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Abstract

In this work we study integral boundary value problem involving Caputo differentiation
cDq

tu(t) = f(t, u(t)), 0 < t < 1,

αu(0)− βu(1) =

∫ 1

0
h(t)u(t)dt, γu′(0)− δu′(1) =

∫ 1

0
g(t)u(t)dt,

where α, β, γ, δ are constants with α > β > 0, γ > δ > 0, f ∈ C([0, 1]×R+,R), g, h ∈ C([0, 1],R+) and cDq
t

is the standard Caputo fractional derivative of fractional order q(1 < q < 2). By using some fixed point
theorems we prove the existence of positive solutions. c©2015 All rights reserved.
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1. Introduction

In recent years, fractional differential equations have been widely used in diffusion and transport theory,
chaos and turbulence, viscoelastic mechanics, non-newtonian fluid mechanics etc. It has received highly
attention and becomes one of the hottest issues in the international research field. For instance, Westerlund
[14] utilized fractional differential equations to depict the transmission of electromagnetic wave, the one
dimensional model is

µ0ε0
∂2E(x, t)

∂t2
+ µ0ε0x00D

ν
t E(x, t) +

∂2E(x, t)

∂t2
= 0,
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where µ0, ε0, x0 are constants, 0D
ν
t E(x, t) = ∂νE(x,t)

∂tν is a fractional derivative.
As an excellent tool, fixed point method is used for investigating nonlinear boundary value problems

and there are a lot of papers devoted to this direction. We refer the reader to some papers involving
fractional differential equations [1, 2, 4, 5, 11, 12, 13, 15, 16, 17, 18] and the references therein. For example,
Leggett-Williams fixed point theorem is used to study the existence of multiple positive solutions for some
integral boundary value problems [4, 11, 16]. However, all these works were done under assumption that the
nonlinear term is nonnegative. Therefore, it is natural to discuss the existence of positive solutions while
the nonlinear term is sign-changing, for instance, see [15, 17, 18].

In [17] the author obtained the existence of positive solutions for the coupled integral boundary value
problem for systems of nonlinear fractional q-difference equations

Dα
q u(t) + λf(t, u(t), v(t)) = 0, Dβ

q v(t) + λg(t, u(t), v(t)) = 0, t ∈ (0, 1), λ > 0,

Dj
qu(0) = Dj

qv(0) = 0, 0 ≤ j ≤ n− 2, u(1) = µ

∫ 1

0
v(s)dqs, v(1) = ν

∫ 1

0
u(s)dqs.

(1.1)

Under the semipositone nonlinearities, by applying the nonlinear alternative of Leray-Schauder type and
Krasnoselskii’s fixed point theorems, several existence theorems for (1.1) had been established.

Motivated by the above works, we investigate the existence of positive solutions for integral boundary
value problems involving Caputo differentiation

cDq
tu(t) = f(t, u(t)), 0 < t < 1,

αu(0)− βu(1) =

∫ 1

0
h(t)u(t)dt, γu′(0)− δu′(1) =

∫ 1

0
g(t)u(t)dt,

(1.2)

where α, β, γ, δ are real constants with α > β > 0, γ > δ > 0, f ∈ C([0, 1] × R+,R), g, h ∈ C([0, 1],R+)
and cDq

t is the standard Caputo fractional derivative of fractional order q(1 < q < 2). We consider the two
cases:

(1) The nonlinearity is asymptotically linear at infinity, maybe it is negative and unbounded.
(2) The nonlinearity is bounded from below, including sign-changing.

2. Preliminaries

We first offer some basic definitions and facts used throughout this paper. For more details, see [7, 9, 10].

Definition 2.1. For a function f given on the interval [a, b], the Caputo derivative of fractional order q is
defined as

cDqf(t) =
1

Γ(n− q)

∫ t

0
(t− s)n−q−1f (n)(s)ds, n = [q] + 1,

where [q] denotes the integer part of q.

Definition 2.2. The Riemann-Liouville fractional integral of order q for a function f is defined as

Iqf(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s)ds, q > 0,

provided that such integral exists.

Lemma 2.3. Let q > 0. Then the differential equation cDqu(t) = 0 has solutions

u(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n, n = [q] + 1.
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Lemma 2.4. Let q > 0. Then

Iq(cDqu)(t) = u(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n, n = [q] + 1.

Lemma 2.5. Let q ∈ (1, 2) and y ∈ C[0, 1]. Then boundary value problem{
cDq

tu(t) = y(t), 0 < t < 1,

αu(0)− βu(1) = 0, γu′(0)− δu′(1) = 0,

has a unique solution u in the form

u(t) =

∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =


(t−s)q−1

Γ(q) + β(1−s)q−1

(α−β)Γ(q) + βδ(q−1)(1−s)q−2

(α−β)(γ−δ)Γ(q) + δ(q−1)t(1−s)q−2

(γ−δ)Γ(q) , 0 ≤ s ≤ t ≤ 1,

β(1−s)q−1

(α−β)Γ(q) + βδ(q−1)(1−s)q−2

(α−β)(γ−δ)Γ(q) + δ(q−1)t(1−s)q−2

(γ−δ)Γ(q) , 0 ≤ t ≤ s ≤ 1.

Proof. By Definitions 2.1, 2.2 and Lemmas 2.3, 2.4, we have

u(t) =
1

Γ(q)

∫ t

0
(t− s)q−1y(s)ds+ c1 + c2t (2.1)

for c1, c2 ∈ R. Then

u(0) = c1, u(1) =
1

Γ(q)

∫ 1

0
(1− s)q−1y(s)ds+ c1 + c2,

u′(0) = c2, u′(1) =
q − 1

Γ(q)

∫ 1

0
(1− s)q−2y(s)ds+ c2.

In view of the boundary conditions αu(0)− βu(1) = 0, γu′(0)− δu′(1) = 0, we obtain

c1 =
β

(α− β)Γ(q)

∫ 1

0
(1− s)q−1y(s)ds+

βδ(q − 1)

(α− β)(γ − δ)Γ(q)

∫ 1

0
(1− s)q−2y(s)ds,

c2 =
δ(q − 1)

(γ − δ)Γ(q)

∫ 1

0
(1− s)q−2y(s)ds.

Substituting c1, c2 into the equation (2.1), we find

u(t) =
1

Γ(q)

∫ t

0
(t− s)q−1y(s)ds+

δ(q − 1)t

(γ − δ)Γ(q)

∫ 1

0
(1− s)q−2y(s)ds

+
β

(α− β)Γ(q)

∫ 1

0
(1− s)q−1y(s)ds+

βδ(q − 1)

(α− β)(γ − δ)Γ(q)

∫ 1

0
(1− s)q−2y(s)ds

=

∫ 1

0
G(t, s)y(s)ds.

This completes the proof.

Lemma 2.6. Let q ∈ (1, 2). Then boundary value problem
cDq

tu(t) = 0, 0 < t < 1,

αu(0)− βu(1) =

∫ 1

0
h(t)u(t)dt, γu′(0)− δu′(1) =

∫ 1

0
g(t)u(t)dt



Y. Wang, Y. Yang, J. Nonlinear Sci. Appl. 8 (2015), 99–109 102

can be expressed in the form

u(t) =
1

α− β

∫ 1

0
h(t)u(t)dt+ φ(t)

∫ 1

0
g(t)u(t)dt,

where φ(t) := β+(α−β)t
(α−β)(γ−δ) for t ∈ [0, 1].

Proof. By Lemma 2.3 we see
u(t) = c3 + c4t, where c3, c4 ∈ R.

Consequently,

(α− β)c3 − βc4 =

∫ 1

0
h(t)u(t)dt, (γ − δ)c4 =

∫ 1

0
g(t)u(t)dt.

Hence

u(t) =
t

γ − δ

∫ 1

0
g(t)u(t)dt+

1

α− β

∫ 1

0
h(t)u(t)dt+

β

(α− β)(γ − δ)

∫ 1

0
g(t)u(t)dt.

This completes the proof.

Let q ∈ (1, 2) and y ∈ C[0, 1]. Then from Lemmas 2.5, 2.6 we can obtain the boundary value problem
cDq

tu(t) = y(t), 0 < t < 1,

αu(0)− βu(1) =

∫ 1

0
h(t)u(t)dt, γu′(0)− δu′(1) =

∫ 1

0
g(t)u(t)dt

(2.2)

is equivalent to

u(t) =

∫ 1

0
G(t, s)y(s)ds+

1

α− β

∫ 1

0
h(t)u(t)dt+ φ(t)

∫ 1

0
g(t)u(t)dt. (2.3)

Throughout this paper we always assume that the following condition holds:
(H1) κ = κ1κ4 − κ2κ3 > 0, κ1 ≥ 0, κ4 ≥ 0, where

κ1 = 1− 1

α− β

∫ 1

0
h(t)dt, κ2 =

∫ 1

0
h(t)φ(t)dt,

κ3 =
1

α− β

∫ 1

0
g(t)dt, κ4 = 1−

∫ 1

0
g(t)φ(t)dt.

Lemma 2.7. Suppose (H1) holds. Then (2.3) is equivalent to

u(t) =

∫ 1

0
H(t, s)y(s)ds,

where

H(t, s) = G(t, s) +
1

κ(α− β)

[
κ4

∫ 1

0
h(t)G(t, s)dt+ κ2

∫ 1

0
g(t)G(t, s)dt

]
+
φ(t)

κ

[
κ3

∫ 1

0
h(t)G(t, s)dt+ κ1

∫ 1

0
g(t)G(t, s)dt

]
.

Proof. Multiplying h(t) on both sides of (2.3) and integrating over [0, 1], we find∫ 1

0
h(t)u(t)dt

=

∫ 1

0
h(t)

∫ 1

0
G(t, s)y(s)dsdt+

1

α− β

∫ 1

0
h(t)dt

∫ 1

0
h(t)u(t)dt+

∫ 1

0
h(t)φ(t)dt

∫ 1

0
g(t)u(t)dt.
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Similarly,∫ 1

0
g(t)u(t)dt

=

∫ 1

0
g(t)

∫ 1

0
G(t, s)y(s)dsdt+

1

α− β

∫ 1

0
g(t)dt

∫ 1

0
h(t)u(t)dt+

∫ 1

0
g(t)φ(t)dt

∫ 1

0
g(t)u(t)dt.

Consequently, we get[
κ1 −κ2

−κ3 κ4

][ ∫ 1
0 h(t)u(t)dt∫ 1
0 g(t)u(t)dt

]
=

[ ∫ 1
0 h(t)

∫ 1
0 G(t, s)y(s)dsdt∫ 1

0 g(t)
∫ 1

0 G(t, s)y(s)dsdt

]
.

Therefore, [ ∫ 1
0 h(t)u(t)dt∫ 1
0 g(t)u(t)dt

]
=

1

κ

[
κ4 κ2

κ3 κ1

][ ∫ 1
0 h(t)

∫ 1
0 G(t, s)y(s)dsdt∫ 1

0 g(t)
∫ 1

0 G(t, s)y(s)dsdt

]
.

As a result, we have

u(t) =

∫ 1

0
G(t, s)y(s)ds

+
1

κ(α− β)

[
κ4

∫ 1

0
h(t)

∫ 1

0
G(t, s)y(s)dsdt+ κ2

∫ 1

0
g(t)

∫ 1

0
G(t, s)y(s)dsdt

]
+
φ(t)

κ

[
κ3

∫ 1

0
h(t)

∫ 1

0
G(t, s)y(s)dsdt+ κ1

∫ 1

0
g(t)

∫ 1

0
G(t, s)y(s)dsdt

]
.

This completes the proof.

Lemma 2.8. Let

K1 := 1 +
1

κ(α− β)

(
κ4

∫ 1

0
h(t)dt+ κ2

∫ 1

0
g(t)dt

)
+
φ(0)

κ

(
κ3

∫ 1

0
h(t)dt+ κ1

∫ 1

0
g(t)dt

)
,

K2 := 1 +
1

κ(α− β)

(
κ4

∫ 1

0
h(t)dt+ κ2

∫ 1

0
g(t)dt

)
+
φ(1)

κ

(
κ3

∫ 1

0
h(t)dt+ κ1

∫ 1

0
g(t)dt

)
.

Then the following inequalities hold:

K1M(s) ≤ H(t, s) ≤ α

β
K2M(s), ∀t ∈ [0, 1], s ∈ (0, 1).

Proof. Let

g1(t, s) =
(t− s)q−1

Γ(q)
+
β(1− s)q−1

(α− β)Γ(q)
+
βδ(q − 1)(1− s)q−2

(α− β)(γ − δ)Γ(q)
+
δ(q − 1)t(1− s)q−2

(γ − δ)Γ(q)
, 0 ≤ s ≤ t ≤ 1,

and

g2(t, s) =
β(1− s)q−1

(α− β)Γ(q)
+
βδ(q − 1)(1− s)q−2

(α− β)(γ − δ)Γ(q)
+
δ(q − 1)t(1− s)q−2

(γ − δ)Γ(q)
, 0 ≤ t ≤ s ≤ 1.

For given s ∈ (0, 1), g1, g2 are increasing with respect to t for t ∈ [0, 1]. Hence,

min
t∈[0,1]

G(t, s) = min{ min
t∈[s,1]

g1(t, s), min
t∈[0,s]

g2(t, s)} = min{g1(s, s), g2(0, s)} = g2(0, s)

=
β(1− s)q−1

(α− β)Γ(q)
+
βδ(q − 1)(1− s)q−2

(α− β)(γ − δ)Γ(q)
:=M(s),
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max
t∈[0,1]

G(t, s) = max{max
t∈[s,1]

g1(t, s), max
t∈[0,s]

g2(t, s)} = max{g1(1, s), g2(s, s)} = g1(1, s)

=
(1− s)q−1

Γ(q)
+
β(1− s)q−1

(α− β)Γ(q)
+
βδ(q − 1)(1− s)q−2

(α− β)(γ − δ)Γ(q)
+
δ(q − 1)(1− s)q−2

(γ − δ)Γ(q)
=
α

β
M(s).

Therefore,

M(s) ≤ G(t, s) ≤ α

β
M(s), ∀t ∈ [0, 1], s ∈ (0, 1).

This yields

K1M(s) ≤ G(t, s) +
1

κ(α− β)

[
κ4

∫ 1

0
h(t)G(t, s)dt+ κ2

∫ 1

0
g(t)G(t, s)dt

]
+
φ(t)

κ

[
κ3

∫ 1

0
h(t)G(t, s)dt+ κ1

∫ 1

0
g(t)G(t, s)dt

]
≤ α

β
K2M(s).

This completes the proof.

Let E := C[0, 1], ‖u‖ := maxt∈[0,1] |u(t)|, P := {u ∈ E : u(t) ≥ 0,∀t ∈ [0, 1]}. Then (E, ‖ · ‖) becomes
a real Banach space and P is a cone on E.

Definition 2.9. Given a cone P in a real Banach space E, a functional α : P → [0,∞) is said to be
nonnegative continuous concave on P , provided α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y), for all x, y ∈ P with
t ∈ [0, 1].

Let a, b, r > 0 be constants and α as defined above, we denote Pr = {y ∈ P : ‖y‖ < r}, P{α, a, b} =
{y ∈ P : α(y) ≥ a, ‖y‖ ≤ b}.

Lemma 2.10. (Leggett-Williams fixed point theorem, see [3, 8]) Assume E is a real Banach space, P ⊂ E
is a cone. Let A : P c → P c be completely continuous and α be a nonnegative continuous concave functional
on P such that α(y) ≤ ‖y‖, for y ∈ P c. Suppose that there exist 0 < a < b < d ≤ c such that
(1) {y ∈ P (α, b, d)| α(y) > b} 6= ∅ and α(Ay) > b, for all y ∈ P (α, b, d),
(2) ‖Ay‖ < a, for all ‖y‖ ≤ a,
(3) α(Ay) > b for all y ∈ P (α, b, c) with ‖Ay‖ > d.
Then A has at least three fixed points y1, y2, y3 satisfying

‖y1‖ < a, b < α(y2), ‖y3‖ > a, α(y3) < b.

Lemma 2.11. (see [6]) Let E be a Banach space, and A : E → E be a completely continuous operator.
Assume that T : E → E is a bounded linear operator such that 1 is not an eigenvalue of T and

lim
‖u‖→∞

‖Au− Tu‖
‖u‖

= 0.

Then A has a fixed point in E.

Define A : E → E

(Au)(t) =

∫ 1

0
H(t, s)f(s, u(s))ds.

Then, by Lemmas 2.5, 2.6 and 2.7, the existence of solutions for (1.2) is equivalent to the existence of fixed
points for the operator A. Furthermore, in view of the continuity H and f , we can adopt the Ascoli-Arzela
theorem to prove A is a completely continuous operator.
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3. Main results

For convenience, we set

ξ =

∫ 1

0

α

β
K2M(s)ds =

α

β
K2

(
β

q(α− β)Γ(q)
+

βδ

(α− β)(γ − δ)Γ(q)

)
, θ =

K1β

K2α
,

D1 =
α2K2

2

K1β2

(
β

q(α− β)Γ(q)
+

βδ

(α− β)(γ − δ)Γ(q)

)
,

l = K1

∫ 1

0
M(s)ds = K1

(
β

q(α− β)Γ(q)
+

βδ

(α− β)(γ − δ)Γ(q)

)
.

Theorem 3.1. Let (H1) hold true. Moreover, suppose that
(H2) f(t, 0) 6≡ 0 for all t ∈ [0, 1],

(H3) limu→+∞
f(t,u)
u = λ, uniformly for t ∈ [0, 1], where |λ| < ξ−1.

Then (1.2) has a positive solution.

Proof. Define T : P → P

(Tu)(t) = λ

∫ 1

0
H(t, s)u(s)ds. (3.1)

Clearly, T is a bounded linear operator, and by Lemmas 2.5, 2.6 and 2.7 we know that (3.1) is equivalent to
cDq

tu(t) = λu(t), 0 < t < 1,

αu(0)− βu(1) =

∫ 1

0
h(t)u(t)dt, γu′(0)− δu′(1) =

∫ 1

0
g(t)u(t)dt.

(3.2)

Next we show 1 is not an eigenvalue of T . We divide two cases.
Case 1. λ = 0.
This implies cDq

tu(t) = 0, and by Lemma 2.6 we get

u(t) =
1

α− β

∫ 1

0
h(t)u(t)dt+ φ(t)

∫ 1

0
g(t)u(t)dt.

Multiplying h(t), g(t) on both sides and integrating over [0, 1], we find∫ 1

0
h(t)u(t)dt =

1

α− β

∫ 1

0
h(t)dt

∫ 1

0
h(t)u(t)dt+

∫ 1

0
h(t)φ(t)dt

∫ 1

0
g(t)u(t)dt,

∫ 1

0
g(t)u(t)dt =

1

α− β

∫ 1

0
g(t)dt

∫ 1

0
h(t)u(t)dt+

∫ 1

0
g(t)φ(t)dt

∫ 1

0
g(t)u(t)dt.

Consequently, [
κ1 −κ2

−κ3 κ4

][ ∫ 1
0 h(t)u(t)dt∫ 1
0 g(t)u(t)dt

]
=

[
0
0

]
.

This, together with (H1), yields ∫ 1

0
h(t)u(t)dt = 0,

∫ 1

0
g(t)u(t)dt = 0.

Also, u(t) ≡ 0, t ∈ [0, 1] for the fact that g, h ≥ 0 and g, h 6≡ 0. This contradicts to the definition of
eigenvalue and eigenfunction.

Case 2. λ 6= 0.



Y. Wang, Y. Yang, J. Nonlinear Sci. Appl. 8 (2015), 99–109 106

We assume that 1 is an eigenvalue of T , i.e., Tu = u. So,

‖u‖ = ‖Tu‖ = |λ| max
t∈[0,1]

∫ 1

0
H(t, s)u(s)ds ≤ |λ|

∫ 1

0

α

β
K2M(s)ds‖u‖

= |λ|α
β
K2

(
β

q(α− β)Γ(q)
+

βδ

(α− β)(γ − δ)Γ(q)

)
‖u‖ < ‖u‖.

This is impossible.
Above all, 1 is not an eigenvalue of T , as required.
On the other hand, by (H3), for all ε > 0, there exists M1 > 0 such that |f(t, u) − λu| ≤ εu, for t ∈

[0, 1], u ≥ M1. Moreover, if u ≤ M1, then |f(t, u) − λu| is bounded for all t ∈ [0, 1]. Consequently, there
exists ζ > 0 such that

|f(t, u)− λu| ≤ εu+ ζ, for t ∈ [0, 1], u ∈ R+.

Hence

‖Au− Tu‖ = max
t∈[0,1]

∣∣∣∣∫ 1

0
H(t, s)(f(s, u(s))− λu(s))ds

∣∣∣∣
≤ max

t∈[0,1]

∫ 1

0
H(t, s)|(f(s, u(s))− λu(s))|ds

≤ max
t∈[0,1]

∫ 1

0
H(t, s)ds(ε‖u‖+ ζ),

and

lim
‖u‖→∞

‖Au− Tu‖
‖u‖

≤ lim
‖u‖→∞

maxt∈[0,1]

∫ 1
0 H(t, s)ds(ε‖u‖+ ζ)

‖u‖
= 0.

So, A has a fixed point in E. Note that 0 is not a fixed point of A, and thus A has a positive fixed point,
i.e., (1.2) has a positive solution. This completes the proof.

Theorem 3.2. Let (H1) hold true. Moreover, suppose that
(H4) There exists M > 0 such that f(t, u) ≥ −M for (t, u) ∈ [0, 1]× R+,
There exist positive constants e, b, c,N with MD1 < e < e+MD1θ < b < θ2c, 1

θ < N < cl
bξ such that

(H5) f(t, u) < e
ξ −M for t ∈ [0, 1], 0 ≤ u ≤ e,

(H6) f(t, u) ≥ b
lN −M for t ∈ [0, 1], b−MD1θ ≤ u ≤ b

θ2
,

(H7) f(t, u) ≤ c
ξ −M for t ∈ [0, 1], 0 ≤ u ≤ c.

Then (1.2) has at least two positive solutions.

Proof. Let ω be a solution of
cDq

tu(t) = 1, 0 < t < 1,

αu(0)− βu(1) =

∫ 1

0
h(t)u(t)dt, γu′(0)− δu′(1) =

∫ 1

0
g(t)u(t)dt,

and z = Mω. By Lemma 2.7 we have

z(t) = Mω(t) = M

∫ 1

0
H(t, s)ds ≤M

∫ 1

0

α

β
K2M(s)ds

= M
α

β
K2

(
β

q(α− β)Γ(q)
+

βδ

(α− β)(γ − δ)Γ(q)

)
= MD1θ < eθ.
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We easily obtain that (1.2) has a positive solution u if and only if u + z = ũ is a solution of the boundary
value problem 

cDq
tu(t) = f̃(t, u(t)− z(t)), 0 < t < 1,

αu(0)− βu(1) =

∫ 1

0
h(t)u(t)dt, γu′(0)− δu′(1) =

∫ 1

0
g(t)u(t)dt,

(3.3)

and ũ ≥ z for t ∈ (0, 1), where f̃ : [0, 1]× R+ → R+ is defined by

f̃(t, y) =

{
f(t, y) +M, (t, y) ∈ [0, 1]× [0,+∞),

f(t, 0) +M, (t, y) ∈ [0, 1]× (−∞, 0).

For u ∈ P , we define

Tu(t) =

∫ 1

0
H(t, s)f̃(s, u(s)− z(s))ds.

Next we check T (P ) ⊆ P0, where P0 = {u ∈ P : mint∈[0,1] u(t) ≥ θ‖u‖}, θ = K1β
K2α

. Indeed, for u ∈ P , Lemma
2.8 implies ∫ 1

0
K1M(s)f̃(s, u(s)− z(s))ds ≤ Tu(t) ≤

∫ 1

0

α

β
K2M(s)f̃(s, u(s)− z(s))ds.

Hence,

Tu(t) ≥ K1β

K2α

∫ 1

0

α

β
K2M(s)f̃(s, u(s)− z(s))ds ≥ θ‖Tu‖.

In what follows, we show that all the conditions of Lemma 2.10 are satisfied. We first define the
nonnegative, continuous concave functional α : P → [0,∞) by α(u) = mint∈[0,1] |u(t)|. For each u ∈ P , it is

easy to see α(u) ≤ ‖u‖. We prove that T (P c) ⊆ P c. Let u ∈ P c. Then
(i) if u(t) ≥ z(t), we have 0 ≤ u(t)− z(t) ≤ u(t) ≤ c and f̃(t, u(t)− z(t)) = f(t, u(t)− z(t)) +M ≥ 0. By

(H7) we have f̃(t, u(t)− z(t)) ≤ c
ξ .

(ii) if u(t) < z(t), we have u(t) − z(t) < 0 and f̃(t, u(t) − z(t)) = f(t, 0) + M ≥ 0. By (H7) we have
f̃(t, u(t)− z(t)) ≤ c

ξ .

Therefore, we have proved that, if u ∈ P c, then f̃(t, u(t)− z(t)) ≤ c
ξ for t ∈ [0, 1]. Then,

‖Tu‖ = max
t∈[0,1]

∫ 1

0
H(t, s)f̃(s, u(s)− z(s))ds ≤

∫ 1

0

α

β
K2M(s)ds

c

ξ
= c.

Therefore, we have T (P c) ⊆ P c. Especially, if u ∈ P e, then (H5) yields f̃(t, u(t) − z(t)) ≤ e
ξ for t ∈ [0, 1].

So, we have T : P e → Pe, i.e., the assumption (2) of Lemma 2.10 holds.
To verify condition (1) of Lemma 2.10, let u(t) = b

θ2
, then u ∈ P , α(u) = b/θ2 > b, i.e., {u ∈

P (α, b, b
θ2

) : α(u) > b} 6= ∅. Moreover, if u ∈ P (α, b, b
θ2

), then α(u) ≥ b, and b ≤ ‖u‖ ≤ b
θ2

. Thus,

0 < b−MD1θ ≤ u(t)− z(t) ≤ u(t) ≤ b
θ2
, t ∈ [0, 1]. From (H6) we obtain f̃(t, u(t)− z(t)) ≥ b

lN for t ∈ [0, 1].
By the definition of α, we have

α(Tu) = min
t∈[0,1]

Tu(t) ≥ θ‖Tu‖ ≥ θ max
t∈[0,1]

∫ 1

0
H(t, s)f̃(s, u(s)− z(s))ds ≥ θ b

l
N

∫ 1

0
K1M(s)ds

= θNb > b.

Therefore, condition (1) of Lemma 2.10 is satisfied with d = b/θ2.
Finally, we show condition (3) of Lemma 2.10 is satisfied. For this we choose u ∈ P (α, b, c) with

‖Tu‖ > b/θ2. Then we have α(Tu) = mint∈[0,1] Tu(t) ≥ θ‖Tu‖ ≥ b
θ > b. Hence, condition (3) of Lemma

2.10 holds with ‖Tu‖ > b/θ2.
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From now on, all the hypotheses of Lemma 2.10 are satisfied. Hence T has at least three positive fixed
points ũ1, ũ2 and ũ3 such that

‖ũ1‖ < e, b < α(ũ2), ‖ũ3‖ > e, α(ũ3) < b.

Furthermore, ũi = ui + z (i = 1, 2, 3) are solutions of (3.3). Moreover,

ũ2(t) ≥ θ‖ũ2‖ ≥ θα(ũ2) > θb > θMD1 ≥ z(t), t ∈ [0, 1],

ũ3(t) ≥ θ‖ũ3‖ > θe > θMD1 ≥ z(t), t ∈ [0, 1].

So u2 = ũ2 − z, u3 = ũ3 − z are two positive solutions of (1.2). This completes the proof.

4. Examples

We now present two simple examples to explain our results. Let q = 1.5, α = γ = 2, β = δ = 1, h(t) = t3,
g(t) = t2. Then φ(t) = 1 + t, κ1 = 3

4 , κ2 = 9
20 , κ3 = 1

3 , κ4 = 5
12 , κ = 13

80 , K1 = 60
13 , K2 = 20

3 ,
∫ 1

0 M(s)ds = 10
3
√
π

,

ξ = 400
9
√
π
≈ 25.08, ξ−1 ≈ 0.04, θ = 9

26 , D1 = 10400
81
√
π
≈ 72.44, l = 200

13
√
π
≈ 8.68.

Example 4.1. Let f(t, u) = λu + ρuσ − et + η, ∀t ∈ [0, 1], u ∈ R+, where σ ∈ (0, 1), |λ| < 0.04, ρ 6= 0,
η 6= 0. Then (H2) and (H3) hold, by Theorem 3.1, (1.2) has at least one positive solution.

Example 4.2. We choose M = 0.01, e = 0.85, b = 2, N = 4, c = 30, and

ϕ(u) =


0.01u, 0 ≤ u ≤ 1,

−0.08u2 + 1.54u− 1.45, 1 ≤ u ≤ 1.9,

1.1872, 1.9 ≤ u < +∞.

Then ϕ ∈ C(R+,R+). Furthermore, let f(t, u) = ϕ(u) − 0.01 for all t ∈ [0, 1], u ∈ R+. Then MD1 =
104

81
√
π
≈ 0.72, MD1θ = 4

9
√
π
≈ 0.25, θ2c = 1215

338 ≈ 3.59, θ−1 ≈ 2.89 and cl
bξ = 135

26 ≈ 5.19. Clearly,

MD1 < e < e+MD1θ < b < θ2c, θ−1 < N < cl
bξ and f(t, u) ≥ −0.01 = −M . On the other hand,

(i) f(t, u) < 0.02 < e
ξ −M = 153

√
π

8000 − 0.01 ≈ 0.024 for t ∈ [0, 1], 0 ≤ u ≤ 0.85,

(ii) f(t, u) > f(1.74) ≈ 0.98 > b
lN −M = 13

√
π

25 − 0.01 ≈ 0.91 for t ∈ [0, 1], 1.74 < 2− 4
9
√
π
≤ u ≤ 1325

81 ≈
16.69,

(iii) f(t, u) ≤ 1.1772 < 1.186 < c
ξ −M = 27

√
π

40 − 0.01 for t ∈ [0, 1], 0 ≤ u ≤ 30.
Hence, (H4)-(H7) are satisfied, by Theorem 3.2, (1.2) has at least two positive solutions.
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