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Abstract

Using the fixed point approach, we prove some results on hyperstability of the following quadratic
functional equation

f(x+ y + z) + f(x− y) + f(x− z) + f(y − z) = 3[f(x) + f(y) + f(z)],

in the class of functions from an abelian group into a Banach space. c©2016 All rights reserved.
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1. Introduction

The main motivation for the investigation of the stability of functional equations was given by Ulam in
1940 in his talk at the university of Wisconsin (see [29]), where he presented the following unsolved problem,
among others.

Let (G1, ·) be a group and let (G2, ·, d) be a metric group. Given δ > 0, does there exist ε > 0 such that
if a mapping f : G1 → G2 satisfies the inequality

d(f(xy), f(x)f(y)) ≤ δ

for all x, y ∈ G1, then there is a homomorphism h : G1 → G2 with

d(f(x), h(x)) ≤ ε

for all x ∈ G1?
Ulam’s problem was partially solved by Hyers in 1941 as follows:
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Theorem 1.1 ([17]). Let E be a normed vector space, F a Banach space and suppose that the mapping
f : E → F satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E, where ε is a constant. Then the limit

T (x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ E, and T is the unique additive mapping satisfying

‖f(x)− T (x)‖ ≤ ε

for all x ∈ E.

Bourgin [6], Aoki [1], Rassias [23], and Gajda [14] treated this problem for approximate additive mappings
controlled by variables and unbounded functions.

Theorem 1.2. Let f : E → F be a mapping from a real normed vector space E into a Banach space F
satisfying the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ E\{0}, where θ and p are constants with θ > 0 and p 6= 1. Then there exists a unique additive
mapping T : E → F such that

‖f(x)− T (x)‖ ≤ θ

|1− 2p−1|
‖x‖p

for all x ∈ E\{0}.

Theorem 1.2 is due to Aoki [1] for 0 < p < 1 (see also [23]); Gajda [14] for p > 1; Hyers [17] for p = 0.
Moreover, Rassias [24] extended it to a linear mapping under the additional condition that f is continuous.
In particular, Bourgin [6] had commended the stability bounded by function on C∗-algebra.

In 1994, Gǎvruta [15] generalized Rassias’s result [24] by replacing θ(‖x‖p + ‖y‖p) by a general control
function ϕ(x, y).

The stability problems for various functional equations have been extensively investigated by a number of
researchers and there are many interesting results concerned with this problem (see [12, 18, 19, 21, 25–28]).

Bae [2] and Bae et al. [3, 4] proved the stability of the quadratic functional equation

f(x+ y + z) + f(x− y) + f(x− z) + f(y − z) = 3[f(x) + f(y) + f(z)]. (1.1)

Lemma 1.3 ([2]). If vector spaces X and Y are common domain and range of the mapping f in both the
functional equations (∗) : f(x+ y) + f(x− y) = 2f(x) + 2f(y) and (1.1), then the functional equation (1.1)
is equivalent to the functional equation (∗).

We say that the functional equation D is hyperstable if any function f satisfying the equation D is
approximately a true solution of D. The hyperstability term was used for the first time probably in [20].
However, it seems that the first result for the hyperstability concerned with the ring homomorphisms was
published in [6]. The hyperstability of the some functional equations, among others those mentioned above
were studied by many authors (cf., e.g., [5, 7–9, 11, 13, 16, 22]).

2. Auxiliary results

In this paper, N stands for the set of natural numbers, Z stands for the set of integers and R stands for
the set of reals. Let R+ := [0,∞) be the set of nonnegative real numbers and Y X denotes the family of all
mappings from a nonempty set X into a nonempty set Y .
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The proof’s method of the main results is based on a fixed point theorem in [10, Theorem 1]. Our
method can be considered to be an extension of the investigations in [2–4, 18, 21].

Now, we will take the following three hypotheses (all notations come from [10]).

(H1) U is a nonempty set, V is a Banach space, f1, ....fk : U → U , and L1, ....Lk : U → R+ are given.

(H2) T : V U → V U is an operator satisfying the inequality

‖T ξ(x)− T µ(x)‖ ≤
k∑

i=1

Li(x) ‖ξ(fi(x))− µ(fi(x))‖

for all ξ, µ ∈ V U , x ∈ U .

(H3) Λ : RU
+ → RU

+ is a linear operator defined by

Λδ(x) :=
k∑

i=1

Li(x)δ(fi(x))

for all δ ∈ RU
+, x ∈ U .

The mentioned fixed point theorem is stated in [10] as follows.

Theorem 2.1. Let hypotheses (H1)-(H3) be valid and functions ε : U → R+ and ϕ : U → V fulfill the
following two conditions:

‖T ϕ(x)− ϕ(x)‖ ≤ ε(x), x ∈ U,

ε∗(x) :=
∞∑
n=0

Λnε(x) <∞, x ∈ U.

Then, there exists a unique fixed point ψ of T with

‖ϕ(x)− ψ(x)‖ ≤ ε∗(x), x ∈ U.

Moreover,
ψ(x) = lim

n→∞
T nϕ(x), x ∈ U.

The main purpose of this paper is to reformulate the work that is in [2–4] on an abelian group by using
another fixed point method.

3. Main results

The following theorem is the main result of this paper. It has been motivated by the issue of Ulam
stability, which concerns approximate solutions of quadratic functional equation (1.1).

Theorem 3.1. Let (G,+) be an abelian group and E be a Banach space. Let f : G→ E, ϕ : G3 → [0,∞)
and u : Z∗ = Z\{0} → [0,∞) be functions satisfying the following three conditions

M := {m ∈ Z∗ : 2u(m− 1) + 3u(m) + 3u(−m) + u(2m) + u(2m− 1) < 1} 6= ∅, (3.1)

ϕ(tx, ty, tz) ≤ u(t)ϕ(x, y, z), (3.2)

‖f(x+ y + z) + f(x− y) + f(x− z) + f(y − z)− 3[f(x) + f(y) + f(z)]‖ ≤ ϕ(x, y, z) (3.3)

for all x, y, z ∈ G, t ∈ {m − 1,m,−m, 2m, 2m − 1} and m ∈ M. Then there exists a unique function
Q : G→ E satisfying (1.1) and

‖f(x)−Q(x)‖ ≤ φ(x), (3.4)

where

φ(x) := inf
m∈M

ϕ(mx, (m− 1)x,−mx)

1− 2u(m− 1)− 3u(m)− 3u(−m)− u(2m)− u(2m− 1)

for all x ∈ G.
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Proof. Replacing (x, y, z) by (mx, (m− 1)x,−mx) in (3.3), we get

‖2f((m− 1)x) + 3f(mx) + 3f(−mx)− f(2mx)− f((2m− 1)x)− f(x)‖
≤ϕ(mx, (m− 1)x,−mx) := εm(x)

(3.5)

for all x ∈ G and m ∈ Z∗. Further let us define a mapping T : EG → EG by

T ξ(x) := 2ξ((m− 1)x) + 3ξ(mx) + 3ξ(−mx)− ξ(2mx)− ξ((2m− 1)x), ∀x ∈ G, ξ ∈ EG, m ∈ Z∗.

Then the inequality (3.5) takes the form

‖T f(x)− f(x)‖ ≤ εm(x), x ∈ G.

Now, we define an operator Λ : RG
+ → RG

+ for m ∈ Z∗ by

Λδ(x) := 2δ((m− 1)x) + 3δ(mx) + 3δ(−mx) + δ(2mx) + δ((2m− 1)x), x ∈ G, δ ∈ RG
+.

This operator has the form described in (H3) with k = 5 and f1(x) = (m − 1)x, f2(x) = mx = −f3(x),
f4(x) = 2mx, f5(x) = (2m − 1)x, L1(x) = 2, L2(x) = 3 = L3(x), and L4(x) = L5(x) = 1 for x ∈ G.
Moreover, for every ξ, µ ∈ EG and x ∈ G, we obtain

‖T ξ(x)− T µ(x)‖
= ‖2(ξ − µ)(f1(x)) + 3(ξ − µ)(f2(x)) + 3(ξ − µ)(f3(x))− (ξ − µ)(f4(x))− (ξ − µ)(f5(x))‖
≤ 2 ‖(ξ − µ)(f1(x))‖+ 3 ‖(ξ − µ)(f2(x))‖+ 3‖(ξ − µ)(f3(x))‖

+ ‖(ξ − µ)(f4(x))‖+ ‖(ξ − µ)(f5(x))‖

=

5∑
i=1

Li(x) ‖(ξ − µ)(fi(x))‖ ,

where (ξ − µ)(y) = ξ(y)− µ(y) for all y ∈ G. So, (H2) is valid. It is easy to check that, in view of (3.2)

Λεk(x) = 2εk((m− 1)x) + 3εk(mx) + 3εk(−mx) + εk(2mx) + εk((2m− 1)x)

≤ 2u(m− 1)εk(x) + 3u(m)εk(x) + 3u(−m)εk(x) + u(2m)εk(x) + u(2m− 1)εk(x)

= [2u(m− 1) + 3u(m) + 3u(−m) + u(2m) + u(2m− 1)]εk(x)

(3.6)

for all x ∈ G and k,m ∈ Z∗. Therefore, since the operator Λ is linear, we have

ε∗(x) : =
∞∑
n=0

Λnεm(x)

≤
∞∑
n=0

(2u(m− 1) + 3u(m) + 3u(−m) + u(2m) + u(2m− 1))nεm(x)

=
εm(x)

1− 2u(m− 1)− 3u(m)− 3u(−m)− u(2m)− u(2m− 1)
<∞

for all x ∈ G and m ∈ Z∗. Thus, according to Theorem 2.1, for each m ∈M there exists a unique mapping
Qm : G→ E such that

Qm(x) = 2Qm((m− 1)x) + 3Qm(mx) + 3Qm(−mx)−Qm(2mx)−Qm((2m− 1)x), x ∈ G,

‖f(x)−Qm(x)‖ ≤ εm(x)

1− 2u(m− 1)− 3u(m)− 3u(−m)− u(2m)− u(2m− 1)
(3.7)
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for all x ∈ G and m ∈ Z∗. Moreover,

Qm(x) = lim
n→∞

T nf(x), x ∈ G, m ∈M.

Next, we show that

‖T nf(x+ y + z) + T nf(x− y) + T nf(x− z) + T nf(y − z)− 3T nf(x)− 3T nf(y)− 3T nf(z)‖
≤ (2u(m− 1) + 3u(m) + 3u(−m) + u(2m) + u(2m− 1))nϕ(x, y, z).

(3.8)

Fix m ∈ M. Indeed, if n = 0, then (3.8) is simply (3.3). So, fix n ∈ N and suppose that (3.8) holds for
n. Then

‖T n+1f(x+ y + z) + T n+1f(x− y) + T n+1f(x− z) + T n+1f(y − z)− 3T n+1f(x)

− 3T n+1f(y)− 3T n+1f(z)‖
= ‖2T nf((m− 1)(x+ y + z)) + 3T nf(m(x+ y + z)) + 3T nf(−m(x+ y + z))

− T nf(2m(x+ y + z))− T nf((2m− 1)(x+ y + z)) + 2T nf((m− 1)(x− y))

+ 3T nf(m(x− y)) + 3T nf(−m(x− y))− T nf(2m(x− y))− T nf((2m− 1)(x− y))

+ 2T nf((m− 1)(x− z)) + 3T nf(m(x− z)) + 3T nf(−m(x− z))
− T nf(2m(x− z))− T nf((2m− 1)(x− z)) + 2T nf((m− 1)(y − z))
+ 3T nf(m(y − z)) + 3T nf(−m(y − z))− T nf(2m(y − z))− T nf((2m− 1)(y − z))
− 3[2T nf((m− 1)x) + 3T nf(mx) + 3T nf(−mx)− T nf(2mx)− T nf((2m− 1)x)]

− 3[2T nf((m− 1)y) + 3T nf(my) + 3T nf(−my)− T nf(2my)− T nf((2m− 1)y)]

− 3[2T nf((m− 1)z) + 3T nf(mz) + 3T nf(−mz)− T nf(2mz)− T nf((2m− 1)z)]‖
≤ 2(λ(m))nϕ((m− 1)x, (m− 1)y, (m− 1)z) + 3(λ(m))nϕ(mx,my,mz)

+ 3(λ(m))nϕ(−mx,−my,−mz) + (λ(m))nϕ(2mx, 2my, 2mz)

+ (λ(m))nϕ((2m− 1)x, (2m− 1)y, (2m− 1)z)

≤ (λ(m))n+1ϕ(x, y, z)

for all x, y, z ∈ G, where λ(m) := 2u(m−1)+3u(m)+3u(−m)+u(2m)+u(2m−1). Thus, by the induction,
we have shown that (3.8) holds for all x, y, z ∈ G and for all n ∈ N. Letting n→∞ in (3.8), we obtain that

Qm(x+ y + z) +Qm(x− y) +Qm(x− z) +Qm(y − z) = 3[Qm(x) +Qm(y) +Qm(z)] (3.9)

for all x, y, z ∈ G and m ∈M such that

‖f(x)−Qm(x)‖ ≤ εm(x)

1− λ(m)
.

Now, we prove that Qm = Qk for all m, k ∈ M. Let us fix m, k ∈ M and note that Qk satisfies (3.7)
with m replaced by k. Hence, by replacing (x, y, z) by (mx, (m− 1)x,−mx) in (3.9), we get T Qj = Qj for
j = m, k and

‖Qm(x)−Qk(x)‖ ≤ εm(x)

1− λ(m)
+

εk(x)

1− λ(k)

for all x ∈ G. It follows from the linearity of Λ and (3.6) that

‖Qm(x)−Qk(x)‖ = ‖T nQm(x)− T nQk(x)‖

≤ Λnεm(x)

1− λ(m)
+

Λnεk(x)

1− λ(k)
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≤ (λ(m))n[Am(x) +Ak(x)],

where

Am(x) :=
εm(x)

1− λ(m)

for all x ∈ G and n ∈ N. Letting n→∞ we get Qm = Qk =: Q. Thus, we have

‖f(x)−Q(x)‖ ≤ Am(x), x ∈ G, m ∈M,

thus, we derive (3.4). Due to (3.9), it is easy to notice that Q is a solution of (1.1).
To prove the uniqueness of the mapping Q, let us assume that there exists a mapping Q′ : G→ E which

satisfies (1.1) and the inequality ∥∥f(x)−Q′(x)
∥∥ ≤ φ(x), x ∈ G.

Then ∥∥Q(x)−Q′(x)
∥∥ ≤ 2φ(x), x ∈ G.

Further, T Q′(x) = Q′(x) for all x ∈ G. Consequently, with a fixed m ∈M

‖Q(x)−Q′(x)‖ = ‖T nQ(x)− T nQ′(x)‖ ≤ 2Λnφ(x) ≤ 2Λnεm(x)

1− λ(m)
≤ 2[λ(m)]nεm(x)

1− λ(m)

for all x ∈ G and n ∈ N. Letting n→∞ we get Q = Q′. The proof of the theorem is complete.

Theorem 3.2. Let (G,+) be an abelian group and E be a Banach space. Let f : G→ E, ϕ : G3 → [0,∞)
and u : Z∗ = Z\{0} → [0,∞) be functions, and the conditions (3.1), (3.2) and (3.3) be valid. Assume that

inf{ϕ(mx, (m− 1)x,−mx) : m ∈M} = 0 (3.10)

for all x ∈ G. Then f satisfies (1.1) on G.

Proof. Suppose that
inf{ϕ(mx, (m− 1)x,−mx) : m ∈M} = 0

for all x ∈ G. Hence from Theorem 3.1 we have φ(x) = 0 for all x ∈ G. Then f satisfies (1.1) on G.

Remark 3.3. In Theorem 3.1, if

inf{2u(m− 1) + 3u(m) + 3u(−m) + u(2m) + u(2m− 1) : m ∈M} = 0,

(this is the case when, i.e., lim|m|→∞ u(m) = 0), then (3.1) holds and

φ(x) = inf
m∈M

ϕ(mx, (m− 1)x,−mx)

for all x ∈ G.

In a similar way we can prove that Theorem 3.1 holds if the inequality (3.3) is defined on G\{0} := G0.

Theorem 3.4. Let (G,+) be an abelian group and E be a Banach space. Let f : G→ E, ϕ : G3
0 → [0,∞),

and u : Z∗ = Z\{0} → [0,∞) be functions satisfying the following three conditions

M := {m ∈ Z∗ : 2u(m− 1) + 3u(m) + 3u(−m) + u(2m) + u(2m− 1) < 1} 6= ∅, (3.11)

ϕ(tx, ty, tz) ≤ u(t)ϕ(x, y, z), (3.12)

‖f(x+ y + z) + f(x− y) + f(x− z) + f(y − z)−3[f(x) + f(y) + f(z)]‖ ≤ ϕ(x, y, z) (3.13)

for all x, y, z ∈ G0, t ∈ {m − 1,m,−m, 2m, 2m − 1}, and m ∈ M with x + y + z, x − y, x − z, y − z 6= 0.
Then there exists a unique function Q : G→ E satisfying (1.1) and

‖f(x)−Q(x)‖ ≤ φ(x),

where

φ(x) := inf
m∈M

ϕ(mx, (m− 1)x,−mx)

1− 2u(m− 1)− 3u(m)− 3u(−m)− u(2m)− u(2m− 1)

for all x ∈ G0.
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4. Applications

In this section we give some applications of Theorem 3.4, in the two cases:

ϕ1(x, y, z) = θ‖x‖p.‖y‖q.‖z‖r, p+ r < 0 and q < 0,

and
ϕ2(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p), p < 0,

where ϕ(x, y, z) = ϕj(x, y, z) for j ∈ {1, 2}, θ ∈ R+, p, q, r ∈ R and x, y 6= 0.

Corollary 4.1. Let E1 and E2 be a normed space and a Banach space, respectively. Assume S := (S,+)
be a subgroup of the group (E1,+), p, q, r ∈ R, p+ r < 0, q < 0 and θ ≥ 0. If f : S → E2 satisfies

‖f(x+ y + z) + f(x− y) + f(x− z) + f(y − z)− 3[f(x) + f(y) + f(z)]‖ ≤ θ‖x‖p‖y‖q‖y‖r

for all x, y, z ∈ S\{0} with x + y + z, x − y, x − z, y − z 6= 0, then f is a solution of (1.1) on S\{0} such
that x+ y + z, x− y, x− z, y − z 6= 0.

Proof. Let ϕ1(x, y, z) = θ‖x‖p.‖y‖q.‖z‖r and u(t) = |t|p+q+r in Theorem 3.4 where p, q, r ∈ R, p + r < 0,
q < 0, and t ∈ Z∗, then we get that the condition (3.12) is valid. Obviously, (3.10) holds, and there exists
m0 ∈ N, m0 > 1 such that

2|m− 1|p+q+r + (6 + 2p+q+r)|m|p+q+r + |2m− 1|p+q+r < 1, m ≥ m0.

So we obtain (3.11), as well. Consequently, by Theorem 3.2, every function f : S → E2 fulfilling the
inequality (3.13), satisfies (1.1) on S\{0}.

Corollary 4.2. Let E1 and E2 be a normed space and a Banach space, respectively. Assume S := (S,+) is
a subgroup of the group (E1,+), p ∈ R, p < 0 and θ ≥ 0. If f : S → E2 satisfies

‖f(x+ y + z) + f(x− y) + f(x− z) + f(y − z)− 3[f(x) + f(y) + f(z)]‖ ≤ θ(‖x‖p + ‖y‖p + ‖y‖p)

for all x, y, z ∈ S\{0} with x + y + z, x − y, x − z, y − z 6= 0, then f is a solution of (1.1) on S\{0} such
that x+ y + z, x− y, x− z, y − z 6= 0.

Proof. Let ϕ2(x, y, z) = θ(‖x‖p+‖y‖p+‖z‖p) and u(t) = |t|p in Theorem 3.4 where p ∈ R, p < 0 and t ∈ Z∗,
then we get the condition (3.12) is valid. Obviously, (3.10) holds, and there exists m0 ∈ N, m0 > 1 such
that

2|m− 1|p + (6 + 2p)|m|p + |2m− 1|p < 1, m ≥ m0.

So we obtain (3.11), as well. Consequently, by Theorem 3.2, every mapping f : S → E2 fulfilling the
inequality (3.13), satisfies (1.1) on S\{0} such that x+ y + z, x− y, x− z, y − z 6= 0.

In this part, we show that Corollaries 4.1 and 4.2 yield a characterization of the inner product spaces.

Corollary 4.3. Let X be a normed space and X0 = X\{0}. Write

∆(x, y, z) =
∣∣‖x+ y + z‖2 + ‖x− y‖2 + ‖x− z‖2 + ‖y − z‖2 − 3[‖x‖2 + ‖y‖2 + ‖z‖2]

∣∣
for all x, y ∈ X. Assume that one of the following two hypotheses is valid

(i) supx,y,z∈X0

∆(x,y,z)
ϕ1(x,y,z) <∞;

(ii) supx,y,z∈X0

∆(x,y,z)
ϕ2(x,y,z) <∞,

where x+ y + z, x− y, x− z, y − z 6= 0. Then X is an inner product space.
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Proof. Write f(x) = ‖x‖2. Then from Corollaries 4.1 and 4.2, we easily derive f is a solution of the functional
equation (1.1). That implies ∆(x, y) = 0. Thus, the norm ‖.‖ on X satisfies the parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X.

Therefore, X is an inner product space.

Corollary 4.4. Let G be an abelian group and E be a Banach space. Let ϕ : G3 → [0,∞) and u : Z∗ =
Z\{0} → [0,∞) be functions and the conditions (3.1), (3.2), and (3.10) be valid. If F : G3 → E is a
mapping such that F (x0, y0, z0) 6= 0 for some x0, y0, z0 ∈ G and

‖F (x, y, z)‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ G, then the functional equation

g(x+ y + z) + g(x− y) + g(x− z) + g(y − z) = F (x, y, z) + 3[g(x) + g(y) + g(z)], x, y, z ∈ G, (4.1)

has no solution in the class of functions g : G→ E.

Proof. Suppose that g : G → E is a solution of (4.1). Then (3.3) holds, and consequently, according to
Theorem 3.2, g satisfies (1.1) on G, which means that F (x0, y0, z0) = 0. This is a contradiction.
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[7] J. Brzdȩk, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar., 141 (2013), 58–67.
1
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[20] G. Maksa, Z. Páles, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyhzi.

(N.S.), 17 (2001), 107–112. 1
[21] M. Mirzavaziri, M. S. Moslehian, fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc.

(N.S.), 37 (2006), 361–376. 1, 2
[22] M. Piszczek, Remark on hyperstability of the general linear equation, Aequationes Math., 88 (2013), 163–168. 1
[23] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978),

297–300. 1, 1
[24] Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158 (1991), 106–113. 1
[25] J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math., 20 (1992), 185–190.

1
[26] Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babe-Bolyai

Math., 43 (1998), 89–124.
[27] Th. M. Rassis, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000),

264–284.
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