZnt+1, and gqwn, = gwnp11 for n=0,1,2,3,--- .
For this purpose, we use the mathematical induction. Since gzo < F(xo, Yo, 20, wo), 9¥o = F (Yo, 20, wo, o),
9z0 = F(zp,wo, T, Y0), and gwg = F(wo, xo, Yo, 20), then by (2.2), we get

gxo 2 9T1, gYo = gYy1, 970 = gz1, and gwy = gwi,

that is, (2.4) holds for n = 0. We presume that (2.4) holds for some n > 0. As F has the mixed g-monotone
property and gz, X gZnt1, 9Yn = GYnt1, g2n = gZn+1, and gwy = gwpy1, we obtain

gTnt+1 = F(J,'n, Yn, Zn,s wn) j F($n+17 Yns Zn, wn)
= F(anrl, Yn+1, 2n, wn) = F(anrh Yn+15 Zn+1, wn)
2 F(Tnt1, Ynt1s Zntl, Wnt1) = GTnt2,
9Yn+2 = F(Ynt1, 20115 Wnt1, Tnt1) = F(Ynt1, 2ns Wnt1, Tnt)
= F(yn—l-h Zny Wnyy -Tn—l—l) = F(yn+17 Zny Wny xn)
j F(yna Zn+1, Wn+1, xn) = gYn+1,

92nt+1 = F(2n, Wn, Tn, Yn) 2 F(2nt1, Wn, Tn, 2n)
= F(Zn41, Wt 1, Ty Un) = F (2041, Wni 1, Tntts Yn)
= F(2n4+1, Wnt1, Tnt 1, Ynt1) = G2nt2,
and
gWn12 = F(Wni1, Tnt1, Ynt1, 2nt1) = F(Wnt1s T, Ynt1, 2nt1)
= F(wn+17 TnyYn, Zn—l—l) = F(wn+17 Tns Yn,s Zn)
= F(wna Tn41,Yn+1, Zn) = gWn+1-
Thus (2.4) holds for any n € N. Assume for some n € N,

9Tn = 9Tntl, 9Yn = GYntl, 92n = gZn+1 and gw, = gWnp.1,

then by (2.3), we have gz, = F(Zn,Yn-2n,Wn), 9Yn = F(Yn, 2n, Wn,xyn), g2n = F(2n, wn,Tn,yn), and
gwy, = F(wp, Tn,Yn, 2n). It is clearly that (2, yn, 2n, wy,) is a quadruple coincidence point of F' and g. From
now on, assume for any n € N that at least

9Tn 7# 9Tny1 OF GYn 7 GYnt1 OF G2n 7 GZnt1 OF Wy 7# W11 (2.5)
Since gTn = gTnt1, 9Yn = GYn+1s 9Zn = GZnt1, and gwn = gwni1, let
1
On = 1 (G(gTnt1, 9Tn+1, 97n) + G(gYnt15 9Yn+1, GYn) (2.6)

+G(gzn+17 9Zn+1, gzn) + G(gwn+lv gWn41, gwn)]a
then from (2.1), (2.3) and (2.6), we have

©(0n) = ¢ <4 [G(92n+1, 9Tn+1, 9%n) + G(9Ynt1, 9Ynt1, 9Yn) + G(92n+1, 92n+1, 92n)

+G(gwn+1,gwn+1,gwn)]>

1
=@ Z[G(F(xnaynaZ’I’Lawn)aF('In?ynvZn7wn)vF(xnfhynflvznflawnfl))

+G(F(yn7Zn)wnaxn)aF(ynaznawn7mn)7F(yn—lvzn—hwn—laxn—l))
+G(F(Zn7wna$myn)7F(zmwnyxnayn)aF(znflawnflaxnflaynfl))

+G(F(wna$mymZn)aF(wnaxnaynaZn)aF(wn1axnlaynlazn1))]>
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< s0<i [G(92n, 9T, 9Tn—1) + G(9Yn, 9Yn, 9Yn—1) + G(92n, 92n, g2n—1)
+G(gwnagwnagwn—1)]>

1
_¢ n G(gl“mgxmgxn—l) + G(gyn,gynmgyn—l) + G(gzn7gzn7gzn—l)
4

+G(gwn79wnagwn—1)]>
= 90(571—1) - 1/1(571—1)-

Hence, ¢(0y,) < ¢(6n—1). Using the fact that ¢ is nondecreasing, we get d,, < d,—1. Thus, the sequence {6, }
is decreasing, therefore, there is some § > 0 such that

. 1
lim 6, = lim Z[G(ganrl;ganrlvgxn) + G(9Yn+1, 9Yn+1, 9Yn)

00, On = (2.8)

+G(gzn+la an+1,an) + G(gwnJrl’ gwn+1,gwn)] = 0.

We will show that § = 0. Suppose to the contrary that § > 0, taking the limit as n — oo of both sides of
(2.7) and using the fact that ¢ is continuous and %im ¥ (t) > 0 for r > 0, we have
—T

p(0) = lim ¢(6,) < lim @(d-1) = Tim $(8p-1) = ¢(9) = lim 9 (dn-1) < p(9),

n—oo

which is a contradiction. Thus, § = 0, that is,

. 1
lim 6, = lim 2 [G(92ni1,9%n11,9%n) + G(9Ynt1, 9Ynt1, 9n) (2.9)

n—o0 n—oo

+G(gzn+17gzn+1, 9%n) + G(gwn+17 JWn+1, gwn)] =0.

Now we prove that (gzy,), (9yn), (92n) and (gw,) are G-Cauchy sequences in the G-metric space (X, G).
Suppose on the contrary that at least one of (gz,) (gyn), (92n) and (gwy,) is not a G-Cauchy sequence in
(X, G). Then there exists € > 0 and sequences of natural numbers (m(k)) and (I(k)) such that for every
natural number k, m(k) > l(k) > k and

1
= Z[G(gxm(k),gggm(k),g:vl(k)) + G(9Ym(k)» 9Ym(k)s 9Yi(k)) (2.10)

+G(92m(k)s S2m(k) I2k)) T G(GWimn(k), JWm(k)> JWIR))] > €.
Now corresponding to [(k) we choose m(k) to be the smallest for which (2.10) holds. So

1
1G9 m(k)—1, 9Tmk)-1> 9T1(k)) + G(9Ym(k)—1> 9Ym(k)—15 IYi(k))
4 (2.11)

+G(9Zm(k)—1> 9Zm(k)—1> 92(k)) + G(GWin (k) —15 JWi (k) —1, JWi(k))] < €.
Using the rectangle inequality and having in mind (2.10) and (2.11), we get

e < g

1
211G 9mk)s 9Tm(k)> 9%uk)) + G(9Ymk)> 9Ym(ry: 9Yuk)) + G (92mk) 92m(k)> 921(k))
+G(GWin (k) Wi (k) IWi(K) )]

1
< 1 [G9Zmm): 9Tmm)s 9Tmm) 1) + G9Zmk) 15 9Tmk) 1> 921k)) + G(9Ym(k) 9Ym(k)> 9Ym(k)—1)
+G(GYm(k)—15 9Ym(k)—1> IYik)) T G(GZm(k)> 9Zm(k) T2mk)—1) T G(9Zmk) =15 9Zm(k)—15 9Z1(k))
+G (g (k) Wm(k)s IWim(k)—1) T G(9Wmk)—15 IWim(k)—1, GWI(k))]
< 6m(k)—1 + €.

(2.12)
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In (2.12), letting n — oo, we can get li_>m r, = €. Using the rectangle inequality, we get
n oo

€ <
[G (9T m(k)> GTm(k)s 9T1k)) T+ G(GYmk) FYm(k)> Y1) T G(92m(k)s 9Zm(k) IZ(k))

+G(gWon (k) 9Wm(k)> JW1(k) )]
(G (9T (k) GZm()> ITmk)+1) + GIT )15 ITm(k)+1> 9T +1) + G(IZ1w) 15 9T1(k)+1> IT1(k))

+G(GYm(k)> GYmk)> 9Ym(k)+1) T G(GYmk)+1> SYm(e)+1> 9Yik)+1) + G(GYi) 11> 9Yik) 11> GYi(k))
+G(92m(k)> 92m(k)s I2mk)+1) T G(GZmk)+15 92Zmk)+1, 921(k)+1) + G(921k)+15 T21(k)+1> IZ1(k))
+G(gWin (k) IWm (k) JWm(k)+1) + G(GWm(k)+1> IWim (k) 1> JWi)+1) + G(IWIK) 41 TWIR)+15 TWIE) )]

= 0wy (G(9Tm k), 9Tmk)> 9T m@)+1) + G(GYm(k)s GYmk)> SYm)+1) + G(9Zmk)> SZmk)> G2m(k)+1)

A~ =3

<

1=

1
+G(gWon (k) 9Wm (k) JWm(k)+1)] + 7 [G(IZ (k)15 9T (k) +15 9Z1(k)+1) + G(9Ym(k)+15 SYm(k)+15
9Y1)+1) + G GZmk)+15 G2mk)+1> 9210 +1) T GIWim(k)+15 Win(k)+15 GWi(k) 1) ] -

In the above of inequality, using that G(z, x,y) < 2G(z,y,y) for any =,y € X, we obtain

1
< 5l(k) + §5m(k) + 1 [
+G(9Zm ) +15 9Zmk)+1> 921(k)+1) + GGWi k)11, TWin () 415 JWI(k)+1)] -

e < Tk
1
" G(gxm(k)+1vg$m(k)+1v giﬁl(k)ﬂ) + G(gym(k)Jrhgym(k)+1vgyl(k)+1) (2.13)

Now, using the property of ¢, we have

1
SO(Z [G(gl‘m(k)—i—la 9Tm(k)+1) gl‘l(k)—&-l) + G(gym(k)—l—b 9Ym(k)+15 gyl(k:)—‘rl)

+G(92mk)+1> 92mk)+15 921k)+1) T G 9Win (k)15 JWm(k) 41 IWI ) +1)] )

= w(i [G( (Tm(k)> Ym(k)» m(k ))s F (T (k) Ym( k;), (k) Win(k))s F (T Yick) s Z1k) Wick))
(F(ym (k) #m(k) > Wm(k)s Tm(k) )’F(ym m(k)> Wm(k)s T (k)) (yl(k)a Zl(k)7wl(k)v$l(k))
FG(F(Zm(k)s Wink)s Tm(k)s Ymk))» F Gy Win(k)> T (k) ym k))s F'(2 k)awl(k; Ti(k)» Yi(k))
FG(F (W (k) T (k) Ymk) s Zm(k) )7F(wm(k)a m(k)> Ym(k)s Zm(k))s F(w; ) Yi(k)» 21(k))

1
< @(Z[G(gﬂ?m(k)agﬂﬁm(k), 9ZT1ky) + G(9Ym(k)> 9Ym(k) IYi(k)) + G(gzm(k), gzm(k)792Z(k))

1
+G(9Zm (k) 9Zmk)s 97k)) T G(9Wim k), JWm (k) TWik))])

= (1K) — P (k).
(2.14)

Combining (2.13), (2.14) and the the property of ¢, we get

p(e) < o(rk) , ,
< k) + 59 00mry) + Sp(i[G(gxm(k)—l—lvngm(k)-&-lv 921k +1) + G(9Ym(k)+1> IYmk)+15
Y1) +1) + G GZm)+15 9Zmk)+1> 920 +1) + GIWim)+15 TWmk)+1> IWi(k)+1)])

P0i19) + 52 Bmgiy) + 9(rk) — V().
(2.15)

In (2.15), let k — oo, we have
. 1 .
p(e) < Jim o(rr) < ¢(0) + 590(0) +p(e) = lim p(rg) < p(e),
—00 k—o00

which is a contraction. This implies that (gxr), (9yn), (92n), and (gw,) are G-Cauchy sequences in (X, G).
Now suppose that the assumption (a) holds. Since X is a G-complete metric space, there exist z,y, z,w € X
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such that _ .
Jimg(z,) = =, Jim_ g(yn) = v, (2.16)
lim ¢g(z,) =2, and lim g(w,) = w.

From (2.16) and the continuity of g, we have

lim gg(zn) = gz, lim gg(yn) = gy,
lim gg(z,) = gz, and lim gg(w,) = gw.
n—oo n—o0

From the commutativity of F' and g, we have

9(9$n+1) = gF(xn, Yns Zn, wn) = F(gxn, 9Yn, GZn, gwn)7 (2‘17)

g(gyn-i-l) = gF(yn, Zny Wn, JUn) = F(gyna 9Zn, gWn, gl‘n)7 (2‘18)

9(92n+1) = 9F (2, Wy Ty Yn) = F(92n, 90n, 9Tn, GYn), (2.19)
and

9(gwnt1) = gF (Wn, Ty Yn, 2n) = F(gwn, 9Tn, GYn, 92n)- (2.20)

We shall show that gz = F(z,y,2z,w), gy = F(y,z,w,x), g2 = F(z,w,z,y), and gw = F(w,z,y,z). By
letting n — oo in (2.17)-(2.20) and using the continuity of F', we obtain

gr = lim 9(gxny1) = lim gF (Zn, Yns Zn, Wn) = Jim F (9%n, GYn, 9%n, GWn)

:F(:B7y7z’w)7

gy = lim g(gyns1) = lim gF (yn, 2n, Wn, y) = im F(gyn, 92n, gWn, 9Tn)
= F(y7 Z7 w7 x)?
gz = lim g(g9zn41) = lim gF(zn, Wn, Tn,yn) = lim F(gzn, gWn, 9T, gyYn)
n—00 n—00 n—00
= F(z7w7xay)7
and

m F(gwn’ gxna gynvgzn)

gw = lim g9(gwni1) = Jim. 9F (Wn, Ty Yy 2n) = Jim.

= F(w,z,y, z).

Hence, (z,y, z,w) is a coincidence point of F' and g.
Now suppose that the assumption (b) holds. Since (gxy), (9yn), (92n), and (gw, ) are G-Cauchy sequences
in the complete G-metric space (g(X),G), then there exist z,y, z,w € X such that

9Ly = 9T, GYn = 9Y, GZn — GZ, GWp —> guw. (2.21)

Since (gzp), (9zn) are non-decreasing and (gy,), (gwy,) are non-increasing and since (X, G, <) satisfies
conditions (i) and (ii), we have

9Tn 29T, GYn = 9Y, 9zn = gz, and gw, = gw for all n € N.

If gz, = gz, gyn = 9y, 92n = gz, and gw, = gw for some n > 0, then gxr = gz, <X grpt1 = gr = gxn,
9Y = GYnt1 = gYn = GY, 92 = g2n = GZnt1 = 92 = gZn, and gw =X gwpy1 X gw, = gw, which implies that

9gTn = gTn+1 = F(xn,yn,znawn)a 9Yn = GYn+1 = F(ynazmwmxn)a

and
9zn = g2n+1 = F(zmwmxmyn)a JWn = gWn+41 = F(wm Tn, Yn, Zn)7
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that is, (zn, Yn, 2n, wy) is a quadruple coincidence point of F' and g. Then, we suppose that (g, gYn, 92n, gWn)
# (g9, gy, gz, gw) for all n € N. By the rectangle inequality, consider now

G(Q%F(%%Zaw),F(%yvzaw)) S G(gmvgxn-‘rlvgxn-‘rl) +G(gmn—i-hF(mvyaZ?w)vF(%Z%va))
= G(gl‘,gl‘n+1,g$n+1) +G(F(xn,yn,zn,wn),F(x,y,z,w),F(x,y,z,w)).

It can conclude that

Glgz, F(z,y,2z,w), F(z,y, 2,w)) — G(92, 9Tn+1, 9Tn+1) < G(F(2n, Yn, 2n, wn), F(@,y, 2,w), F(2,y, 2, w)).
(2.22)
Similarly, we can get

G(gy,F(y,z,w,x),F(y,z,w,a:)) - G(Q?J,gynﬂagyn—s—l) S G(F(yn,zn,wn,xn),F(y,z,w,x),F(y,z,w,x)),
(2.23)
G(gz,F(z,w,x,y)F(z,w,x,y)) - G(gZ,an_t,_l,an_t,_l) < G(F(zn,wn,xn,yn),F(z,w,x,y),F(z,w,x,y)),
(2.24)
and

G(gw7F(w7mayvz)7F(waxvy7 Z)) - G(gwagwn-l-l:gwn-i-l) < G(F(wn7xn7ynvzn)7F<w7‘r7yvz)7F(wax7ya Z))
(2.25)
By using (2.22)-(2.25), we have

1
X[G(gxaF(x7y727w)aF(xayaz7w)) - G(9$,9$n+1,g$n+1)

+G(9y, F(y, z,w,2), F(y, 2,w,2)) — G(9Y, 9Yn+1, 9Yn+1)
—l—G(gz,F(z,w,x,y)F(z,w,x,y)) - G(gZ,an+1,an+1)
+G(gw7F(w7xvy7 Z),F(’LU,.%,y,Z)) - G(gwagwn+1vgwn+1)]

[G(F(xn, yn’ Zn? w”)? F(:E7 y7 z7 w)’ F(x’ y? Z? w)) —I— G(F(yn7 Zn’ wn? xn)? F(:’J? Z7 w7 x)? F(y’ z? w? x))
+G(F(zn, Wn, Tn, Yn), F(z,w,z,y), F(z,w,x,y)) + G(F(Wn, Tn, Yn, 2n), F(w, z,y, 2), F(w, x,y, 2))].

<

|

By the property of ¢ and (2.1), we can get

1
¢<4[G(g‘r7F(I)y)sz))F(xvyaz7w)) - G(g$a9$n+1ag$n+l)

+G(gy7F(yuz7w7x)7F(y7sz7w)) - G(g%gyn—&-lvgyn—i—l)
+G(gzaF(Z7w7xay)F(vaal'ay)) - G(gz,gznﬂ,gznﬂ)

+G(gw)F(wvxayuz)aF(wax)y) Z)) - G(gwagwn-‘rlvgwn-i-l)]

4
+G(F(zn,wn,xn,yn),F(z,w,a:,y),F(z,w,:E,y)) +G(F(wna$n7ymzn)aF(wa$ayv Z),F(M,l’,y,z))])

1
< ¢<[G<F<xn,yn, s t0n), F (@9, 2, 0), F (2,5, 20)) + G(F (g 20 s )y Fly, 2, 0,2), F(y, 2, w0, 2))

1 1
< ¢<4[G(gwn,gw, 92) + G(gyn, 9y, 9y) + G(92n, 92, 92) + G(gwn, gw, gw)]) - ¢<4[G(gwn, gz, g)

+G(gYn, 9y, 9y) + G(92n, 92, 92) + G(gwn, gw, gw)])-

In the above inequality, let n — oo, using the property of ¢ and (2.21), we have

1
¢<4[G(gx7 F(x7 y7 Z? w)? F(x7 y? Z? w)) + G(gy') F<y7 z? w7 x)? F(y? Z? w? x))

LG9z, F(zw,2,y), F(z w,2,y)) + Glgw, F(w, 2y, 2), F(w, 2. z>>]>
< ¢(0)-0=0.
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Hence, G(g:[], F(.’I), Y, 2, w)a F(xa Y, =, w)) =0, G(gya F(y7 Z, W, JZ'), F(yv Z, W, JJ)) =0, G(gZ, F(Zv w, T, y)a
F(z,w,z,y)) =0, and G(gw, F(w,z,y, 2), F(w,z,y,z)) = 0, that is, gx = F(z,y, z,w), gy = F(y, z,w, ),
9z = F(z,w,z,y) and gw = F(w,x,y, z). The proof is completed. [J

If we take ¢(t) =t in Theorem 2.1, we can get the following corollary.

Corollary 2.2. Let (X, =) be a partially ordered set and (X,G) be a G-metric space. Let F : X* — X and
g: X — X be such that F' has the mized g-monotone property. Assume that there exists ¢ € U such that

G(F(x,y,z,w), F(u,v,s,t), F(a,b,c,d)) + G(F(y, z,w,x), F(v,s,t,u), F(b,c,d,a))
+G(F(z,w,z,y,), F(s,t,u,v), F(c,d,a,b)) + G(F(w,z,y,z), F(t,u,v,s), F(d,a,b,c))
< G(gz, gu, ga) + G(gy, gv, gb) + G(gz, gs, gc) + G(gw, gt, gd)
4y (G(gx, gu, ga) + G(gy, gv, gb) + G(gz, gs, gc) + G(gw, gt, gd))
4

for all x,y, z,w,u,v,s,t,a,b,c,d € X with gr = gu = ga, gy = gv 3 gb, gz > gs = gc and gw = gt =X gd.
Suppose also that F(X4) C g(X) and g is continuous and commutes with F'. If there exist xg, yo, 20, wo € X
such that

gro = F(xo,%0, 20,w0), 9yo = F(yo, 20, wo, xo),
920 = F(z0,wo0,%0,¥0), and gwo = F(wo,xo, Yo, 20)-

suppose either
(a) (X,G) is a complete G-metric space and F is continuous or
(b) (9(X),G) is complete and (X, G, <) has the following property:

(i) if a non-decreasing sequence x,, — x, then x, < x for all n,
(ii) if a non-increasing sequence y, — y, then y <y, for all n,

then there exist x,y,z,w € X such that
F(z,y,z,w) =gz, F(y,z,w,z) =gy, F(z,w,z,y) =gz, and F(w,z,y,2) = gw,
that is, F' and g have a quadruple coincidence point.
If we take ¥ (t) = (1 — k)t for all k € [0,1) in Corollary 2.1, we can get the following corollary.

Corollary 2.3. Let (X, =) be a partially ordered set and (X, G) be a G-metric space. Let F: X* — X and
g: X — X be such that F has the mized g-monotone property. Assume that there exists k € [0,1) such that

G(F(x,y,z,w), F(u,v,s,t), F(a,b,c,d)) + G(F(y, z,w,x), F(v, s,t,u), F(b,c,d,a))
+G(F(z,w,z,y,), F(s,t,u,v), F(c,d,a,b)) + G(F(w,z,y,2), F(t,u,v,s), F(d,a,b,c))
< k[G(gz, gu, ga) + G(gy, gv, gb) + G(gz, gs, gc) + G(gw, gt, gd)]

for all x,y, z,w,u,v,s,t,a,b,c,d € X with gr = gu = ga, gy = gv 3 gb, gz = gs = gc and gw = gt =X gd.
Suppose also that F(X*) C g(X) and g is continuous and commutes with F. If there exist xq,vo, 20, wo € X
such that

gro = F(xo,%0, 20,w0), 9yo0 = F(yo, 20, wo, xo),
920 = F(z0,wo,0,y0), and gwo = F(wo,xo, Yo, 20)-

suppose either
(a) (X,G) is a complete G-metric space and F' is continuous or
(b) (9(X),G) is complete and (X, G, <) has the following property:

(i) if a non-decreasing sequence x,, — x, then x, < x for all n,
(i1) if a non-increasing sequence y, — vy, then y <y, for all n,
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then there exist x,y,z,w € X such that
F(x7 y? Z7 w) = gx7 F(y’ Z7w7x) = gy’ F(z7w7aj7 y) = gz7 and F(w7 x? y7 Z) = gw7
that is, F' and g have a quadruple coincidence point.

Now, we shall prove the existence and uniqueness of a quadruple common fixed point. According to [18],
for a product X* of a partially ordered set (X, <), we define a partial ordering in the following way. For all
(-:U, y7 z? w)7 (u7 ’U7 r? h) 6 X47

(x,y,z,w) = (u,v,7,h) & x 2u,y =v,z<r, and w > [.
We say that (z,y, z,w) and (u,v,r,1) are comparable if
(z,y,z,w) = (u,v,r, 1) or (u,v,r 1) =X (z,y,z,w).
Also, we say that (z,y, z,w) is equal to (u,v,r,l) if and only if x =u, y =v, z=7r, w=1.

Theorem 2.4. In addition to the hypothesis of Theorem 2.1, suppose that for all (x,y, z,w), (u,v,r,1) € X*,
there exists (a,b,c,d) € X* such that (F(a,b,c,d), F(b,c,d,a), F(c,d,a,b),F(d,a,b,c)) is comparable to
(F(z,y,z,w), F(y, z,w,x), F(z,w,z,y), F(w,z,y, 2)) and (F(u,v,r,1), F(v,r,l,u), F(r,l,u,v), F(l,u,v,1)).
Then F and g have a unique quadruple common fized point (x,y,z,w) such that x = gr = F(x,y,z,w),
y=gy=F(y,z,w,x), z= gz = F(z,w,x,y), and w = gw = F(w,z,y, 2).

Proof. From Theorem 2.1, the set of coupled coincidences is non-empty. We shall show that if (z, y, z, w)
and (u,v,r, ) are quadruple coincidence points of F' and g, that is,

=gz, F(U,U,T,D = gu,
=gy, F(v,r,l,u) = gv,

Next, we illustrate that (gz, gy, gz, gw) and (gu, gv, gr, gl) are equal. By assumption, there exists (a, b, ¢, d) €
X% such that (F(a,b,c,d), F(b,c,d,a), F(c,d,a,b), F(d,a,b,c)) is comparable to (F(z,y, z,w), F(y, z, w, ),
F(z,w,z,y), F(w,z,y,z)) and (F(u,v,r,1), F(v,r,l,u), F(r,l,u,v), F(l,u,v,r)).

We define the sequence (gay,), (gbn), (9¢n), and (gdy) such that ag = a, by = b, co = ¢, dg = d and

gan = F(an—h bn—la Cn—1, dn—l); gbn = F(bn—h Cn—1, dn—la an—l)a

2.26
gin = F(Cnfla dnfla an—1, bnfl)v gdn = F(dnfla an—1, bnfla Cnfl) ( )

for all n € N. Further, set x9g = x, yo =y, 20 = 2z, wo = w and ug = u, vg = v, r9g =7, lg = [ and in the
same way define the sequences (gzy,), (9yn), (92n), (gwy) and (guy), (gvn), (97n), (gln). Then it is easy to
see that

(2.27)

Since (F'(x,y,z,w), F(y, z,w,z), F(z,w,z,y), F(w,2,y,2)) = (921, 941, 921, gw1) = (9, gy, g2, gw) is com-
parable to (F(a,b,c,d), F(b,c,d,a), F(c,d,a,b), F(d,a,b,c)) = (gai,gbi,gci,gdy), then it is easy to show
(92, 9y, 92, gw) = (9an, gbn, gcn, gdn). Recursively, we get that

(92, 9y, 9z, gw) = (gan, gbn, gcn, gdy,) for all n € N. (2.28)
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It can conclude that gx = gan, gy = gbn, gz = gcpn, gw = gdy. By (2.27), (2.28) and (2.1) , we can get

- <G(gﬂf, 9%, gani1) + G(gbny1, 9y, 9y) + G(92, 92, 9cni1) + G(gdny1, gw, gw)>
4

1
= <,0<4[G(F(x,y, Z,w),F(ﬂ:,y,z,w),F(an,bn,cn,dn)) +G(F(bn,cn,dn,an),F(y,z,w,x),F(y,z,w,x))

+G(F(z,w,x,y), F(z,w,z,y), F(cp, dn, an, b)) + G(F(dn, an, by, cn), F(w, x,y, 2), F(w, z,y, z))]

< o Gloz. 97, 9an) + Gl9y, 9y, 9bn) + Gl92, 92, 9on) + Glgw, g, gdn)
= 4
_ (G(gx,gw, gan) + G(9y, 9y, 9bn) + G(gz, 92, gen) + Ggw, gw, gdn)>
0 .

(2.29)
Thus,

G(9z, 92, gany1) + G(gbnt1, 9y, 9y) + G(92, 9%, gcnt1) + G(9dny1, gw, gw))
4
(G(gw, gz, gan) + G(gy, 9y, gbn) + G(gz, 92, gcn) + G(gw, gw, gdn)>

<@

4
From the property of ¢, we have

G(gz, gz, gany1) + G(gbnt1, 9y, 9y) + G(92, 92, gcn41) + G(gdn41, gw, gw)

4
< Glgz, gz, gan) + G(gy, 9y, gbn) + G(92, 92, gcn) + Ggw, gw, gdn)
< 1 .
Hence, using (G4) of Definition 1.1, we know that the sequence {i[G(gan, gz, gz) + G(gbn, gy, gy)
+G(gcn, 92, 92) + G(gd,,, gw, gw)]} is decreasing. Therefore, there exists o > 0 such that

i €9an, 92, 92) + Ggbn. 9y, 9y) + Glgen, 97, 92) + G(gdn, gw, gw) _

n—o0 4

We shall show that & = 0. Suppose to the contrary o > 0. Taking the limit as n — oo in (2.29), then we
can get

. G a?’u x, T +G bn, 3 +G C?’L7 Z, VA +G dn’ w7 w
@(a)ﬁw(a)—]lm¢< (9an, gz, gz) + G(yg gygy)4 (gcns 92, 92) + G(gdn, g g))

n—oo
< (o),
which is a contraction. Thus a = 0, that is,

lim G(gan, gz, gr) + G(gbn, gy, gy) + G(gen, 92, 92) + G(gdn, gw, gw)

n—oo 4

This yields that

=0.

lim G(gan, gz,gz) =0, lim G(gbn,gy,gy) =0,
n—o0 n—o0
lim G(gcn,g92,92) =0, lim G(gd,, gw,gw) = 0.
n—oo n—oo
Analogously, we can conclude that

lim G(gan,gu,gu) =0, lim G(gby,,gv,gv) =0,
n—oo n—ro0

lim G(gcp,gr,gr) =0, lim G(gd,,gl,gl) =0.

By the uniqueness of the limit, we can get (gz,gy,9z,9w) = (gu,gv,gr,gl). Since gx = F(x,y,z,w),
gy = F(y,z,w,z), gz = F(z,w,x y) and gz = F(z,w,z,y), by commutativity of F' and g, we have

g(gr) = gF(z,y, 2,w) = F(gz, gy, g2, gw),
9(gy) = gF'(y, z,w, ) = F(gy, 9z, gw, gx),
9(9z) = gF (z,w,z,w) = F(gz, gw, gz, gy),
g(gw) = gF(w, z,y, z) = F(gw, gz, gy, g2),

tc;
| |



J. Chen, X. Huang, J. Nonlinear Sci. Appl. 8 (2015), 285-300 298

where gr = z*, gy = y*, gz = z*, and gw = w*. Thus, (z*,y*, 2z*, w*) is a quadruple coincidence point of F
and g. Consequently, (gz*, gy*, gz*, gz*) and (gz, gy, gz, gw) are equal. We deduce

gt =gr=2x", gyt =gy=1vy"*, gzF =gz =2", guw* = gw = w".

Therefore, (z*,y*, z*, w*) is a quadruple common fixed point of F' and g. To prove the uniqueness, assume
that (p,q,i,7) is another quadruple common fixed point. Then, it is clearly that p = gp = ga* = z*,
q=g9q9=gy" =y*, and i = gi = gz* = z*, j = gj = gw* = w*. The proof is completed. [J

Next, we give an example to illustrate that Theorem 2.1 is an extension of Theorem 1.19.

Example 2.5. Let X = R and (X, <) be a partially ordered set with the natural ordering of real numbers.
Let G(z,y,2) = |t —y|+ |y — 2|+ |z —z| for all z,y,z € X. Then (X, G) is a complete G-metric space. Let
the mapping g : X — X be defined by

g(x) ==z for all z € X,

and let the mapping F : X* — X be defined by

r—2y+z—2w
8

F($7 y7 Z7 w) =

for all z,y,z,w € X. Then F satisfies the mixed g-monotone property and F commutes with g. Now, we
suppose that (1.1) holds, that is, there exists ¢ € ® and ¢ € ¥ such that (1.1) holds. This means that

rT—2y+z—2w u—2v+s—2t
8 ’ 8 ’
a—2b+c—2d)
8
T—2y+z—2w u—2v4+s—-2t
= || S - S |
u—2v+s—2t a—2b+c—2d
+|a—2b+c—2diaj—2y+z—2w|
8 8
1
< 29((lz —ul +u—a| +]a—z|)+ (ly = v| + v~ |
Fo—yl) + (|2 = s|+ s —c| +[c—2]) + (Jw -1
+[t —d| + |d — w]))
1
—¢ (302 —ul +lu—al +]a—=z]) + (jy — o[+ v = b]
+o—yl) + (|2 = s| +[s —c| + [c = 2]) + (Jlw — 1|
+Ht —d| + |d — w])])

gp(G(F(:L‘,y, z,w), F(u,v,s,t), F(a,b,c, d))) = gp(G(

for all gz > gu > ga, gy < gv < gb, gz > gs > gs and gw < gs < gd. Take gz = gu = ga, gy = gv = gb,
gz = gs = gc and gw # gt # gd in the previous inequality and denote r = [|w — t| + |t — d| + |d — w[]. We
get

—_

P(r) < Jpldr) = ¥(r), 7> 0.

On the other hand, by (éiiy,), we have icp(élr) < (r) and therefore, we deduce that, for all » > 0, ¢ (r) <0,
that is, ¢»(r) = 0, which contradicts (i,). This shows that /" and g do not satisfy (1.1).
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Now, we prove that (2.1) holds. Indeed, since we have
-2 -2 -2 —2t a—2b —2d
G(F (2,2 w), F(u,0,5,1), Fla,b e, d)) = G520 Ho S0 E8m 2 02 D

_|x—2y+28—2w u—2v%§s—2t’
- 8 B 8
u—20+s—2t a—2b+c—2d

)

’a—2b+c—2d_x—2y+z—2w’ (2.30)
8 8 1
glaz—uH—4|y—v\+§\z—s|+1|w—t|
1 1 1
+§]u—a|+ lv =0+ =|s —c| + =]t — d|
+§!a—az|—I—Z!b—y|+§|c—z|+1|d—wl.
Similarly, we can achieve the following inequalities as follows:
1
G(F(y,z,w,x),F(v,s,t,u),F(b,c,d,a)) |y—’U| + - ’Z—S‘ + 8|w_t‘ —|—*‘ZL'—U’
1
|v—b\+f\s—c\+ \t—d!—i—z\u—al (2.31)
+ib o +ib |+ gla—al
yl+ gle—=2 w 4a x|,
G(F(z,w,2,y), F(s,t,u,v), F(c,d,a,b)) < IZ—8!+1\w—t|+ IJ?—UI+ Iy—v\
1
f]s—c\—i- [t —d|+ < \u—aH— \v—b[ (2.32)
1
Zle — Zld — Zla — Zp—
+8|c z|+4|d w\+8\a :c\—|—4\ yl,
and
1 1
G(F(w,x,y,z),F(t,u,v,s) (d a,b, C)) |w_t‘ + 7 \x—u\ +3 ‘y_v| + %’Z—S‘
|t—d|—i— |u—a\+ |v—b[+f\s—c] (2.33)

% %1

1
+gld = wH*\a*UCH glo—yl+ gle—=2l.
Combined with (2.30)-(2,33), we can get

i[G(F(x,y, z,w), F(u,v,s,t), F(a,b,c,d)) + G(F(y, z,w,x), F(v,s,t,u), F(b,c,d,a))
G(F(z,w,x,y), F(s,t,u,v), F(c,d,a,b)) + G(F(w,x,y, 2), F(t,u,v,s), F(d,a,b, c))]
X §Um—u!—k|w—t|—i—\z—s|—i—|w—7f]+|u—a|+|v—b\+ls—c|+|t—d| (2.34)
+Ha—z|+ [b—y|+|c— 2]+ |d — w|].
[z —ul+ |w—t|+ |z = s|+ |w—t| + Ju—a| + [v— b+ |s — c| + [t — d|
+Ha—z|+[b—y|+|c— 2|+ |d—w|].

1
< =
— 4
3
6

On the other hand, from (2.1), we have

1

Z [G(gm,gu,ga) + G(gy,gv,gb) + G(gz,gs,gc) + G(gw7gt7gd)]
1
ZIL[G(av u,a) + G(y,v,b) + G(z,8,¢) + G(w, t,d)] (2.35)
1[|x—u\—|—\w—t!+|z—s]+]w—t\+\u—a!+]w—b|+\s—c\—Ht—d!

+la—z|+[b—y|+]c—z|+|d—w|].
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By (2.34) and (2.35), If we take ¢(t) = 3¢ and 1(t) = £¢, then (2.1) holds with noting that zp = —2, yo = 3,
zo = —2 and wg = 3. So by our Theorem 2.1 we obtain that F' and g have a quadruple coupled fixed point
(0,0,0,0) but Theorem 1.1 does not apply to F in this example. Hence, our results generalize and extend

Theorem 1.19.
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