Mazur-Ulam theorem for probabilistic 2-normed spaces

Wasfi Shatanawia ${ }^{\text {a }}$, Mihai Postolache ${ }^{\mathrm{b}, *}$
${ }^{a}$ Department of Mathematics, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan.
${ }^{b}$ Department of Mathematics and Informatics, University Politehnica of Bucharest, Bucharest, 060042, Romania.

Abstract

In this paper we prove the Mazur-Ulam theorem for probabilistic 2-normed spaces. Our study is a natural continuation of that of Cobzas [S. Cobzas, Aequationes Math., 77 (2009) 197-205]. ©2015 All rights reserved.

Keywords: Isometry map, Mazur-Ulam theorem, 2-normed space, linearly dependent. 2010 MSC: 46B20, 46S50, 54E70.

1. Introduction

A mapping T from a metric space X into a metric space Y is called an isometry map if T satisfies $d_{Y}(T(x), T(y))=d_{X}(x, y)$ for all $x, y \in X$, where $d_{X}(\cdot, \cdot)$ and $d_{Y}(\cdot, \cdot)$ denote the metrics in the spaces X and Y, respectively. The map T is called affine if T is linear up to translation.

Mazur and Ulam [11], proved that every isometry T from a real normed space X onto another real normed space Y is affine, while Baker [5 proved that an isometry map from a real normed linear space X into a strictly convex real normed linear space Y is affine.

For related works on this subject, we refer the reader to Aleksandrov [1], Cobzas [6], Chu et al. [7, 8, 9], and Rassias et al. [13, 17, 18].

Probabilistic metric spaces are spaces on which there is a distance function taking as values distribution functions, the distance between two points a and b is a distribution function in the sense of probability theory $\nu(a, b)$, whose values $\nu(p, q)(x)$ can be interpreted as the probability that the distance between a and b is less than x. The notion of probabilistic metric space was introduced by Menger [12]. The idea of Menger's was to use distribution functions instead of nonnegative real numbers as values of the metric.

[^0]Probabilistic normed spaces were introduced by \tilde{S} ertnev in 1963 [19]. New definitions of probabilistic normed spaces were studied by Alsina et al. [2, 3, 4]. It is remarkable that the probabilistic generalization of metric spaces appears to be well adapted for the investigation of quantum particle physics, particularly in connections with both string and ε^{∞} theory, which where given and studied by El Naschie [14, 15].

The notion of the probabilistic n-normed space was introduced by A. Poumoslemi and M. Salimi [16], while the notion of probabilistic 2 -normed space was introduced by I. Golet [10]. In 2009, S. Cobzas studied the Mazur-Ulam theorem for probabilistic normed spaces [6].

In this paper, we study the Mazur-Ulam theorem for probabilistic 2-normed spaces.

2. Basic Concepts

Denote by \triangle the set of distribution functions, meaning, nondecreasing, left continuous functions $\nu: \mathbb{R} \rightarrow[0,1]$, with $\nu(-\infty)=0$ and $\nu(\infty)=1$. Let D be the subclass of Δ formed by all functions $\nu \in \triangle$ such that

$$
\lim _{x \rightarrow-\infty} \nu(x)=0 \text { and } \lim _{x \rightarrow \infty} \nu(x)=1
$$

The set of distance functions are

$$
\triangle^{+}=\{\nu \in \triangle: \nu(0)=0\} \quad \text { and } \quad D^{+}=D \cap \triangle^{+} .
$$

It follows that for $\nu \in D^{+}$, we have $\nu(x)=0$ for all $x \leq 0$. Two important distance functions are

$$
\varepsilon_{0}(x)= \begin{cases}0, & x \leq 0 \\ 1, & x>1\end{cases}
$$

and

$$
\varepsilon_{\infty}(x)= \begin{cases}0, & x<\infty ; \\ 1, & x=\infty\end{cases}
$$

A triangle function T is a binary operation on \triangle^{+}that is commutative and associative, nondecreasing in each place and has ε_{0} as identity, that is $T\left(\nu, \varepsilon_{0}\right)=\nu$. A t-norm is a continuous binary operation on $[0,1]$, that is commutative, associative, nondecreasing in each variable and has 1 as identity. The triangle function τ_{T} associated to a t-norm T is defined by

$$
\tau_{T}(F, G)(x)=\sup \{T(F(s), G(t)): s+t=x\} .
$$

In this paper we are interested in the definition of probabilistic n-normed spaces, specially in the case of $n=2$.

Definition 2.1 ([16]). Let X be a real linear space with $\operatorname{dim} X \geq n$, let T be a triangle function, and let ν be a mapping from X into D^{+}. If the following conditions are satisfied:

1. $\nu\left(x_{1}, \ldots, x_{n}\right)=\varepsilon_{0}$ if x_{1}, \ldots, x_{n} are linearly dependent,
2. $\nu\left(x_{1}, \ldots, x_{n}\right) \neq \varepsilon_{0}$ if x_{1}, \ldots, x_{n} are linearly independent,
3. $\nu\left(x_{1}, \ldots, x_{n}\right)=\nu\left(x_{j 1}, \ldots, x_{j n}\right)$ for any permutation $(j 1, j 2, \ldots, j n)$ of $(1,2, \ldots, n)$
4. $\nu\left(\beta x_{1}, \ldots, x_{n}\right)=\nu\left(x_{1}, \ldots, x_{n}\right)\left(\frac{s}{|\beta|}\right)$, for every $s>0$, and $\beta \neq 0$,
5. $\nu\left(x_{1}, \ldots, x_{n-1}, x_{n}+y\right) \geq T\left(\nu\left(x_{1}, \ldots, x_{n-1}, x_{n}\right), \nu\left(x_{1}, \ldots, x_{n-1}, y\right)\right)$
for $y, x_{1}, \ldots, x_{n} \in X$, then ν is called a probabilistic 2-norm on X and the triple (X, ν, T) is called a probabilistic 2 -normed space.

Definition 2.2. Let X be a real linear space and x, y, z mutually disjoint elements of X. Then x, y and z are said to be 2-collinear if

$$
y-z=t(x-z),
$$

for some real number t.

3. Main Results

We start our work by giving the definition of probabilistic 2-normed space.
Definition 3.1 ([10]). Let X be a real linear space with $\operatorname{dim} X \geq 2$, let T be a triangle function, and let ν be a mapping from X into D^{+}. If the following conditions are satisfied:

1. $\nu\left(x_{1}, x_{2}\right)=\varepsilon_{0}$ if x_{1} and x_{2} are linearly dependent,
2. $\nu\left(x_{1}, x_{2}\right) \neq \varepsilon_{0}$ if x_{1} and x_{2} are linearly independent,
3. $\nu\left(x_{1}, x_{2}\right)=\nu\left(x_{2}, x_{1}\right)$,
4. $\nu\left(\beta x_{1}, x_{2}\right)=\nu\left(x_{1}, x_{2}\right)\left(\frac{s}{|\beta|}\right)$, for every $s>0$, and $\beta \neq 0$,
5. $\nu\left(x_{1}+x_{2}, y\right) \geq T\left(\nu\left(x_{1}, y\right), \nu\left(x_{2}, y\right)\right)$
for $y, x_{1}, x_{2} \in X$, then ν is called a probabilistic 2-norm on X and the triple (X, ν, T) is called a probabilistic 2-normed space.

From now on, unless otherwise stated, we let (X, ν, T) and (Y, ν, T) be probabilistic 2-normed spaces.
In our work, we assume that: If x and y are linearly independent elements in X or in Y, then $\nu(x, y)$ is strictly increasing.

The following lemma due to A. Pourmoslemi and M. Salimi [16] is crucial in proving our next result.
Lemma $3.2([16])$. For $x_{1}, x_{2} \in X$ and $\alpha \in \mathbb{R}$, we have

$$
\nu\left(x_{1}, \alpha x_{1}+x_{2}\right)=\nu\left(x_{1}, x_{2}\right)
$$

The following result is essential for proving our main result.
Lemma 3.3. Let x_{1} and x_{2} be any two distinct elements in X, and let

$$
u=\frac{x_{1}+x_{2}}{2}
$$

Then u is the unique element in X satisfying for all $s>0$ the following equalities:

$$
\nu\left(x_{1}-u, x_{1}-c\right)(s)=\nu\left(x_{2}-c, x_{2}-u\right)(s)=\nu\left(x_{1}-c, x_{2}-c\right)(2 s)
$$

for $c \in X$ where $x_{1}-c$ and $x_{2}-c$ are linearly independent and x_{1}, x_{2}, u are 2-collinear.
Proof. Choose $c \in X$ with $x_{1}-c, x_{2}-c$ being linearly independent. For $s>0$ we have

$$
\begin{aligned}
\nu\left(x_{1}-u, x_{1}-c\right)(s) & =\nu\left(x_{1}-\frac{x_{1}+x_{2}}{2}, x_{1}-c\right)(s) \\
& =\nu\left(\frac{x_{1}-x_{2}}{2}, x_{1}-c\right)(s) \\
& =\nu\left(x_{1}-x_{2}, x_{1}-c\right)(2 s) \\
& =\nu\left(x_{1}-c+c-x_{2}, x_{1}-c\right)(2 s) \\
& =\nu\left(x_{2}-c, x_{1}-c\right)(2 s) \\
& =\nu\left(x_{1}-c, x_{2}-c\right)(2 s)
\end{aligned}
$$

Similarly, we can show that

$$
\nu\left(x_{2}-c, x_{2}-u\right)(s)=\nu\left(x_{1}-c, x_{2}-c\right)(2 s)
$$

To prove the uniqueness, assume that w is an element in X satisfying for all $s>0$ the equalities:

$$
\begin{equation*}
\nu\left(x_{1}-w, x_{1}-c\right)(s)=\nu\left(x_{2}-c, x_{2}-w\right)(s)=\nu\left(x_{1}-c, x_{2}-c\right)(2 s) \tag{3.1}
\end{equation*}
$$

for $c \in X$ where $x_{1}-c$ and $x_{2}-c$ are linearly independent and x_{1}, x_{2}, w are 2 -collinear. Since x_{1}, x_{2}, w are 2 -collinear, there is a scalar t such that $w=(1-t) x_{1}+t x_{2}$. Hence for $s>0$, we have

$$
\begin{aligned}
\nu\left(x_{1}-w, x_{1}-c\right)(s) & \left.=\nu\left(x_{1}-(1-t) x_{1}-t x_{2}\right), x_{1}-c\right)(s) \\
& \left.=\nu\left(t x_{1}-t x_{2}-c t+c t\right), x_{1}-c\right)(s) \\
& =\nu\left(t\left(x_{1}-c\right)-t\left(x_{2}-c\right), x_{1}-c\right)(s) \\
& =\nu\left(-t\left(x_{2}-c\right), x_{1}-c\right)(s) \\
& =\nu\left(x_{1}-c, x_{2}-c\right)\left(\frac{s}{|t|}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\nu\left(x_{2}-c, x_{2}-w\right)(s) & =\nu\left(x_{2}-c,(1-t) x_{2}-(1-t) x_{1}\right)(s) \\
& =\nu\left(x_{2}-c,(1-t) x_{2}-(1-t) x_{1}-(1-t) c+(1-t) c\right)(s) \\
& =\nu\left(x_{2}-c,(1-t)\left(x_{2}-c\right)-(1-t)\left(x_{1}-c\right)\right)(s) \\
& =\nu\left(x_{2}-c,-(1-t)\left(x_{1}-c\right)\right)(s) \\
& =\nu\left(x_{2}-c, x_{1}-c\right)\left(\frac{s}{|1-t|}\right) \\
& =\nu\left(x_{1}-c, x_{2}-c\right)\left(\frac{s}{|1-t|}\right)
\end{aligned}
$$

Since w satisfies Equation (3.1) and $\nu\left(x_{1}-c, x_{2}-c\right)$ is strictly increasing, we get that

$$
2=\frac{1}{|1-t|}=\frac{1}{|t|}
$$

So we conclude that $t=\frac{1}{2}$, and hence $w=u$.
Using similar arguments as in the proof of Lemma 3.3, we can prove the following result.
Lemma 3.4. Let x_{1} and x_{2} be any two distinct elements in X. Let

$$
u=\frac{x_{1}+x_{2}}{2}
$$

Then u is the unique element in X satisfying for all $s>0$ the following equalities:

$$
\nu\left(u-x_{1}, x_{2}-c\right)(s)=\nu\left(x_{1}-c, u-x_{2}\right)(s)=\nu\left(x_{1}-c, x_{2}-c\right)(2 s)
$$

for $c \in X$ where $x_{1}-c$ and $x_{2}-c$ are linearly independent and x_{1}, x_{2}, u are 2-collinear.
To achieve our main result we introduce the following definition.
Definition 3.5. Let (X, ν, T) and (Y, ν, T) be probabilistic 2-normed spaces. We call the map $f: X \rightarrow Y$ probabilistic 2-isometry if

$$
\nu(f(x)-f(c), f(y)-f(c))(s)=\nu(x-c, y-c)(s)
$$

holds, for all $x, y, c \in X$ and all $s>0$.
Lemma 3.6. Let $f: X \rightarrow Y$ be probabilistic 2-isometry from probabilistic 2-normed space (X, ν, T) into probabilistic 2-normed space (Y, ν, T). Define the map f from (X, ν, T) into (Y, ν, T) by the rule $g(x)=f(x)-f(0)$. Then f is probabilistic 2-isometry iff g is probabilistic 2-isometry.

Proof. Assume that f is probabilistic 2-isometry, then for $a, b, c \in X$ and $s>0$ we have

$$
\begin{aligned}
\nu(g(a)-g(c), g(b)-g(c))(s) & =\nu(f(a)-f(0)-(f(c)-f(0)), f(b)-f(0)-(f(c)-f(0)))(s) \\
& =\nu(f(a)-f(c), f(b)-f(c))(s) \\
& =\nu(a-c, b-c)(s) .
\end{aligned}
$$

So g is probabilistic 2-isometry.
Similarly we may show that if g is probabilistic 2 -isometry, then f is probabilistic 2 -isometry.
We have furnished all necessary background to introduce and prove our main result.
Theorem 3.7. Let $f: X \rightarrow Y$ be probabilistic 2-isometry from probabilistic 2-normed space (X, ν, T) into probabilistic 2 -normed space (Y, ν, T) with the property that if a, b, and c are 2 -collinear in X, then $f(a), f(b)$, and $f(c)$ are 2-collinear in Y. Then f is affine.

Proof. By Lemma 3.6, we may assume that $f(0)=0$. So it suffices to prove that f is linear. Let x and y be two distinct elements in X, and $u=\frac{x+y}{2}$. Since $\operatorname{dim} X \geq 2$, there is $c \in X$ such that $x-c$ and $y-c$ are linearly dependent. Now for $s>0$, we have

$$
\begin{aligned}
\nu(f(x)-f(u), f(x)-f(c))(s) & =\nu(x-u, x-c)(s) \\
& =\nu\left(x-\frac{x+y}{2}, x-c\right) \\
& =\nu\left(\frac{x-y}{2}, x-c\right)(s) \\
& =\nu(x-c-(y-c), x-c)(2 s) \\
& =\nu(y-c, x-c)(2 s) \\
& =\nu(f(y)-f(c), f(x)-f(c))(2 s) \\
& =\nu(f(x)-f(c), f(y)-f(c))(2 s)
\end{aligned}
$$

Similarly, we may prove that

$$
\nu(f(y)-f(u), f(y)-f(c))(s)=\nu(f(x)-f(c), f(y)-f(c))(2 s)
$$

By Lemma 3.3, we conclude that

$$
\begin{equation*}
f(u)=f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2} \tag{3.2}
\end{equation*}
$$

For $x \in X, s>0$, and $\alpha \in \mathbb{R}^{+} \backslash\{0\}$, we have

$$
\varepsilon_{0}(s)=\nu(\alpha x, x)(s)=\nu(\alpha x-0, x-0)(s)=\nu(f(\alpha x)-f(0), f(x)-f(0))(s)=\nu(f(\alpha x), f(x))(s) .
$$

So $f(\alpha x)$ and $f(x)$ are linearly dependent. Hence there is $k \in \mathbb{R}$ such that $f(\alpha x)=k f(x)$. Choose $y \in X$ such that x and y are linearly independent. Then for $s>0$, we have

$$
\begin{aligned}
\nu(x, y)\left(\frac{s}{\alpha}\right) & =\nu(\alpha x, y)(s)=\nu(f(\alpha x), f(y))(s) \\
& =\nu(k f(x), f(y))(s)=\nu(f(x), f(y))\left(\frac{s}{|k|}\right) \\
& =\nu(x, y)\left(\frac{s}{|k|}\right)
\end{aligned}
$$

and hence $\alpha=|k|$.

Claim: $k=\alpha$.
If $k=-\alpha$, then for $s>0$, we have

$$
\begin{aligned}
\nu(x, y)\left(\frac{s}{|\alpha-1|}\right) & =\nu((\alpha-1) x, y)(s)=\nu(\alpha x-x, y-x)(s) \\
& =\nu(f(\alpha x)-f(x), f(y)-f(x))(s)=\nu(-\alpha f(x)-f(x), f(y)-f(x))(s) \\
& =\nu(f(x), f(y)-f(x))\left(\frac{s}{\alpha+1}\right)=\nu(f(x), f(y))\left(\frac{s}{\alpha+1}\right) \\
& =\nu(x, y)\left(\frac{s}{\alpha+1}\right) .
\end{aligned}
$$

So $|\alpha-1|=\alpha+1$, and hence $\alpha=0$ which is a contradiction. Therefore $k=\alpha$ and so that $f(\alpha x)=\alpha f(x)$, for all $\alpha \in \mathbb{R}^{+} \backslash\{0\}$.

Similarly, we can show that $f(\alpha x)=\alpha f(x)$ for all $\alpha \in \mathbb{R}^{-} \backslash\{0\}$. Given two distinct elements x and y in X. Since

$$
f(x+y)=f\left(\frac{2 x+2 y}{2}\right)
$$

by Equation (3.2), we get that

$$
f(x+y)=\frac{f(2 x)+f(2 y)}{2}=\frac{2 f(x)+2 f(y)}{2}=f(x)+f(y)
$$

If $x=y$, then $f(x+y)=f(2 x)=2 f(x)=f(x)+f(x)=f(x)+f(y)$. So f is affine.

References

[1] A. D. Aleksandrov, Mappings of families of sets, Soviet Math. Dokl., 11 (1970), 116-120. 1
[2] C. Alsina, B. Schweizer, C. Sempi, A. Sklar, On the definition of a probabilistic inner product space, Rend Mat. Appl., 17 (1997), 115-127. 1
[3] C. Alsina, B. Schweizer, A. Sklar, On the definition of a probabilistic normed space, Aequationes Math., 46 (1993), 91-98.1
[4] C. Alsina, B. Schweizer, A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208 (1997), 446-452. 1
[5] J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly, 78 (1971), 655-658. 1
[6] S. Cobzas, A Mazur-Ulam theorem for probabilistic normed spaces, Aequationes Math., 77 (2009), 197-205. 1 .
[7] H. Y. Chu, On the Mazur-Ulam problem in linear 2-normed spaces, J. Math. Anal. Appl., 327 (2007), 1041-1045. 1
[8] H. Y. Chu, S. H. Ku, D. S. Kang, Characterizations on 2-isometries, J. Math. Anal. Appl., 340 (2008), 621-628. 1
[9] H. Y. Chu, C. G. Park, W. G. Park, The Aleksandrov problem in linear 2-normed spaces, J. Math. Anal. Appl., 289 (2004), 666-672. 1
[10] I. Golet, On probablistic 2-normed spaces, Novi Sad J. Math., 35 (2005), 95-102. 1 . 3.1
[11] S. Mazur, S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris, 194 (1932), 946-948. 1
[12] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942), 535-537. 1
[13] B. Mielnik, T. M. Rassias, On the Aleksandrov problem of conservative distances, Proc. Amer. Math. Soc., 116 (1992), 1115-1118. 1
[14] M. S. El. Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos Solitons Fractals, 9 (1998), 517-529. 1
[15] M. S. El. Naschie, On the unification of heterotic strings, M theory and ε^{∞} theory, Chaos Solitons Fractals, 11 (2000), 2397-2408. 1
[16] A. Pourmoslemi, M. Salimi, Probabilistic n-normed spaces, D-n-compact sets and D-n-bounded sets, Chaos, Solitons Fractals, 42 (2009), 2729-2734.1. 2.1, 3, 3.2
[17] T. M. Rassias, On the A. D. Aleksandrov problem of conservative distances and the Mazur-Ulam theorem, Nonlinear Anal., 47 (2001), 2597-2608. 1
[18] T. M. Rassias, P. S̃emrl, On the Mazur-Ulam problem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc., 118 (1993), 919-925. 1
[19] A. N. S̃erstnev, On the motion of a random normed space, Dokl. Akad. Nauk. SSSR, 149 (1963), 280-283.1

[^0]: * Corresponding author

 Email addresses: swasfi@hu.edu.jo (Wasfi Shatanawi), mihai@mathem.pub.ro (Mihai Postolache)

