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Abstract

In this paper, we introduce some new F-contractions in b-metric-like spaces and investigate some fixed
point theorems for such F-contractions. Presented theorems generalize related results in the literature. An
example is also given to support our main result. (©2016 All rights reserved.
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1. Introduction and Preliminaries

In 2012, Wardowski [2I] introduced the notion of F-contraction and proved a new fixed point theorem
about F-contraction. Wardowski defined the F-contraction as follows.

Definition 1.1. Let (X, d) be a metric space. A mapping T : X — X is said to be an F-contraction if there
exists 7 > 0 such that for all z,y € X,

AT, Ty) > 0 = 7+ F(d(Tz, Ty)) < F(d(z,1)) (1.1)
where F': (0, 4+00) — (—00, +00) is a mapping satisfying the following conditions:

(F1) F is strictly increasing, that is for all «, 5 € (0,4+00) such that o < 8, F(a) < F(8),
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(F2) for any sequence {ay,} of positive real numbers, the following holds:

lim a, =0 if and only if lim F(ay)= —o0,
n——+00 n——+00

(F3) there exists k € (0,1) such that 11)I61+ o F(a) = 0.
0%

After that, F-contraction was generalized and many fixed point theorems concerning F-contraction were
investigated [3], 5], 6, 111, [16], 19].

On the other hand, the concept of metric spaces has been generalized by many authors, such as partial
metric spaces [18], b-metric spaces [12], metric-like spaces [7], partial b-metric spaces [20], quasi-partial
metric spaces [15] and b-dislocated metric spaces [13] were introduced and many results in these spaces were
obtained [I}, 2, 8] 10}, [14], 16, 17]. Recently, the notion of b-metric-like spaces were introduced by Alghamdi
[4] and some fixed point theorems were studied in such spaces [4, [9].

The aim of this paper is to introduce some new generalized type of F-contractions and prove some fixed
point theorems about such new F-contractions in b-metric-like spaces. Our results generalize and improve
related results in the literature. An example is presented to support our main result. Throughout this
paper, the letters N, NT, R, Rg and R will denote the set of all nonnegative integer numbers, the set of
all positive integer numbers, the set of all real numbers, the set of all nonnegative real numbers and the set
of all positive real numbers, respectively.

Let us recall some definitions and facts about partial metric spaces and b-metric-like spaces.
Definition 1.2 ([I8]). A partial metric on a nonempty set X is a function p : X x X — Ry such that for
all z,y,z € X:

(P1) z =y & p(x,y) =p,z) =pyY,y),
() p(z,z) < p(z,y),
(Ps) p(z,y) = p(y, ),
(Py) p(z,y) < p(x, 2) + p(z,9) — (2, 2).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X. It
is clear that, if p(x,y) = 0, then from (P;) and (P%), z = y. But if x = y, p(z, y) may not be 0.

In a partial metric space, the concepts of convergence, completeness and continuity are defined as follows.

Definition 1.3 ([I8]). Let (X, p) be a partial metric space. Then:
(1) A sequence {z,} in a partial metric space (X, p) converges to a point x € X if and only if p(x,z) =
v a0)
(73) A sequence {x,} in a partial metric space (X,p) is called a Cauchy sequence if there exists (and is
finite) n’%i_I)nJroop(xm, Tn).
Definition 1.4 ([4]). A b-metric-like on a nonempty set X is a function o : X x X — Ry such that for all

xz,y,z € X and a constant s > 1, the following three conditions hold true:
(01) if o(x,y) =0 then z = y;
(02) U(l‘, y) = O'(y,CC);
(05) o(w,2) < s(o(w,y) + oy, 2).
The pair (z,0) is then called a b-metric-like space.
Example 1.5 ([9]). Let X ={0,1,2} and let
]2, z=y=0,

o(z,y) = { 1, otherwise.

Then (X, o) is a b-metric-like space with the constant s = 2.

In [4], some concepts in b-metric-like spaces were introduced.
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Each b-metric-like 0 on X generalizes a topology 7, on X whose base is the family of open o-balls
By(z,e)={ye X :|o(x,y) —o(x,z)| <e} for all x € X and ¢ > 0.
A sequence {z,} in the b-metric-like space (X, o) converges to a point x € X if and only if o(x,z) =

nll)rfooa(:r,xn).

A sequence {z,} in the b-metric-like space (X,0) is called a Cauchy sequence if there exists (and is
finite) lim  o(xm, zy).

n,m——+0o00
A b-metric-like space is called complete if every Cauchy sequence {x,} in X converges with respect to
T, to a point € X such that lim o(z,z,) =o(z,z) = lim o(xm,,zy).
n—-+4o0o n,m—-+o0o

Definition 1.6. Suppose that (X,o) is a b-metric-like space. A mapping 7' : X — X is said to be
continuous at z € X, if for every ¢ > 0 there exists 6 > 0 such that T'(By(x,0)) C B,(T'z,c)). We say that
T is continuous on X if T is continuous at all z € X.

Remark 1.7 ([9]). Let (X, o) be a b-metric-like space and let f : X — X be a continuous mapping. Then

ngrfoo o(zp,x) =0(z,z) = ngrfoo o(fxn, fr) =0(fz, fx).

2. Main results

In this section, we will introduce some generalized F-contractions and investigate some fixed point
theorems for such generalized F-contractions. We begin with the following definitions.

Definition 2.1. Let F be the family of all functions F': R™ — R such that
(F1) F is strictly increasing, that is, for all o, 3 € RT such that o < 8, F(a) < F(8),
(F2) for any sequence {a,,} of positive real numbers, the following holds:

lim «, =0if and only if lim F(a,) = —oc.
n——+o00 n—+00

Definition 2.2. Let (X, o) be a b-metric-like space. A self-mapping T': X — X is said to be a generalized
F-contraction of type (I) if there exist 7 > 0 and F' € IF such that

1
%a(a:,Ta:) <o(z,y) =

r 4 F(o(Ta, Ty)) <aF(o(r,y) + BF(o(e,Ta)) + 1F(o(y, 7o) + 7Sy @)
+ hF(J(yQ’STx))

for all z,y € X with o(Tz,Ty) > 0, where «, 3,7, h,t € [0,1] such that a+5+~v+h+t =1and 1 —t—~ > 0.

Theorem 2.3. Let (X,0) be a complete b-metric-like space and T a generalized F-contraction of type (I).
Then, T has a fized point v € X; that is, Tv = v.

Proof. Let xg be an arbitrary point in X. Set Tzg = x1 and Tx; = x2. Continuing this process, we can
construct sequence {x,} in X such that

Tpi1 =Txz,, neN. (2.2)

If there exists ng € N such that o(zp,, Zny+1) = 0, then x,, is the fixed point of T which completes the
proof. Consequently, we suppose o (&, z,+1) > 0 for all n € N. Hence, we have

1
?Sa(mn,Txn) < o(xn,Tx,) ¥YneN. (2.3)
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By (1), we get
T+ F(o(Txy, T2xn)) <aF(o(xn,Txy)) + BF(0(xn, Txy)) + YF (0 (T, T2xn))

T2 Tan, T (2.4)
(@@ )y g p T T T20) ) o o
2s 2s
Now, we prove the following inequality:
0(Tpt1, Txpy1) < o(xn, Txy) Vn € N. (2.5)

Suppose, on the contrary, that there exists ng € N such that o(xng+1, T%ng+1) > 0(Tngy, Tn,), due to (2.4)),
we have
T+ F(0 (T, T?20y)) SQF(0(2ng, Tong)) + BF(0(2ng, Ttng)) + YF (0 (T g, T ny))

Ty, T2 Tx,,, Tt
—l—tF(U( n028 nO))+hF(U( 71208 no))

SaF(0(2ng, Tony)) + BF(0(Tng, Tn,)) + 'YF(U(Tl‘noaTano))

T Twp,, T? 2s0 (T
_‘_tF(SU(xNOv xno)"i_zza( Lng, an))—i-hF( so( zzoaxno)

<alF(0(Tng, Tny)) + BEF(0(2ng, Tng)) + 'yF(U(Tan,szno))
+ tF(0(TTn,, Tano)) + hF(0(Tng, Tno)),

)

which yields

T+ (1= = O)F(0(Tany, T?20,)) < (@ + B+ h)F(0(Tny, Tny)),
that is,

r
F(U(Tl'no,T2$n0)) < F(O’(Tﬁ?no,xno)) — 1—7’}/—t7

which together with (F1) implies o(Txy,, T2%n,) < 0(TZngy, Tny ), that is, (211, TTng+1) < 0(TTngs Tng)-
It is a contradiction with o(zpo+1, T%ng+1) = 0(Tngs Tng), so (2.5) holds. Therefore, {o(zy, Tx,)} is a
decreasing sequence of real numbers which is bounded from below. Suppose that there exists A > 0 such
that

lim o(x,,Tx,) =A=inf{o(z,,Tz,):n € N} (2.6)

n—-+00

Now, we show A = 0. Suppose, on the contrary, that A > 0. For every £ > 0, there exists m € N such that

o(Xm, Txm) < A+e. (2.7)
By F(1), we have
F(o(xm,Txy)) < F(A+e). (2.8)
From , we have
2—130(xm,TfL‘m) < o(Tm, Tam). (2.9)

Since T is a generalized F-contraction of type (I), we get

T+ F(o(Txm, T2xm)) <aF(o(xm,Txm)) + BF(o(zm, Txm)) + vF (o (Tzp, szm))
J(T:Um,Txm))
2s

(T, T? 20

+tF( 5%

)+ hE(
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<aF(0(xm, Txm)) + BE(0(xm, Txm)) + YF (0(TTm, T%0m))

50 (T, TTm) + 50 (T, T?2p,) 250 (TTp, )
+tF( 55 ) FhE(———

<aF(0(xp, Tzm)) + BF(0(2m, Txm)) + YEF (0 (T T, T*xp))
+ tF (0 (2m, Txm)) + RF (0 (T, ),

)

which implies
(1 =) F(0(Txm, T?xm)) < (a+ B+t + h)F(o(zm, Txm)) — T (2.10)
Taking o+ 5+ v+ h 4+t = 1 into account, we get, by ([2.10)),

T

F(o(Txpm, T?z)) < Flo(xm, TTm)) — T

(2.11)

Since 5-0(T 2, T?2p) < 0(Txm, T?2y,), from (2.1) we have

T+ F(o(T?xpm, T32,,)) <aF(o(Txm, T?xm)) + BE (0 (T2, T?x)) + vF (o (T2, T32,))

Tz, T3 T?2,,, T?x
—I—tF(—J( 5 m))+hF(U( o m))

<SOF (0 (T, T?xm)) + BF(0(Txm, T?xm)) + vF(0(T%20m, T3xm))

T, T? T?z,,, T° 2s0(T?xy,, T
—|—tF($U( T, xm)—;—ssa( T, xm))—l—hF( so( 32::, Tim)

<SOF (0 (T, T?xm)) + BF(0(Txm, T?xm)) + vEF(0(T%2m, T3xm))
+ tF(o(Txm, T?Tm)) + hF(o(T?xp, T.m)).

)

This yields
-
11—~

F(o(T?@m, T?wm)) < F(o(Txm, T?xm)) —

Continuing the above process and taking (2.8]) into account, we have
.
-~

2
<F(o(T" 22, T" ) — - T
-

F(o(T" T, T ) <F(o(T" Y2, T0m)) —

(2.12)

I—n
<F(A+e¢)— 171_77.

<o (T, Txm)) —

Letting n — +o0 in (2.12]), we get liIJIrl F(o(T"2p,, T" 1 2,,)) = —oo which together with F(2) implies
n—-+00o
lim o(T"2m, T" 2,,) = 0. So, there exists Ny € N such that o(T"z,,, T""x,,) < A for all n > Ny, that

n—-+4oo
is, o(Tman, TTmin) < A for all n > Np, which is a contradiction with the definition of A, therefore,

ngrfooa(mn, Tz,) = 0. (2.13)
Now, we prove
lim o(zp,2m) =0. (2.14)

n,m—-+00
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Suppose, on the contrary, that there exists € > 0 and sequences {p(n)} and {g(n)} of natural numbers such
that

p(n) >q(n) >n, o(Tym), Tem)) = € and o(Tpm)—1, Tem)) <€ ¥n € N. (2.15)
Applying the triangle inequality, we get

T (Tp(n)s Ta(n)) <80 (Tpn)s Tpm)—1) + S0 (Tpm)—1, Tg(n))
<80 (Tp(n)s Tp(n)—1) + 5€ (2.16)
:SO'(TSCp(n),l, a;p(n),l) +se VYn e N.

Owing to , there exists No € N such that
0 (Tpn)—1, TTpmy—1) < & 0(Tpm)s TTpm)) <&, 0(Tg(n), TTq(ny) < € Vn > N, (2.17)
which together with shows
0 (Tp(n), T(n)) < 25€ Vn > Na, (2.18)
hence
F(o(zpn), Tqm))) < F(2s€) Vn > Na. (2.19)

From (2.15)) and (2.17)), we get

1 €

?Sa(l’p(n), Txp(n)) < P < U(:Ep(n), $q(n)) Vn > Na. (2.20)
Using the triangle inequality, we have
e < o (Tp(n)> Tp(n)) < 50 (Tp(n) Tpm)+1) + 80 (Tpm)+1> Tg(n)+1) + 80 (Tg(n) 415 T(n))- (2.21)

Letting n — +o0 in (2.21)), by (2.13)), we obtain 5 < liIE)linfU($p(n)+1,$q(n)+1), hence, there exists N3 € N,
n (0.9}
such that o(z,(n) 41, Tgn)+1) > 0 for n > N3, that is o(T'zp ), TT4n)) > 0 for n > N3. By (2.1) and (2.19),

we have

T+ F(U(Txp(n)7 qu(n))) SaF(J(xp(n)vxq(n))) + /BF(U(xp(n)a Txp(n))) + VF(J(xq(n% qu(n)))
(T p(n); TTq(n)) 0 (Zg(n), TTp(n)) )

2s 2s
<aF(0(2p(m), Tq(n))) + BE (@ (@pny, Tapn)) + 7F(0(2g0), T2o(n)) (9.99)
0 (Zp(n)> Ta(n)) + 0 (Tg(n)s TTg(n))

+tF(

)+ hE(

+tF( 5 )
n)s n + n 7T n
+hF(0(fL’q< )+ Tp(n)) 20(%< )s Ty >))

for n > max{Na, N3}.
Taking (2.17)), (2.18) and (2.19) into account, (2.22)) yields

T+ F(J(Txp(n)7 qu(n)) <OéF(2S€) + ﬁF(U(ajp(n)a Txp(n))) + ’YF(O-(xq(n% qu(n)))

235—1—5) +hF(28€2+ E) (2-23)

+tF(

for n > max{Na, N3}.
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Letting n — +o0 in (2.23]), we obtain
lim F(U(T.rp(n), T:L‘q(n))) = —0Q,

n—-4o0o

which yields ngr}rloo o(Tzp(ny, TTg(n)) = 0, which together with
0 (Tpn)s Tg(n)) < 5T (Lp(nys Tpmy+1) + 570 (Zp(m) 11, T(ny41) + 520 (Tg(n) 11, Tg(n)
holds, therefore, {z,} is a

2.15)), so (2.14

(n)) = 0, this is a contradiction with

shows ngrfoo o (Tp(n), Tq
Cauchy sequence in X. Since (X, o) is complete, there exists v € X such that
o(v,v) = ngr}rnoo o(xp,v) = n7nlgn3rwa($n, ZTm) = 0. (2.24)

It is easy to prove that the following fact holds,
(2.25)

T T, T°
(2, Tan) < o(xp,v) or W < o(Twn,v).
s

2s

Suppose, on the contrary, that there exists mg € N such that

T Ty, T
W > 0(Zmo, v) and ot xm;’ tmo) > 0(Twmg, v)-
S S

By (25) and (2:20), we get

o (Tmgs Tmy)

(2.26)

<50 (Tmy, V) + 50V, Txy,)

o (TTmg, T?Tpm,)
2

0(Tmg, TTrmg)

< 0(Tmg, TTmg)
- 2

0(Tmg, Tmg)

2 2

=0(Tmg, TTmy)-

This is a contradiction. Hence (2.25)) holds and it yields
o(xp, Tv)
T+ F(o(Txyn, Tv)) <aF(o(zn,v)) + BF(0(xn, Txy)) +vF(o(v,Tv)) + tF(T)
s
(2.27)

o(v, Tz,

T+ F(o(T?z,, Tv)) <aF(o(Tzp,v)) + BF(0(Txpn, T?x,)) + YF (0 (v, Tv))
(2.28)

T, T Tz,
4 i ZTEn Tv) 9525’ v))+hF(U(U’28x )y,

Next, we discuss the following cases.

Case 1: Suppose that (2.27)) holds. From (2.27]), we have

T+ F(o(Txn, Tv)) <aF(o(xp,v)) + BF(o(zn, Txy)) + vF(o(v,Tv))
N tF(U(xn,v) 42— O'(U,TU)) N hF(U(U’xn) +20(a:n,T$n)).

(2.29)

Owing to (2.13]) and (2.24)), for some g9 > 0, there exists Ny € N such that
o(v,zy) < o and o(xy, Txy) < €o, (2.30)
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for N > N,.
With the help of (2.29) and (2.30]), we get

T
4 F(o(T5,,Tv) € 0F(0(20,0)) + BF(0(wn. Ta)) + 1 F(o(w. 7o) + (22T 4 ey
for N > N,.
Taking n — +o0 in the above inequality, we have Er}rl F(o(Tzy,Tv)) = —oo which yields
lim o(Tz,,Tv) =0. (2.31)

n—-+oo

On the other hand, we have o(v,Tv) < so(v,Tzy) + so(Txy, Tv) = so(v,zp41) + so(Tz,, Tv). By
letting n — +oo in the above inequality, by (2.24) and (2.31)), we get o(v,Tv) = 0, it means v = Tv. Thus
v is the fixed point of T

Case 2: Let (2.28) hold. From (2.28)), we have
F(o(T?zy,, Tv)) <7 4 F(o(T?z,, Tv))

<aF(o(Tzy,v)) + BF(o(Txn, T?xy,)) + YF (o (v, Tv)) + tF(W)
+ hF(U(U’;:x"))

<aF(0(Tan,v)) + BF(0(Txn, T?2y)) + vF(o(v, T)) +tF(0(T:vn,v)2+o—(v,Tv)

N hF(U(U, Txy,) + g(Txn,Tan))

=aF(o(zni1,0)) + BF(0(2ns1, Tont1)) +7F (o (v, Tv))

) (2.32)

+ tF(J(anrl? U)2+ J(U7 TU)) + hF(U(U7 $n+1) + Oé(anrla T:EnJrl) )
[2:30) and (232) yield
F(o(T%ty, Tv)) <aF(0(nt1,0)) + BF(0(2ns1, T2ns1)) +1F (0 (v, Tv))
T (2.33)
eI, )
for N > N,.
Taking n — +o0 in (2.33]), we have lirf F(o(T?z,,Tv)) = —oc which yields
n—-+0o0
lim o(T%z,, Tv) = 0. (2.34)
n—+o00

On the other hand, we have o(v,Tv) < so(v,T?xy) + so(T?xy, Tv) = s0(v, Tpi2) + so(T?z,, Tv). By
letting n — +o00 in the above inequality, from (2.24) and (2.34), we get o(v,Tv) = 0, it means v = Tv.
Thus v is the fixed point of T" and this completes the proof. O

Definition 2.4. Let (X, o) be a b-metric-like space. A self-mapping T': X — X is said to be a generalized
F-contraction of type (II) if there exist 7 > 0 and F' € F such that

2%0(:6, Tz) <o(z,y) =7+ F(o(Tz,Ty)) < aF(o(z,y)) + SF (o (2, Tx)) + 7F(a(y, Ty))

for all z,y € X with o(Tx,Ty) > 0, where v € [0,1) and «, 3 € [0,1] such that a« + f+~v = 1.

By taking ¢ = h = 0 in Theorem we can get the following corollary.
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Corollary 2.5. Let (X,0) be a complete b-metric-like space and T a generalized F-contraction of type (II).
Then, T has a fixed point v € X ; that is, Tv = v.

Remark 2.6. Replacing b-metric-like space by b-metric space in Corollary we can get Theorem 9 in [5].

Corollary 2.7. Let (X, 0) be a complete b-metric-like space and T a self-mapping on X . Assume that there
exist T >0 and F € F such that, for all x,y € X with o(Tz,Ty) > 0,

%a(aj,Tx) <o(z,y) =17+ F(o(Tz,Ty)) < F(o(z,y)).

Then, T has a fized point v € X ; that is, Tv = v.
Proof. The proof is easy by taking o = 1, 3 =~ = 0 in Corollary O

Corollary 2.8. Let (X,0) be a complete partial space and T a generalized F-contraction of type (I). Then,
T has a unique fized point.

Proof. Since every partial metric space is a b-metric-like space [4], the existence of fixed point of the
mapping T is guaranteed by Theorem Now, we prove the uniqueness of the fixed point of mapping
T. Suppose u,v are fixed point of T such that u # v, then we get p(u,v) > 0. If p(v,v) = 0, then

0= 20 — 20T ) ). T p(v,v) > 0, then 0 = 2&T0 — 200 0, 4) < p(v, u), hence we have

7+ F(p(v,u)) =1 + F(p(Tv, Tu))

<aF(p(v,u)) + BF(p(v, Tv)) + vF(p(u, Tu)) + tF(W) + hF(p(ug’STv)

<aF(p(v,u)) + BF(p(v,v)) + 7F(p(u, u)) + tF(p(v, u)) + hF (p(u, v)),

)

taking P(2) in to account, the above inequalities yields

F(p(v,u)) <7+ F(p(v,u)) <aF(p(v,u)) + BF(p(v,u)) +vF(p(v,u)) + tF(p(v,u)) + hF (p(u,v))
=(a+B8+v+t+h)F(p(u,v))
=F(p(u,v)),

which is a contradiction. Thus, T has a unique fixed point. O

Definition 2.9. Let (X, o) be a b-metric-like space. A self-mapping T': X — X is said to be a generalized
F-contraction of type (III) if there exist 7 > 0 and F' € F such that

o(Tz, Ty) > 0=
T+ F(o(Tx,Ty)) <aF(o(xz,y)) + BF(o(x,Tx)) + vF(o(y, Ty)) (2.35)
o(z,Ty) o(y, Tx)

tF
+(25 25)

)+ hE(

for all z,y € X, where v € [0,1), «, 5,t,h € [0,1] such that « + S +~v+t+h=1,1—~v—t>0.

Theorem 2.10. Let (X,0) be a complete b-metric-like space and T a continuous generalized F-contraction
of type (II). If o(Tz, Tz) < o(x,x), then, T has a fized point v € X ; that is, Tv = v.

Proof. As in the proof of Theorem choosing xy € X, we construct sequence {x,} by x, = Ta,, = T"x¢
and we can suppose

0 <o(xn,Txyn) =0(Txy—1,Tx,) Vn € N. (2.36)
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From and (| -, we have

T+ F(o(Taxp-1,Txy)) <aF(o(zp-1,2n)) + BF(0(zn-1,TTn-1)) + YF(0(2p, Txy))

o(xn—1,Twy) 0 (Xp, TTp—1) (2.37)
tp( LX)y g o W D)y
T 2s )+ ( 2s )
We claim
o(xn, Try) < U(l‘n_h Trp,—1) Vn € NT. (2.38)

Suppose, on the contrary, that there exists ng € N such that o(zp,, T%n,)) > 0(2ng—1,TTne—1)), which
together with (2.37) yields

T+ F(o(zng, TTny)) =7 + F(0(Txng—1,T2n,))
SaF(J(xno 1, xno)) + /BF(U(mno—thno—l)) =+ VF(U(xnovTxno))

M) (@ng, Ttng-1) )

+ hF( ( 5

(
SO‘F(U(xno 1,-Tn0)) +ﬁF( (xno 1,T$n071)) +7F(O-(xnoaTxno))
S0 (Tng—1,Tng) + 80 (Tng, TTny)

( 55 )

_ 1, Ty, —
+hF(SU($noawno 1) +28;(xno 1,4 Tng 1)) (2.39)

:aF(J(xno—la Txno—l)) + ﬁF(U(xno—b Txno—l)) =+ VF(U(xnoa Txno))
50 (Tng—1, TTng—1) + S0 (Tny, Tﬂ:no))
2s

+ hF( SU(Txno—la wno—l) ;:9 SO'(.Z'nO_l, Txn()—l) )

SO‘F(U(xno—laTxno—l)) + ﬁF(U(xno—lvTxno—l)) + ’VF(U(‘Tanxno))
+ tF(0(Tng, Tng)) + hE(0(ng—1, TTng—1))-

+tF

+tF

+tF(

By (2.39), we get
T+ (1 -7 t)F(U(xTLm Txno)) < (a + 6 + h)F(U(xno—la T:Uno_l)),

which shows

T
1—ry—t

Applying (2.40) and F(1), we have o(zpy, T%n,) < 0(2ny—1,TTn,—1), this is a contradiction. Hence, (2.38])
holds.
Applying (2.35) and ({2.38]), we obtain

F(U(xanxno)) < F(U(xno—laTxno—l)) - (2'40)

T+ F(o(zp, Txy)) =7 + F(o(Txp—1,Txy))
<aF(o(xp-1,2n)) + BF(0(xpn-1,Txpn-1)) + vF (0 (20, TTY))

F( o(Tp— 1,T:cn)) n hF(a(:En,;I;xn_l))
<aF(o(xp-1,2n)) + BF(o(xpn-1,Txn-1)) +vF(0(Tp, T2Y))
+ tF(o(xp—1,2y)) + hF(o(zp, xn-1))
(
(

=aF(o(xp-1,Txn-1)) + BF(0(xpn-1,Txn_1)) + VF(0(20, T0))
+tF U(xn 1, T 1)) + hF(U(Tmn_l,{L‘n_l)),
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which yields
F(o(an, Tan)) < Flo(en-1,Ten-1)) — 1 = -
Continuing this process, we get
F(o(2n, Ty)) < F(o(xo, Tao)) — 1"_2. (2.41)
Letting n — 400, (2.41) shows nETwF(J(mn, Tx,)) = —o0, hence
nEI-sI—looa(x"’ Tz,) =0. (2.42)
Now, we prove
lim o(zp,xm) =0. (2.43)

n,m—-+00

Suppose, on the contrary, that there exists ¢ > 0 and sequences {p(n)} and {¢g(n)} of natural numbers such

that

p(n) > q(n) > n, o(Tpm), Tem)) > € and o(Tpm)—1, Tem)) < € Vn € N.

Applying the triangle inequality, we get

T (Tp(n)—15 Tq(n)—1) <80 (Tp(n)—1> Tq(n)) + 5T (Tq(n)s Tg(n)—1)

<80 (Tg(n)s Tg(n)—1) + S€

:SO'(qu(n),l, mq(n),l) + se Vn € N.

Owing to (2.42), there exists N7 € N such that

O-(xp(n)—laTl‘p(n)—l) <¢g, o-(l‘q(n)—laTl‘q(n)—l) <eVn> Nla

which together with (2.45) shows
O (Tp(n)—15 Tg(n)—1) < 28 Vn > Ny,
hence

F(O’(ﬁp(n)_l, qu(n)—l)) < F(258) Vn > Nj.

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

From (2.44), we get € < 0(Tp(n)s Tg(n)) = 0(TTpmn), s TTqny—1) ¥ > N1, which together with (2.35) yields

T+ F(o(Topmy—1, TTqm)—1) SQF(0(Tpm)—1, Tem)—1)) + BF (0 (Tpm)—1, TTpm)—1))

o (Tpn)—1, Tg(n)—1)

+ PYF(O-(xq(n)—la T-rq(n)—l)) + tF(

)

U(:Eq(n)—la sz(n)—l)
2s

+ hE(

<aF(0(Tpn)—1, Tem)—1)) + BE(0(Tpn)—1, TTpmy—1))

+ ’YF(O—('rq(n)—la qu(n)—l))

+tF(

O (Tp(n)—1: Tq(n)-1) + 0 (Tgn)~1, TTq(n)-1)

2
+ hE(

0 (Zgn)—1> Tp(n)—1) + 0 (Tpm)—1: TTp(n)—1)

2

)

(2.49)
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for all n > Ny.
Taking (2.46)), (2.47) and (2.48]) into account, (2.49) yields

T+ F(U(Txp(n)—la qu(n)—l) <04F(28é‘) + BF(J(xp(n)—la Txp(n)—l)) + ’7F(J(xq(n)—1? qu(n)—l))

28€+€)+hF(2SE+€). (2'50)

Letting n — +o0 in (2.50), we obtain lim F(o(T%p(n)—1, TTgn)—1)) = —o0, which yields
n—-+0o0o

+tF(

nETooJ(Txp(”)_l’T%(”)_l) = 0 by F(2), that is, nEIfooa(xp(”)’xq(”)) = 0 which is a contradiction with

(2.44), so (2.43)) holds, therefore, {z,} is a Cauchy sequence in X. Since (X, o) is complete, there exists
v € X such that

o(v,v) = ngl—ir-loo o(zp,v) = nmll_)n}rooa(mn, Tm) = 0. (2.51)

Since T is continuous, we have

o(Tv,Tv) = lim o(Tzp,Tv)= lim o(xyt1,Tv). (2.52)

n—-+o0o n—-+o0o

Due to o(Tv,Tv) < o(v,v), from (2.51)) and (2.52)), we have

lim o(z,,Tv) =0. (2.53)

n—-+o0o

Since o (v, Tv) < o(v,zy) + o(x,, Tv), by (2.53), we get o(v, Tv) = 0, which gives v = T'v, therefore, T" has
a fixed point, this completes the proof. O

Definition 2.11. Let (X, o) be a b-metric-like space. A self-mapping T': X — X is said to be generalized
F-contraction of type (IV) if there exists 7 > 0 and F' € FF such that

o(Tz,Ty) >0 =7+ F(o(Tx,Ty)) < aF(o(z,y)) + fF(o(x, Tx)) +vF(o(y, Ty))
for all x,y € X, where v € [0,1) and «, 8 € [0, 1].
By taking ¢t = A = 0 in Theorem [2.10] we can get the following corollary.

Corollary 2.12. Let (X, 0) be a complete b-metric-like space and T a continuous generalized F-contraction
of type (IV). If o(Tz,Tx) < o(x,x), then, T has a fixed point v € X; that is, Tv = v.

Remark 2.13. Replacing b-metric-like space by b-metric space and metric-like space in Corollary
respectively, we can get Theorem 14 in [5].

Corollary 2.14. Let (X,0) be a complete b-metric-like space and T a continuous self-mapping on X. If
there exists T > 0 and F € F such that for all z,y € X,

o(Tz,Ty) >0= 71+ F(o(Tz,Ty)) < F(o(z,y)).
Then, T has a fized point v € X; that is, Tv = v.
Proof. The proof can be finished by taking a =1,5 =~ = 0. OJ

Corollary 2.15. Let (X,0) be a complete partial space and T a continuous generalized F-contraction of
type (II1). If o(Tz, Tx) < o(x,x), then, T has a unique fixed point.

Proof. The proof is similar to the proof Corollary [2.8 O

Now, we introduce an example to illustrate the validity of our main result.
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Example 2.16. Let X = [0,1] and let o0 : X x X — R be defined by o(x,y) = (maz{x,y})?. Define a
mapping T : X — X as follows:

(] 2200

It is easy to prove that (X, o) is a complete b-metric-like space with constant s = 2. Define the function
F(a) = Ina for « € RT, then we get

o(z,y)

T+ Flo(T2,Ty)) < Flo(e,y) & In_mrs

> T.

First, we can observe that

o(z,Tx)

1 <olzy)e{lz=1Aye0,l]))V(z<lAy=1)V(e<y<l)V(z<y<Il)}

For x =1 Ay € [0,1]), we have o(z,y) = o(1,y) =1 and

. % y € [0, 3],
o(Tz,Ty) =o(5,Ty) = T5,  we(31),
1 _
B4’ Yy = 1.
Hence, we get
64, yel05],
o(z,y) 16 17
LY 64, y=1.
For x <1 Ay =1, we have o(z,y) = o(z,1) =1 and
1 L zel0,3]
Tz, Ty) = o(Tz, =) =4 oF 2
oTaTy) = otz g ={ & T2

Hence, we get

o(z,y) { 64, x€/0,3],
— 2.55
o(Tx,Ty) B 2e3,1) (2.55)
For z < y < 1 we have o(z,y) = y* and o(Tz, Ty) = o(%,%) = 3{—2. Hence, we get
o(z,y)
——— =16. 2.56
o (T2, Ty) (220
For y < x < 1 we have o(z,y) = 2? and o(Tz,Ty) = o(%,Y) = "f—Q Hence, we get
o(z,y)
——— =16. 2.57
o(Ta,Ty) (250

From (2.54) — (2.57), we can obtain that if 0 < 7 < In16 then lng{’}i:?y) > 7. Thus, 7+ F(o(Tz,Ty)) <

F(o(z,y)). Therefore T" satisfies the conditions of Corollary [2.7| with 0 < 7 < [n16. Hence, all the required
hypotheses of Corollary are satisfied. Thus, T" has a fixed point.




C. Chen, L. Wen, J. Dong, Y. Gu, J. Nonlinear Sci. Appl. 9 (2016), 2161-2174 2174

Acknowledgements

The authors are thankful to the referees for their valuable comments and suggestions to improve this pa-
per. The research was supported by the National Natural Science Foundation of China (71363043) and sup-
ported by the Provincial Natural Science Foundation of Jiangxi, China(20114BAB201007, 20132BAB201001,
20142BAB201007, 20142BAB211004, 20142BAB211016) and the Science and Technology Project of Educa-
tional Commission of Jiangxi Province, China (GJJ13081).

References

1]

T. Abdeljawad, Fized points for generalized weakly contractive mappings in partial metric spaces, Math. Comput.
Modelling, 54 (2011), 2923-2927.

T. Abdeljawad, E. Karapinar, K. Tag, Ezistence and uniqueness of a commmon fized point on partial metric
spaces, Appl. Math. Lett., 24 (2011), 1900-1904.

J. Ahmad, A. Al-Rawashdeh, A. Azam, New fized point theorems for generalized F-contractions in complete
metric spaces, Fixed Point Theory Appl., 2015 (2015), 18 pages.

M. A. Alghamdi, N. Hussain, P. Salimi, Fized point and coupled fixed point theorems on b-metric-like spaces, J.
Inequal. Appl., 2013 (2013), 25 pages.

H. H. Alsulami, E. Karapinar, H. Piri, Fized points of generalized F-Suzuki type contraction in complete b-metric
spaces, Discrete Dyn. Nat. Soc., 2015 (2015), 8 pages.

H. H. Alsulami, E. Karapinar, H. Piri, Fized points of modified F-contractive mappings in complete metric-like
spaces, J. Funct. Spaces, 2015 (2015), 9 pages.

A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012
(2012), 10 pages.

T. V. An, L. Q. Tuyen, N. V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl.,
185/186 (2015), 50-64.

C. F. Chen, J. Dong, C. X. Zhu, Some fized point theorems in b-metric-like spaces, Fixed Point Theory Appl.,
2015 (2015), 10 pages.

C. Chen, C. Zhu, Fized point theorems for weakly C-contractive mappings in partial metric spaces, Fixed Point
Theory Appl., 2013 (2013), 16 pages.

M. Cosentino, P. Vetro, Fized point results for F-contractive mappings of Hardy-Rogers- Type, Filomat, 28 (2014),
715-722. [

S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.
N. Hussain, J. R. Roshan, V. Parvaneh, M. Abbas, Common fized point results for weak contractive mappings in
ordered b-dislocated metric spaces with applications, J. Inequal. Appl., 2013 (2013), 21 pages.

E. Karapinar, I. M. Erhan, Fized point theorems for operators on partial metric spaces, Appl. Math. Lett., 24
(2011), 1894-1899. i

E. Karapinar, I. M. Erhan, A. Oztiirk, Fized point theorems on quasi-partial metric spaces, Math. Comput.
Model., 57 (2013), 2442-2448.

E. Karapinar, M. A. Kutbi, H. Piri, D. O’'Regan, Fized points of conditionally F-contractions in complete metric-
like spaces, Fixed Point Theory Appl., 2015 (2015), 14 pages.

M. A. Kutbi, E. Karapinar, J. Ahmad, A. Azam, Some fized point results for multi-valued mappings in b-metric
spaces, J. Inequal. Appl., 2014 (2014), 11 pages.

S. G. Matthews, Partial metric topology, New York Acad. Sci., New York, 728 (1994), 183-197.

H. Piri, P. Kumam, Some fixed point theorems concerning F'-contraction in complete metric spaces, Fixed point
Theory Appl., 2014 (2014), 11 pages.

S. Shukla, Partial b-metric spaces and fized point theorems, Mediterr. J. Math., 11 (2013), 703-711.

D. Wardowski, Fized points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory
Appl., 2012 (2012), 6 pages.



	1 Introduction and Preliminaries
	2 Main results

