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Abstract

In this paper, we establish the general solution of a new quadratic functional equation f
(
x− y+z

2

)
+

f
(
x+ y−z

2

)
+ f(x+ z) = 3f(x) + 1

2f(y) + 3
2f(z). Next, the Ulam stability of this equation in a real normed

space and a non-Archimedean space is studied, respectively. c©2014 All rights reserved.
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1. Introduction

At the current stage, the Ulam stability is gradually becoming one of the most active research topics
in the theory of functional equations. The investigation of such stability problems of functional equations
originated from a question of Ulam [22] concerning the stability of group homomorphisms, i.e.,
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Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there exist a
δ > 0 such that if a function h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1,
then there is a homomorphism H : G1 → G2 such that d(h(x), H(x)) < ε for all x ∈ G1?

Hyers [7] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Afterwards,
the result of Hyers was generalized by Aoki [1] (For some historical comments regarding the work of Aoki, see
[18]) for additive mappings and by Rassias [20] for linear mappings by considering an unbounded Cauchy
difference. Later, Gǎvruta [6] replaced the unbounded Cauchy difference in the Rassas’s Theorem and
provided a further generalization by using a general control function. Since then, the Ulam stability problems
of different types of functional equations in various spaces have been widely and extensively studied. For
more detailed information, the reader can refer to [4, 12, 21].

Based on the existing research results, it is worth noting that the study of Ulam stability of different
types of quadratic functional equations is an important branch. In recent years, there are many interesting
results concerning these problems obtained by different authors [2, 3, 5, 8, 9, 10, 11, 13, 14, 15, 16, 17, 23].

In this paper, we construct the following functional equation:

f

(
x− y + z

2

)
+ f

(
x+

y − z
2

)
+ f(x+ z) = 3f(x) +

1

2
f(y) +

3

2
f(z) (1.1)

It is easy to verify that the function f(x) = x2 is a solution of Eq. (1.1) on R. Naturally, we call the
preceding equation a quadratic functional equation.

The main purpose of this paper is to establish the general solution of Eq. (1.1) on an Abelian group,
and to investigate the Ulam stability of Eq. (1.1) in a real normed space and a non-Archimedean space,
respectively.

2. General solution of Eq. (1.1) on an Abelian group

First of all, let us recall that a mapping f : G → F is said to be a quadratic mapping provided that it
satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (2.1)

for all x, y ∈ G, where G,F are groups.
A mapping S : G×G→ F is called biadditive if and only if

S(x1 + x2, y) = S(x1, y) + S(x2, y) and S(x, y1 + y2) = S(x, y1) + S(x, y2)

for all x1, x2, x, y1, y2, y ∈ G. In addition, if S(x, y) = S(y, x) for all x, y ∈ G, then we say that S is
symmetric.

As we all know, we have the following result concerning the general solution of Eq. (2.1).

Lemma 2.1 ([4]). Let G be an Abelian group and F an Abelian group with the division by two. The mapping
f : G → F is quadratic if and only if there exists a unique symmetric biadditive mapping B : G × G → F
such that

f(x) = B(x, x)

for all x ∈ G.

In the following, we will establish the general solution of Eq. (1.1) on an Abelian group. The corre-
sponding result shows that the solution of Eq. (1.1) is equivalent to the one of Eq. (2.1).

Theorem 2.2. Let G and F be two Abelian groups with the division by two. A mapping f : G→ F satisfies
the functional equation (1.1) for all x, y, z ∈ G if and only if it satisfies the functional equation (2.1), i.e.,
f is a quadratic mapping.
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Proof. Necessity: Putting x = y = z = 0 in (1.1), we get f(0) = 0. Replacing y, z by x,−x in (1.1),
respectively, we get

f(2x)− 5

2
f(x)− 3

2
f(−x) = 0 (2.2)

for all x ∈ G. Similarly, replacing y, z by −x, x in (1.1), respectively, we have

f(2x)− 7

2
f(x)− 1

2
f(−x) = 0 (2.3)

for all x ∈ G. Subtracting the two resulting equations, we get f(x) = f(−x) for all x ∈ G, i.e., f is an even
mapping. Using the evenness of f , it follows from (2.2) or (2.3) that f(2x) = 4f(x). Furthermore, we can
obtain the functional equation (2.1) if we replace z by y in (1.1). That is to say, f is a quadratic mapping.
Sufficiency: If f is a quadratic mapping, by Lemma 2.1, then there exists a unique symmetric biadditive
mapping B : G×G→ F such that f(x) = B(x, x) for all x ∈ G. Therefore, substituting it in the left-hand
side of Eq. (1.1), we can obtain that

B
(
x− y + z

2
, x− y + z

2

)
+B

(
x+

y − z
2

, x+
y − z

2

)
+B(x+ z, x+ z)

= B(x, x)− 2B
(
x,
y + z

2

)
+B

(y + z

2
,
y + z

2

)
+B(x, x) + 2B

(
x,
y − z

2

)
+B

(y − z
2

,
y − z

2

)
+B(x, x) + 2B(x, z) +B(z, z)

= 3B(x, x) +B(x,−y − z) +
1

4
B(y + z, y + z) +B(x, y − z)

+
1

4
B(y − z, y − z) + 2B(x, z) +B(z, z)

= 3B(x, x) +B(x,−2z) +
1

2
B(y, y) +

1

2
B(z, z) + 2B(x, z) +B(z, z)

= 3B(x, x) +
1

2
B(y, y) +

3

2
B(z, z),

which implies that the quadratic mapping f(x) = B(x, x) satisfies Eq. (1.1).

3. Stability of Eq. (1.1) in a real linear normed space

In this section, we shall prove the Hyers-Ulam stability of Eq. (1.1) in a real linear normed space.
Throughout this section, X and Y will stand for a real vector space and a real Banach space, respectively.
For notational convenience, we define the following operator

Dqf(x, y, z) := f

(
x− y + z

2

)
+ f

(
x+

y − z
2

)
+ f(x+ z)

− 3f(x)− 1

2
f(y)− 3

2
f(z).

(3.1)

Theorem 3.1. Let j ∈ {−1, 1} be fixed and ϕ : X ×X ×X → [0,∞) be a function such that

Φ(j)(x, y, z) :=
∞∑
k=0

4−jkϕ(2jkx, 2jky, 2jkz) < +∞ (3.2)

for all x, y, z ∈ X. Assume that the mapping f : X → Y satisfies

‖Dqf(x, y, z)‖ ≤ ϕ(x, y, z) (3.3)

for all x, y, z ∈ X. Moreover, f(0) = 0 in the case j = 1. Then

Q(x) = lim
n→∞

4jnf(2−jnx)
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exists for each x ∈ X and defines a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4
Φ(−j)(x, x, x) (3.4)

for all x ∈ X.

Proof. Using (3.2), we can easily know that f(0) = 0 in the case j = −1. Indeed, putting x = y = z = 0 in
(3.3), we can obtain that f(0) = 0 because the condition Φ(−1)(0, 0, 0) =

∑∞
k=0 4kϕ(0, 0, 0) < +∞ implies

that ϕ(0, 0, 0) = 0.
Putting y = z = x in (3.3), and since f(0) = 0, we can obtain that

‖4f(x)− f(2x)‖ ≤ ϕ(x, x, x) (3.5)

for all x ∈ X. Replacing x by 2n−1x and dividing by 4n in (3.5), we get∥∥∥ 1

4n−1
f(2n−1x)− 1

4n
f(2nx)

∥∥∥ ≤ 1

4n
ϕ(2n−1x, 2n−1x, 2n−1x) (3.6)

for all x ∈ X and n ∈ N. Therefore, it follows from (3.5) and (3.6) that∥∥∥f(x)− 1

4n
f(2nx)

∥∥∥ ≤ n∑
i=1

ϕ(2i−1x, 2i−1x, 2i−1x)

4i

=

n−1∑
i=0

ϕ(2ix, 2ix, 2ix)

4i+1

(3.7)

for all x ∈ X and n ∈ N. Moreover, replacing x by x
2 in (3.5), we have∥∥4f

(x
2

)
− f(x)

∥∥ ≤ ϕ(
x

2
,
x

2
,
x

2
) (3.8)

for all x ∈ X. By using a similar argument, we can infer that

∥∥∥f(x)− 4nf
( x

2n

)∥∥∥ ≤ n−1∑
i=0

4iϕ(
x

2i+1
,
x

2i+1
,
x

2i+1
) (3.9)

for all x ∈ X and n ∈ N. Here we claim that the sequence {4jnf(2−jnx)} is a Cauchy sequence in the
Banach space Y . Indeed, for all m,n ∈ N, it follows from (3.7) and (3.9) that

‖4j(n+m)f(2−j(n+m)x)− 4jmf(2−jmx)‖
=4jm‖4jnf(2−j(n+m)x)− f(2−jmx)‖

≤

{
4−m

∑n−1
i=0

ϕ(2(i+m)x,2(i+m)x,2(i+m)x)
4i+1 , j = −1,

1
4

∑n−1
i=0 4i+m+1ϕ( x

2i+m+1 ,
x

2i+m+1 ,
x

2i+m+1 ), j = 1

for all x ∈ X. Obviously, in the case j = −1, the last expression tends to zero as m → ∞. In the case
j = 1, the condition (3.2) implies that the preceding expression also tends to zero as m → ∞. Thus, we
have proved that the sequence {4jnf(2−jnx)} is Cauchy. According to the completeness of Y , we can define

Q(x) := lim
n→∞

4jnf(2−jnx)

for all x ∈ X.
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Now we show that Q satisfies Eq. (1.1). Replacing x, y, z by 2−jnx, 2−jny, 2−jnz in (3.3), respectively,
and multiplying both sides by 4jn, we can obtain that

4jn
∥∥∥f (2−jn

(
x− y + z

2

))
+ f

(
2−jn

(
x+

y − z
2

))
+ f

(
2−jn(x+ z)

)
− 3f(2−jnx)− 1

2
f(2−jny)− 3

2
f(2−jnz)

∥∥∥
≤ 4jnϕ(2−jnx, 2−jny, 2−jnz).

Taking the limit in the preceding expression, by (3.2), it is easy to know that Q is a solution of Eq. (1.1)
since the right-hand side tends to zero as n→∞.

By letting n→∞ in (3.7) and (3.9), we can infer that

‖f(x)−Q(x)‖ ≤

{
1
4Φ(1)(x, x, x), j = −1,
1
4Φ(−1)(x, x, x), j = 1

(3.10)

for all x ∈ X.
Next, we want to prove that Q is a unique such quadratic mapping. Assume that Q′ is another quadratic

function satisfying the inequality (3.4). Since Q(2−jnx) = 4−jnQ(x), Q′(2−jnx) = 4−jnQ′(x), it follows that

‖Q(x)−Q′(x)‖ = 4jn‖Q(2−jnx)−Q′(2−jnx)‖
≤ 4jn(‖Q(2−jnx)− f(2−jnx)‖+ ‖f(2−jnx)−Q′(2−jnx)‖)

≤ 4jn

2
Φ(−j)(2−jnx, 2−jnx, 2−jnx).

From the condition (3.2), one can see that the last expression tends to zero as n→∞. Thus, we conclude
that Q(x) ≡ Q′(x). This completes the proof.

Based on Theorem 3.1, we can obtain the following corollaries concerning the stability of Eq. (1.1).

Corollary 3.2. Let j ∈ {−1, 1} be fixed. Suppose that X is a real normed space and p, ε are real numbers
with ε ≥ 0 and p 6= 2. Assume that the mapping f : X → Y satisfies the following inequality

‖Dqf(x, y, z)‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X (X \ {0} if p < 0). Further, f(0) = 0 when j = 1. Then there exists a unique quadratic
mapping Q : X → Y satisfying the equality (1.1) and the following inequality

‖f(x)−Q(x)‖ ≤

{
3ε‖x‖p

4(1−22−p)
, j = −1, p > 2,

3ε‖x‖p
4(1−2p−2)

, j = 1, p < 2

for all x ∈ X (X \ {0} if p < 0).

Proof. Letting ϕ(x, y, z) = ε(‖x‖p+‖y‖p+‖z‖p) and then applying Theorem 3.1. we can obtain the desired
result.

Corollary 3.3. Let j ∈ {−1, 1} be fixed. Suppose that X is a real normed space and p, ε are real numbers
with ε ≥ 0 and p 6= 2

3 . Assume that the mapping f : X → Y satisfies the following inequality

‖Dqf(x, y, z)‖ ≤ ε‖x‖p‖y‖p‖z‖p

for all x, y, z ∈ X (X \ {0} if p < 0). Further, f(0) = 0 when j = 1. Then there exists a unique quadratic
mapping Q : X → Y satisfying the equality (1.1) and the following inequality

‖f(x)−Q(x)‖ ≤

{
ε‖x‖3p

4(1−22−3p)
, j = −1, p > 2

3 ,
ε‖x‖p

4(1−23p−2)
, j = 1, p < 2

3

for all x ∈ X (X \ {0} if p < 0).
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Proof. Letting ϕ(x, y, z) = ε‖x‖p‖y‖p‖z‖p and then applying Theorem 3.1. we can obtain the desired
result.

Corollary 3.4. Let j ∈ {−1, 1} be fixed. Suppose that X is a real normed space and p, q, r are positive real
numbers with p+ q+ r 6= 2, ε a nonnegative real number. Assume that the mapping f : X → Y satisfies the
following inequality

‖Dqf(x, y, z)‖ ≤ ε(‖x‖p‖y‖q‖z‖r + ‖x‖p+q+r + ‖y‖p+q+r + ‖z‖p+q+r)

for all x, y, z ∈ X. Further, f(0) = 0 when j = 1. Then there exists a unique quadratic mapping Q : X → Y
satisfying the equality (1.1) and the following inequality

‖f(x)−Q(x)‖ ≤

{
ε‖x‖p+q+r

1−22−(p+q+r) , j = −1, p+ q + r > 2,
ε‖x‖p+q+r

1−2(p+q+r)−2 , j = 1, p+ q + r < 2

for all x ∈ X.

Proof. Letting ϕ(x, y, z) = ε(‖x‖p‖y‖q‖z‖r + ‖x‖p+q+r + ‖y‖p+q+r + ‖z‖p+q+r) and then applying Theorem
3.1. we can obtain the desired result.

Especially, we can obtain the following Hyers-Ulam stability result of the quadratic functional equation
(1.1).

Corollary 3.5. Let X be a real normed space. For a given ε > 0, if the mapping f : X → Y satisfies the
following inequality

‖Dqf(x, y, z)‖ ≤ ε

for all x, y, z ∈ X with f(0) = 0, then there exists a unique quadratic mapping Q : X → Y satisfying the
equality (1.1) and the following inequality

‖f(x)−Q(x)‖ ≤ ε

3

for all x ∈ X.

Furthermore, we have the following more general form of stability result concerning the Eq. (1.1) by
using a similar method as shown in [8].

A function H : [0,∞) × [0,∞) × [0,∞) → [0,∞) is said to be homogeneous of degree p (p > 0) if it
satisfies

H(tu, tv, tw) = tpH(u, v, w)

for all t, u, v, w ≥ 0.
For technical reasons, in the following, we denote by Hϕ the set of all functions H : [0,∞) × [0,∞) ×

[0,∞)→ [0,∞) that there exists ϕ : [0,∞)→ [0,∞) such that

H(λu, λv, λw) ≤ ϕ(λ)H(u, v, w)

for all u, v, w ≥ 0 and λ > 0, where ϕ satisfies the following properties:
(i) ϕ(λ) > 0 for all λ > 0;
(ii) ϕ(2) 6= 4;
(iii) ϕ(2λ) = ϕ(2)ϕ(λ) for all λ > 0.

Obviously, if p > 0 and p 6= 2, then the homogeneous function H of degree p belongs to Hϕ with
ϕ(t) = tp.
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Corollary 3.6. Let X be a real normed space. Assume that the mapping f : X → Y satisfies the following
inequality

‖Dqf(x, y, z)‖ ≤ H(‖x‖, ‖y‖, ‖z‖)

for all x, y, z ∈ X with f(0) = 0, where H ∈ Hϕ. Then there exists a unique quadratic mapping Q : X → Y
satisfying equality (1.1) and the following inequality

‖f(x)−Q(x)‖ ≤ H(‖x‖, ‖x‖, ‖x‖)
|ϕ(2)− 4|

(3.11)

for all x ∈ X.

Proof. Setting ϕ(x, y, z) = H(‖x‖, ‖y‖, ‖z‖). By Theorem 3.1, it suffices to verify that ϕ satisfies the
condition (3.2). Therefore, we have

Φ(j)(x, y, z) =
∞∑
k=0

4−jkϕ(2jkx, 2jky, 2jkz)

=
∞∑
k=0

4−jkH(2jk‖x‖, 2jk‖y‖, 2jk‖z‖)

≤
∞∑
k=0

4−jkϕ(2jk)H(‖x‖, ‖y‖, ‖z‖)

=
∞∑
k=0

4−jkϕ(2)jkH(‖x‖, ‖y‖, ‖z‖)

=

∞∑
k=0

(ϕ(2)

4

)jk
H(‖x‖, ‖y‖, ‖z‖)

=

{
4H(‖x‖,‖y‖,‖z‖)

4−ϕ(2) , when j = 1, ϕ(2) < 4,
4H(‖x‖,‖y‖,‖z‖)

ϕ(2)−4 , when j = −1, ϕ(2) > 4.

Therefore, the inequality (3.11) holds true.

Remark 3.7. In the preceding proof, the equality ϕ(2jk) = ϕ(2)jk is applied. Indeed, when j = 1, it is
obvious by the condition (iii). When j = −1, since 1 = ϕ(1) = ϕ(2)ϕ(12), we know that ϕ(2−1) = ϕ(2)−1.
Furthermore, we can infer that ϕ(2−k) = ϕ(2)−k by the mathematical induction.

4. Stability of Eq. (1.1) in a non-Archimedean space

Here, we will establish the Hyers-Ulam stability of Eq. (1.1) in a non-Archimedean space. First of all,
we recall some basic notions that are used in the following [18, 19].

A non-Archimedean field means that a field K endowed with a function (valuation) | · |A : K → [0,∞)
which satisfies the following conditions:
(i) |r|A = 0 if and only if r = 0;
(ii) |rs|A = |r|A|s|A;
(iii) |r + s|A ≤ max{|r|A, |s|A} for all r, s ∈ K.

Remark 4.1. According to the above conditions, it is easy to know that |1|A = | − 1|A = 1 and |n|A ≤ 1 for
all n ∈ N.

Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation | · |A. A
function ‖ · ‖A : X → R is called a non-Archimedean norm (valuation) if it satisfies the following conditions:
(NA1) ‖x‖A = 0 if and only if x = 0;
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(NA2) ‖rx‖A = |r|A‖x‖A for all r ∈ K and x ∈ X;
(NA3) ‖x+ y‖A ≤ max{‖x‖A, ‖y‖A} for all x, y ∈ X (strong triangle inequality (ultrametric)).

Correspondingly, we call the pair (X, ‖ · ‖A) a non-Archimedean space. In addition, by (NA3), we can
obtain that

‖xn − xm‖A ≤ max{‖xj+1 − xj‖A : m ≤ j ≤ n− 1}

for all n,m ∈ N with n > m. Thus, a sequence {xn} in a non-Archimedean space is Cauchy if and only
if the sequence {xn+1 − xn} converges to zero. A sequence {xn} is said to be convergent if for any ε > 0,
there exist a natural number n0 ∈ N and x ∈ X such that ‖xn − x‖A ≤ ε for all n ≥ n0. Furthermore, a
non-Archimedean space (X, ‖ · ‖A) is said to be complete if every Cauchy sequence in X is convergent.

Throughout this section, we assume that G is a group and (X, ‖ · ‖A) is a complete non-Archimedean
space. Especially, in the following, when j = −1, it requires that G is a group with the division by two.

Theorem 4.2. Let j ∈ {−1, 1} be fixed and ψ : G×G×G→ [0,∞) be a function such that

lim
n→∞

|4|−jnA ψ(2jnx, 2jny, 2jnz) = 0 (4.1)

and the limits

Ψ(j)(x) :=

{
limn→∞max{|4|−jkA ψ(2jkx, 2jkx, 2jkx) : 0 ≤ k < n}, j = 1,

limn→∞max{|4|−jkA ψ(2jkx, 2jkx, 2jkx) : 0 < k ≤ n}, j = −1,
(4.2)

exists for each x ∈ G. Suppose that the mapping f : G→ X satisfies the inequality

‖Dqf(x, y, z)‖A ≤ ψ(x, y, z) (4.3)

for all x, y, z ∈ G. Furthermore, f(0) = 0 in the case j = −1. Then there exists a quadratic mapping
Q : G→ X such that

‖f(x)−Q(x)‖A ≤
1

|4|A
Ψ(j)(x) (4.4)

for all x ∈ G. Moreover, if{
limm→∞ limn→∞max{|4|−jkA ψ(2jkx, 2jkx, 2jkx) : m ≤ k < n+m} = 0, j = 1,

limm→∞ limn→∞max{|4|−jkA ψ(2jkx, 2jkx, 2jkx) : m < k ≤ n+m} = 0, j = −1,
(4.5)

then Q is the unique quadratic mapping satisfying the equality (1.1).

Proof. By (4.1), it is easy to know that f(0) = 0 when j = 1. In fact, putting x = y = z = 0 in (4.3) we can
obtain f(0) = 0 due to the condition (4.1) implies that limn→∞ |4|−nA ψ(0, 0, 0) = 0 and the fact |4|−nA ≥ 1.

Using the same method as in the proof of Theorem 3.1, we get∥∥∥ 1

4n−1
f(2n−1x)− 1

4n
f(2nx)

∥∥∥
A
≤ 1

|4|nA
ϕ(2n−1x, 2n−1x, 2n−1x) (4.6)

for all x ∈ G and n ∈ N. Similarly, we can obtain that∥∥∥4nf(
x

2n
)− 4n−1f(

x

2n−1
)
∥∥∥
A
≤ |4|n−1A ϕ

( x
2n
,
x

2n
,
x

2n

)
(4.7)

for all x ∈ G and n ∈ N. From (4.1), (4.6) and (4.7), it follows that the sequence {4−jnf(2jnx)} is a Cauchy
sequence in X. The completeness of X implies that the following expression

Q(x) := lim
n→∞

4−jnf(2jnx)
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is well defined. Now, we claim that

‖f(x)− 4−jnf(2jnx)‖A

≤

{
1

|4|jA
max{|4|−kA ψ(2jkx, 2jkx, 2jkx) : 0 ≤ k < n}, j = 1,

|4|jA max{|4|kAψ(2jkx, 2jkx, 2jkx) : 0 < k ≤ n}, j = −1

(4.8)

for all n ∈ N and x ∈ G. Substituting n = 1 in (4.6) and (4.7), it is easy to verify that (4.8) is true for n = 1.
By mathematical induction, we can assume that the inequality (4.8) holds true for some n ∈ N. Therefore,
it follows from (4.6) and (4.7) that

‖f(x)− 4−j(n+1)f(2j(n+1)x)‖A
≤ max{‖f(x)− 4−jnf(2jnx)‖A, ‖4−jnf(2jnx)− 4−j(n+1)f(2j(n+1)x)‖A}

≤

max{ 1

|4|jA
max{ψ(2

jkx,2jkx,2jkx)

|4|kA
: 0 ≤ k < n}, 1

|4|n+1
A

ϕ(2nx, 2nx, 2nx)}, j = 1,

max{|4|jA max{|4|kAψ(2jkx, 2jkx, 2jkx) : 0 < k ≤ n}, |4|nAϕ
(

x
2n+1 ,

x
2n+1 ,

x
2n+1 }, j = −1

=

{
1

|4|jA
max{|4|−kA ψ(2jkx, 2jkx, 2jkx) : 0 ≤ k < n+ 1}, j = 1,

|4|jA max{|4|kAψ(2jkx, 2jkx, 2jkx) : 0 < k ≤ n+ 1}, j = −1,

which proves the validity of the inequality (4.8) for n + 1. By letting n → ∞ in (4.8) and using (4.2), we
get (4.4).

Replacing x and y by 2jnx and 2jny in (4.3), respectively, we have∥∥∥4−jnf

(
2jn
(
x− y + z

2

))
+ 4−jnf

(
2jn
(
x+

y − z
2

))
+ 4−jnf

(
2jn(x+ z)

)
− 3 · 4−jnf(2jnx)− 1

2
· 4−jnf(2jny)− 3

2
· 4−jnf(2jnz)

∥∥∥
A

≤ |4|−jnA ϕ(2jnx, 2jny, 2jnz).

Taking the limit as n→∞ in the previous expression and using (4.1), we know that Q satisfies the equality
(1.1).

To show the uniqueness of Q. Assume that Q′ is another quadratic mapping satisfying (4.4). Then we
can obtain

‖Q(x)−Q′(x)‖A
= |4|−jmA ‖Q(2jmx)−Q′(2jmx)‖A
≤ |4|−jmA max{‖Q(2jmx)− f(2jmx)‖A, ‖f(2jmx)−Q′(2jmx)‖A}

≤ 1

|4|A

{
limn→∞max{|4|−kA ψ(2kx, 2kx, 2kx) : m ≤ k < n+m}, j = 1,

limn→∞max{|4|kAψ(2−kx, 2−kx, 2−kx) : m < k ≤ n+m}, j = −1

= 0.

Taking the limit as m → ∞ and using (4.5), we conclude that Q(x) ≡ Q′(x). The proof of the theorem is
now completed.

Corollary 4.3. Let j ∈ {−1, 1} be fixed and let ρ : [0,∞)→ [0,∞) be a function such that

ρ(|2j |At) ≤ [ρ(|2|A)]jρ(t)

for all t ≥ 0, and j · ρ(|2|A) < j · |4|A. Let X be a complete non-Archimedean space and let δ be a positive
real number. Suppose that the mapping f : G→ X satisfies the inequality

‖Dqf(x, y, z)‖A ≤ δ(ρ(‖x‖A) + ρ(‖y‖A) + ρ(‖z‖A))
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for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : G→ X satisfying (1.1) such that

‖f(x)−Q(x)‖A ≤

{
3δρ(‖x‖A)
|4|A , j = 1,

3δρ(‖x‖A)
ρ(‖2‖A) , j = −1

for all x ∈ G.

Proof. Letting ψ(x, y, z) = δ(ρ(‖x‖A) + ρ(‖y‖A) + ρ(‖z‖A)). By Theorem 4.2, we have

lim
n→∞

|4|−jnA ψ(2jnx, 2jny, 2jnz)

= lim
n→∞

|4|−jnA δ(ρ(|2j |nA‖x‖A) + ρ(|2j |nA‖y‖A) + ρ(|2j |nA‖z‖A))

≤ lim
n→∞

|4|−jnA ρ(|2|A)jnψ(x, y, z) = 0

for all x, y, z ∈ G. Moreover, by (4.2), we can obtain

Ψ(j)(x) =

{
limn→∞max{|4|−kA ψ(2kx, 2kx, 2kx) : 0 ≤ k < n}, j = 1,

limn→∞max{|4|kAψ(2−kx, 2−kx, 2−kx) : 0 < k ≤ n}, j = −1,

=

{
ψ(x, x, x), j = 1,

|4|Aψ(x2 ,
x
2 ,

x
2 ), j = −1.

By (4.5), we get{
limm→∞ limn→∞max{|4|−kA ψ(2kx, 2kx, 2kx) : m ≤ k < n+m}, j = 1,

limm→∞ limn→∞max{|4|kAψ(2−kx, 2−kx, 2−kx) : m < k ≤ n+m}, j = −1,

=

{
limm→∞ |4|−mA ψ(2mx, 2mx, 2mx), j = 1,

limm→∞ |4|m+1
A ψ(2−(m+1)x, 2−(m+1)x, 2−(m+1)x), j = −1,

= 0.

Thus, all conditions of Theorem 4.2 are satisfied, and hence the corresponding conclusion holds true.

Remark 4.4. The function ρ(t) = t2p (0 < p 6= 1), t ≥ 0 is an appropriate choice for the function ρ given in
Corollary 4.3. Accurately speaking, when j = 1, we can choose ρ(t) = t2p, t ≥ 0, p > 1, when j = −1, we
can choose ρ(t) = t2p, t ≥ 0, 0 < p < 1, and with the further assumption that |2|A < 1 under two cases.

Corollary 4.5. Let j ∈ {−1, 1} be fixed and let ρ : [0,∞)→ [0,∞) a function such that

ρ(|2j |At) ≤ [ρ(|2|A)]jρ(t)

for all t ≥ 0, and j · [ρ(|2|A)]3 < j · |4|A. Let X be a complete non-Archimedean space and let δ be a positive
real number. Suppose that the mapping f : G→ X satisfies the inequality

‖Dqf(x, y, z)‖A ≤ δ(ρ(‖x‖A) · ρ(‖y‖A) · ρ(‖z‖A))

for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : G→ X satisfying (1.1) such that

‖f(x)−Q(x)‖A ≤

{
δ[ρ(‖x‖A)]3

|4|A , j = 1,
δ[ρ(‖x‖A)]3

[ρ(‖2‖A)]3
, j = −1

for all x ∈ G.

Proof. Letting ψ(x, y, z) = δ(ρ(‖x‖A) · ρ(‖y‖A) · ρ(‖z‖A)). Using the same argument as in the proof of
Corollary 4.3, we can easily obtain the required result.

Remark 4.6. The function ρ(t) = t
2p
3 (0 < p 6= 1), t ≥ 0 is an appropriate choice for the function ρ given in

Corollary 4.5. Precisely speaking, when j = 1, we can choose ρ(t) = t2p, t ≥ 0, p > 1, when j = −1, we can
choose ρ(t) = t2p, t ≥ 0, 0 < p < 1, and with the further assumption that |2|A < 1 under two cases.
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